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Abstract 

The ongoing research in intelligent transport systems and connected and automated 
vehicles, enabled by advancements in artificial intelligence, integrating traffic 
simulations has become an essential part of product/software development for the 
automotive industry. Nowadays, traffic simulations are used to mimic real-world 
environment scenarios for virtual testing of advanced transportation technologies. . 
With the increase in data collection methods for traffic flow, the calibration of the 
microscopic traffic simulations has emerged as an important research area. The 
underlying question in traffic modeling is how accurately simulations can mimic the 
real environment traffic flow conditions? This paper attempts to create a framework 
for microscopic traffic simulation calibration procedure which can be scaled for large 
networks. This paper makes the following major contributions. First, a calibration 
framework is proposed which harnesses the existing data set collected from The 
Ohio State University (OSU) campus bus service (CABS) busses using Global 
Positioning System (GPS) sensors to determine the traffic state in the real 
environment and create a microscopic traffic simulation. The traffic simulation is 
implemented for a section of the OSU campus (“Woody Hayes Drive") in an open-
source traffic simulator – Simulation of Urban MObility (SUMO). The traffic flow 
generation is probabilistic to introduce variability between scenarios. The second 
contribution is the development of a communication interface between real-time 
dSpace ASM Hardware in Loop setup with SUMO to create a complete real-time 
simulation of urban environments for advanced driver assist systems (ADAS) virtual 
testing. Ademonstration scenario is the Ohio State University campus network with 
traffic demand generated using the calibrated model from the first part of the work. 

1 Introduction 
Traffic simulations are widely used by city planners and government agencies to 
understand the movement of people and goods in a road network environment. With 
increased interest in ADAS and connected and autonomous vehicles (CAV) 
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technologies for intelligent transportation, traffic simulations have become an 
important part of automotive research. The development of ADAS and other 
connected vehicle fields requires millions of miles of testing to demonstrate 
improvements. Most often virtual simulation testing is a safer, more efficient and 
faster alternative to road testing[1]. For a realistic testing environment setup, traffic 
simulations play a very critical part. Traffic simulations consist of multiple modes of 
transportation (vehicles, pedestrians, scooters, etc.) interacting with a road network 
environment and infrastructure (e.g. traffic lights and signs). In a microscopic traffic 
simulation, each individual traffic participant is modeled as independent agent while 
ensuring the overall traffic flow matches the desired flow. The task of calibration of 
traffic simulation entitles the accurate vehicle flow information and vehicle 
interaction in a closed-loop road environment. Despite the wide research in the field 
of traffic simulations, the calibration approach used requires on-road traffic data 
which intern requires sensors infrastructure [2], such as, cameras, induction loop 
detectors, etc. This data may not be readily available due to cost and time.  
A university campus is a unique environment as it consists of cars, buses, utility 
vehicles, and foot traffic. The traffic patterns tend to follow a specific pattern that 
depends on class schedule and vacations. Besides, the OSU campus offers unique 
opportunities for further research related to smart cities. Hence, this study focuses on 
modeling multi-modal traffic on the OSU campus. The key challenge is that vehicle 
counts data is very limited due to lack of sensors. The calibration approach used in 
this paper is based on GPS locations available from CABS busses. This approach 
does not require vehicle counts data from infrastructure sensors.  In this approach we 
first compute the average travel time at intersections using the GPS data and 
calibrate the model to match this travel time. The underlying assumption is that the 
travel time is an indicator of traffic flow rate.  
Calibrated traffic models alone are not sufficient to test ADS and ADAS safety. The 
vehicle under test (a.k.a. ego vehicle) should be controlled using the algorithm being 
tested. The fidelity of the ego vehicle models, and traffic simulator models are 
decided based on the validation level. However, establishing a seamless 
communication between vehicle simulators and traffic simulators is not always 
trivial as the models have different accuracies and time steps. In this paper we 
consider one such application of traffic models to Hardware in the Loop (HIL) 
testing of ADAS algorithms. A lot of research has been done in scenario-based 
testing of ADAS and CAVS [3]. The scenario-based testing consists of few vehicles, 
shorter time horizon and smaller distances. There are lot of ADAS testing software 
packages like MATLAB® ADT, dSpace ASM, CARLA, Roadrunner, etc. But no 
commercial or open-source available software has linked the traffic simulation with a 
vehicle simulator in a HIL setup [1]. In this paper the traffic simulation model 
calibrated for a section of the OSU campus is linked with the ADAS equipped 
vehicle model running on a HIL setup to demonstrate a closed loop virtual testing 
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environment.  The challenge is due to difference in the vehicle dynamics model 
fidelities and differences in time steps between SUMO and dSpace ASM. The 
SUMO model can run at maximum of 10Hz, but the HIL setup must run at-least at 
100Hz. Besides, the yaw rate of SUMO vehicle dynamics is not accurate enough to 
feed directly to the high Degree of Freedom (DoF) vehicle dynamics model of ASM. 
Hence a synchronization interface is developed to approximate vehicle positions.  
This paper is structured as follows. Section 2 of the paper describes the traffic model 
calibration process and results of calibration for a section of the OSU campus. In 
Section 3 we explain the process to integrate traffic simulation models with HIL 
simulator. Finally, in Section 4 we make concluding remarks.  

2 Multi-Modal Traffic Calibration using Probe Data 

The simulation structure in SUMO is represented by Figure 1. The three primary 
components in a sumo simulation configuration file are: vehicle demand, additional 
files (virtual detectors and other road infrastructure) and network (road network with 
links and junctions etc.). The additional files and the network components of the 
simulation are not the variables for traffic flow calibration. The calibration 
parameters in this paper are the vehicle flow(count) in the network. The car 
following model used is Intelligent Driver Model (IDM). The selection of IDM as 
the candidate for car following model is based on current literature which depicts its 
better performance in high density junction traffic scenario to match the real-world 
driving behavior. [4]  
The road network selected is Woody Hayes Drive in the OSU campus. The selected 
road network map is shown in Figure 1. The network consists of six intersections, 
out of which, five intersections are controlled by traffic signals. There are total 
twelve entry points for the vehicles in the road network. The primary reasons for 
selecting this section of the network are:  

• Woody Hayes connect the major routes of CABS on OSU campus
• Woody Hayes Drive connects major department and student classes buildings thus it has the

most footfall during office hours 8:00 a.m – 9:00 a.m (time considered in this simulation for
traffic data)
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Figure 1: Woody Hayes Drive Network 

Figure 2: SUMO Traffic Simulation File Structure 
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The traffic simulation is multimodal with three vehicle classes - pedestrian, passenger cars and buses 
(CABS). The parameters used for these three modes are given in Table 1. 

Table 1 Traffic Agents Parameters 

 Parameter Pedestrian Car Bus 
Length 0.215 4.3 12 
Width 0.478 1.8 2.5 
Height 1.719 1.5 3.4 
Minimum Headway Gap (m) 0.25 2.5 2.5 
Maximum Acceleration (m/s2) 1.5 2.9 1.2 
Maximum Deceleration (m/s2) 2 7.5 4 
Emergency Braking Deceleration 
(m/s2) 5 9 7 

Maximum Speed (km/h) 5.4 180 85 

2.1 Traffic Data 
Any traffic model calibration process has two key steps – 1) road network 
calibration, and 2) traffic flow calibration. Road network calibration requires 
information about road segments and junctions including number of lanes, road 
length, speed limits, stop signs etc. Open Street Maps (OSM) is an open-source data 
consisting of all the necessary information regarding roads and junctions. However, 
the map imported from the OSM may have errors, particularly at junctions the 
number of lanes may not be correct or turn only lanes may not be correctly assigned. 
These errors are corrected using the process depicted in Figure 4. The corrections 
were validated by manually confirming against google maps street view. The other 
part of road network is traffic signal timings. The traffic signals assignment is done 
in SUMO using the traffic controller phase timings provided by the OSU Traffic and 
Transportation Management (TTM) Department and the phase timings are then 
inspected at the actual location to validate the controller data. 
The vehicle flow data for three different modes are decided as per the following: -  

• The CABS busses frequency and schedule are used to generate the flow(count) data. All the
CABS busses are equipped with GPS logging devices. The data is available from 2011 to
2019.  This data consists of GPS coordinates (latitude and longitude) and corresponding GPS
timestamp. The data was filtered to extract this data of the busses on routes that pass through
the selected region on campus. The data is not sampled consistently, meaning the sampling
time varies depending on the number of available satellites and other uncertainties. Hence,
another filter was implemented to discard inconsistently logged data. Figure 3 shows the
variability in successive data logs from GPS.
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Figure 3: CABS GPS Timestamp delta distribution 

• The traffic flow data was separately collected for three days which gives the number of
vehicles for the vehicles at all five junctions in the network. The count data is used to
generate turning ratios at each junction. Figure 5 shows an example for turning ratios from
the count data. The turning ratios are used as probability of turning in the SUMO simulation.
For example, a vehicle coming from west direction in Figure 5 as 30% probability of a left
turn.

• Due to lack of pedestrian count data, the pedestrian flow is assumed to be constant at one
pedestrian every 60 seconds at each crossing lane at the junctions. This frequency is used
since the pedestrian walk green signal timing is fixed and it is activated upon pedestrians’
request. The chosen frequency ensures that the pedestrian walk signal is requested in each
cycle.

Figure 4: Network Correction Process 
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Figure 5: Turn Ratio Example 

2.2 Vehicle Generation 

SUMO has three packages to build the traffic in a network environment. The three 
packages are DFROUTER, JTRROUTER and DUAROUTER. In this work 
JTRROUTER is used to generate the vehicles. JTRROUTER requires turning ratios 
and vehicle flow probabilities from entry points in the network. The turning ratios 
are calculated from turn count data and doesn’t change during a simulation run. The 
flow probabilities are used as a calibration parameter by the optimization algorithm. 

2.3 Objective function and calibration parameters 

The CABS GPS data is used as an indicator for the traffic density in the network. 
The entire network is divided into twelve sections. Six in West-East direction and six 
in East-West direction. A simple algorithm is developed which calculated the travel 
time in the network section as shown in Figure 6.  

Figure 6: Network Section CABS Travel Time 

GPS data has uncertainty in the position log. In this research we did not have access 
to the sensor information to quantify the uncertainty. Hence, as shown in Figure 6, a 
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circle with radius R centered at the point of interest on the road is used as a region to 
find a GPS data point. The R used in the algorithm is 30m. Each section has two 
reference GPS coordinates, the start reference point ( 𝐿𝑟𝑒𝑓 ) and end section
reference point ( 𝑅𝑟𝑒𝑓). The algorithm searches the GPS data file and if a data point
is found within the circle around 𝐿𝑟𝑒𝑓 then the timestamp (𝑇𝐿𝑟𝑒𝑓

) and position
coordinates (𝑋𝐿𝑟𝑒𝑓

) are stored in a memory. Then the algorithm finds the next
timestamp (𝑇𝑅𝑟𝑒𝑓

) when the GPS coordinates are in the circle centered at 𝑅𝑟𝑒𝑓.  The
𝑇𝑅𝑟𝑒𝑓

 and GPS position coordinates (𝑋𝑅𝑟𝑒𝑓
)  are stored in a separate memory buffer.

To compute average travel time and speed across a junction, 𝐿𝑟𝑒𝑓  and 𝑅𝑟𝑒𝑓  are
chosen on the road such that 𝑅𝑟𝑒𝑓 is upstream of the junction and 𝐿𝑟𝑒𝑓 immediately
downstream of the junction. Timestamps of the CABS busses passing through these 
two points are logged using the algorithm described above. The time-stamps and 
corresponding GPS coordinates are used to compute average speed and average 
travel time.  

�̅� =
𝐷𝐺𝑃𝑆

Δ𝑇

�̅�𝑜𝑏𝑠 =
𝐿𝑠𝑒𝑐𝑡𝑖𝑜𝑛

�̅�

Where Δ𝑇 = 𝑇𝑅𝑟𝑒𝑓
− 𝑇𝐿𝑟𝑒𝑓

 , DGPS = 𝑓 (|𝑋𝑅𝑟𝑒𝑓
− 𝑋𝐿𝑟𝑒𝑓

|),  �̅�  is the average velocity 
within the captured GPS points and  �̅�𝑜𝑏𝑠 is average travel time in the predefined
section length. 𝑓 is function to convert geolocations to linear distance. The SUMO 
simulation environment is also divided into twelve segments and the travel time in 
simulation for vehicles is compared with the travel time from CABS GPS data 
analysis. 
The objective function used is a point mean relative error between measured travel 
time 𝑇𝑜𝑏𝑠,𝑗  and simulated travel time 𝑇𝑠𝑖𝑚,𝑗 for a section 𝑗. and the objective is to
minimize this error. The genetic algorithm in the MATLAB optimization toolbox is 
used to minimize the function. 

minimize
𝑃𝑘

 √∑ (
𝑇𝑜𝑏𝑠,𝑗 − 𝑇𝑠𝑖𝑚,𝑗

𝑇𝑜𝑏𝑠,𝑗
)

212

𝑗=1

Such that 𝑇𝑠𝑖𝑚𝑗
= 𝑓𝑆𝑈𝑀𝑂(𝑃𝑘)

𝑃𝑘 ∈  [0.05 , 0.20]   ∀𝑘 = 1,2, … ,12

where, 𝑘  are the entry points of the network,   𝑗 is the section number, 
𝑃𝑘  is the probability of vehicle generation at every one second, and 𝑓𝑆𝑈𝑀𝑂 is the
SUMO traffic simulation model. The results of this simulation model are the of 
travel times for each section obtained from E3 detectors.  The assumption here is that 
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𝑇𝑠𝑖𝑚,𝑗 ∝
1

𝑃𝑘
 . The flowchart in Figure 7 shows the process for the optimization using 

GA. 

Figure 7: Genetic Algorithm Optimization Process 

2.4 Calibration Results and Discussion 

The maximum number of generations used for GA are ten. For each generation a 
population size of 150 is generated. Here each population refers to the calibration 
parameter 𝑃𝑘 which is a vector of 12 entry probabilities in the network. From the
Figure 8 it can be observed that the objective function fitness value reaches steady 
state in the 4th generation and does not change from next generation. The Figure 9 
represents the average travel time comparison between travel time obtained from E3 
detectors (𝑇𝑠𝑖𝑚), and the observed travel time from the CABS GPS data (𝑇𝑜𝑏𝑠) for
each road section. In some of the sections the error is large and the primary reason 
for that is the inconsistency in the logged GPS data for CABS. If the delta time 
between CABS GPS timestamps can be reduced the uncertainty in the average travel 
time from calibration data set will reduce. The simulation average travel time doesn’t 
have uncertainty because the virtual detectors can track the vehicle trajectory with a 
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delta timestamp of 1 s which is very accurate compared to actual data with mean 
time of 15 s. 

Figure 8: PMRE (Objective Function) Value Evolution 

Figure 9: Average Travel Time Comparison 

3 Hardware in Loop Simulator 
In automotive research and development vehicle testing is done virtually using 
different x-In the Loop validation procedures. HIL setup is typically used for real 
time implementation of various electronic control units (ECU) along with 
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communication channels. Although HIL testing is not new in automotive 
applications, the implementation of HIL for ADS testing is not trivial due to their 
extremely complex Opearational Design Domains (ODDs). Testing CAVs can be 
performed either in the real world with all the necessary hardware or parts of the 
environment could be simulated using virtual representation. The simulation-based 
approach is a much faster, safer, and efficient alternative compared to actual road 
testing[5]. The simulation for emulating the real environment involves a critical 
component of replicating the real traffic conditions in terms of road network and 
nearby vehicle behavior with respect to ego vehicle. In this paper a framework is 
created that integrates real time HIL setup(dSPACE) with large scale traffic 
simulator. The components for this framework are a high-fidelity simulation for ego 
vehicle dynamics compared to traffic vehicles and a communication interface with 
extrapolation algorithm to transfer the traffic information between traffic simulator 
and the HIL setup (dSPACE ASM) 

3.1 Ego Vehicle Information Interface (EVI) 

Figure 10: SUMO and dSpace ASM Co-Simulation Framework 

The  Figure 10 shows how the information from the SUMO is passed to dSPACE 
ASM regarding the traffic vehicles and the feedback of ego vehicle speed and 
position from ASM to SUMO. The challenge in real time implementation is proper 
clock time synchronization between the two simulators. In SUMO TraCI is used with 
the command mentioned in Table  . The SUMO simulator calculates the new 
position for traffic vehicles at every 0.2(5 Hz) and the ego vehicle dynamics model 
and ADS control is running on HIL at 0.001s (1000 Hz). The difference between the 
time update is handled using an extrapolation algorithm in the HIL setup which 
updates the position of traffic vehicles every 1ms till the nest update from SUMO at 
every 0.2s is available. Besides, rendering visualization and using high fidelity 
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models for all the agents on the road is computationally inefficient and un-necessary. 
From ADS control perspective only fewer other significant traffic agents affect the 
perception and control of the ego vehicle. On the other hand, traffic simulation 
models simulate all the agents movements Hence, a region of interest (ROI) is 
calculated around the ego vehicle and the vehicles in this ROI are considered as 
nearby traffic vehicles. In this paper ROI with nearest 10 vehicles have been 
considered. Simultaneous to traffic vehicle information the traffic signal SPaT is also 
sent to dSPACE ASM. For SPaT only the ego vehicle nearest junction is considered 
as all the traffic vehicles are controlled by SUMO and do not need control command 
in the HIL simulator.  

Table 2: Traci Commands for the EVI 

TraCI Command Information 

traci.start() Start the SUMO simulation 
traci.simulationStep() Progress simulation by one time step 

traci.vehicle.getIDList() IDs for all vehicle in SUMO scenario 

traci.vehicle.getNextTLS(‘ego’) Get State Information for next traffic 
light in front of Ego  

traci.vehicle.moveToXY() Move Ego Vehicle to position specified 
by ASM  

traci.vehicle.getPosition() Get XY position for the fellow traffic in 
SUMO network  

traci.vehicle.getLateralSpeed() Get lateral speed in m/s t 

traci.close() Close the SUMO simulation 

traci.vehicle.getAngle() Get Yaw angle in degrees for traffic 
vehicles 

3.2 Co-Simulation Scenario & Results Discussion 

The scenario used in this paper is the calibrated traffic on Woody Hayes drive as 
shown in Figure 12. This figure shows the ego vehicle position in ASM network and 
its corresponding position in SUMO is passed. The ego vehicle travelled from West 
to East crossing six intersections. The Figure 11 is the representation of the real time 
implementation of the communication interface. At t = 0 simulation is started and 
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ego position is transferred to SUMO. Traffic vehicles positions are calculated and 
then transferred to dSpace ASM using an Ethernet interface. The SUMO and EVI 
execution time is around 150ms for the network used in this paper. The sumo step is 
paused till the clock time is 200ms and then next time step calculation starts in 
SUMO. As caching data to HIL takes time the writing of information about the 
fellow vehicles starts at 20ms before the indented clock time. 

Figure 11: One Cycle of Simulation Synchronization: Repeats every 200ms 

 Figure 13 shows the extrapolation trajectory vs SUMO output for a fellow vehicle 
in the region of interest near ego vehicle. It can be observed that the extrapolated 
drifts from the actual path. The maximum deviation observed was 40 cm which can 
be reduced by reducing the 200ms SUMO time step to 100ms or lesser. 

Figure 12: Co-Simulation Snapshot: ASM & SUMO 
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Figure 13: SUMO & Extrapolation Algorithm Fellow Trajectory Example 

4 Conclusions 

In this paper we presented an approach to calibrate the microscopic traffic simulation 
using limited dataset with genetic algorithm optimization approach. It is shown that 
the travel time across all the junctions could be approximately captured in the 
simulation using this approach. The benefit of the this approach is that it does not 
require traffic count data from infrastructure sensors. To demonstrate a use case of 
traffic simulation models in testing ADS features, the calibrated traffic simulation 
model in SUMO is then combined in a framework with the dSpace ASM HIL 
simulation. The framework uses region of interest concept to transfer only the 
relevant fellow traffic information to HIL simulator. This gives us an opportunity to 
create large network of roads in SUMO and link them with high fidelity vehicle 
powertrain and ADAS simulations. The time synchronization problem is solved by 
using the extrapolation between the larger timestep of SUMO. 
The presented work can be extended to including pedestrian vehicle class in the HIL 
simulation. Also, the framework can be extended to other xIL simulation testing 
platforms such as camera in the loop. The traffic calibration will be improved using 
the vehicle counts from the camera detection installed on OSU campus traffic 
signals. 
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5 Definitions/Abbreviations 

ASM Automotive Simulation 
Models(dSpace) 

SUMO Simulation for Urban 
Mobility 

SPaT Signal Phase and Timing 

GA Genetic Algorithm 

HIL Hardware in Loop 
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