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Abstract: In this study, the physical principles governing car-bfollowing (CF) behav-
ior and their impact on traffic flow at signalized intersections are investigated. High
temporal-resolution radar data is used to provide valuable insights into actual CF be-
havior, including acceleration, deceleration, and time headway distribution. Demand-
calibrated SUMO simulations are run using empirical CF parameter distributions, and
three CF models are evaluated: IDM, EIDM, and Krauss. By emulating radar data
in SUMO and processing simulated vehicle traces, discrepancies between empirical
and simulated parameter distributions are identified. Further analysis includes com-
parisons with default SUMO CF model parameters. The findings reveal that measured
accelerations differ from CF model parameter accelerations and using the empirical
value (µ = 0.89m/s2) leads to unrealistic simulations that fail volume-based calibra-
tion. Default parameters for all three models reasonably approximate the mean and
median of measured parameters, but fail to capture the true distribution shape, partly
due to homogeneity when using default parameters. The results show that it is more
effective to simulate with the default parameters provided by SUMO rather than using
measurements of real-world distributions without additional calibration. Future work
will investigate closing the loop between the measured real-world and SUMO distribu-
tions using traditional calibration tactics, as well as assess the impact of calibrated vs.
default CF parameters on simulation outputs like fuel consumption.

Keywords: traffic micro-simulation, car-following models, car-following calibration, in-
telligent driver model, roadside radar data

1 Introduction

The modeling of car-following behavior is a crucial component of traffic micro-simulation,
as it captures the longitudinal interactions between drivers and their preceding vehi-
cles. Car-following (CF) models have been studied extensively by researchers since
the 1950s, with early models proposed by Reuschel [1] and Pipes [2]. Over the years,
the CF model space has evolved into several subcategories, including mathematical
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or engineering models, data-driven models, and hybrid models [3]. While the latter
two modeling techniques have gained significant research attention, the use of math-
ematical models such as the intelligent driver model (IDM)[4] is still prevalent in traffic
micro-simulation software such as SUMO [5]. Traffic micro-simulation has many use
cases, but regardless, the reliability of the insights gained from simulation depends
entirely on the model’s ability to represent the underlying real-world traffic network[6].

To gain confidence in model outputs, a process of calibration and validation is re-
quired [6], [7], where each of traffic micro-simulation’s sub-models, including the CF
model, are optimized. There are several types of calibration referenced in literature, but
they can generally be summarized in three categories: capacity calibration, route/de-
mand calibration, and individual trajectory-based calibration [6], [8]. The first two cali-
bration categories typically rely on aggregate measures, such as loop detector counts,
travel times, and saturation flow rates. Although widely used, these measures may not
always accurately reflect real-world vehicle behavior [8], [9]. Moreover, studies have
shown that different CF model behaviors can lead to similar travel times, saturation flow,
delays, and queues [10]. This lack of uniqueness in the CF model parameters that best
fit the observed traffic measures has been previously studied [11] and can be prob-
lematic in estimating the emission and energy consumption of a traffic network using
microsimulation. This is because factors such as acceleration, deceleration, jerk, and
speed are highly influential in vehicle-level emissions and fuel consumption, which are
difficult to estimate accurately without considering individual vehicle trajectories [10],
[12].

Fuel consumption estimation is given as an example to emphasize the importance
of the CF model parameters themselves. They are a central part of traffic simulation,
yet its difficult to find consensus on the correct parameter settings and/or range of set-
tings. The default values in SUMO can differ substantially from calibration literature (i.e.
SUMO default acceleration1 is 2.6m/s2, whereas commonly cited calibration literature
ranges from 1.00 to 1.58m/s2 [13]). Further, the vast majority of calibration literature re-
lies on NGSIM dataset, which was collected in 2005 [14], even though it is known that
CF parameters evolve over time or change depending on geography and locality [15].

The solution would seem to require that practitioners calibrate their own CF models,
however the complexity of performing trajectory-based calibration in practice cannot be
understated. It is not as simple as measuring accelerations or velocity in the field, as
many CF model parameters cannot be derived from macroscopic measurement or do
not have physical equivalents [16]. Instead, the practitioner must collect high resolution
trajectory data, clean and process the data, extract leader-follower pairs, and then
use computationally expensive optimization methods, such as genetic algorithms, to
find the correct CF parameter settings. Recent studies have shown that state-of-the-
art CF model calibration still results in significant error [17] and according to Ossen
and Hoogendoorn ”calibration based on real trajectory data turns out to be far from
trivial” [18]. On the topic of fuel consumption, sensitivity analyses show that CF model
parameters are important in individual trajectory estimation and subsequent fuel and
emissions estimation, but their importance diminishes as more vehicles are considered
in aggregate and average parameters may be sufficient [8].

The review of literature leads practitioners to the following conundrum: it is under-
stood that CF model parameters are important tuning knobs for calibrated outputs,
but without high-resolution and complete trajectory information for the network, what
should the parameter settings be? This study aims to provide additional context to this

1https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html
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problem using data from a real-world network outfitted with radars that record vehicle
positions and speeds, which (along with cameras) is becoming more popular with the
rise of intelligent traffic systems (ITS). While literature has shown that these partial tra-
jectories may be insufficient for traditional CF model calibration [17], it is still possible
to extract distributions of observed parameters such as vehicle acceleration, headway
and the free-flow speed. The efficacy of using these measured distributions as the CF
model parameters is explored, in addition to the ability of the SUMO CF models with
their default parameters to recreate the measured distributions.

2 Car Following Models

Intelligent Driver Model: The IDM CF model was first proposed by Treiber, Hennecke
and Helbing in 2000 [4]. The IDM model determines the acceleration of the follower
vehicle, v̇f , as a function of current velocity, vf , the distance to the leading vehicle, s,
and the difference in velocity between the leader and follower, ∆v. The acceleration,
v̇f , at any time t is written as

v̇f (vf , s,∆v) = a

1 −
(
vf
v0

)β

−
(
s∗(vf ,∆v)

s

)2
 (1)

where s∗ is the desired minimum following gap, v0 is the free-flow speed on the road,
β is a tuning acceleration exponent, and a is the maximum follower acceleration. The
target simulation network described in Section 3.2 has varied speed limits, thus a static
v0 is not applicable. SUMO instead models the desired velocity as a speed factor, SFv,
which is a multiplier on the speed limit, making the equation for v0

v0 = SFv · speed limitf (2)

where speed limitf is the follower vehicle’s applicable speed limit. The following gap is
formulated as a function of current velocity and the difference in leader and followers
velocity and given as

s∗(vf ,∆v) = s0 + τ +
vf∆v

2
√
ab

(3)

where a is again the follower’s maximum acceleration, b is the follower’s maximum de-
celeration, τ is the minimum time headway, and s0 is the minimum space between the
follower and lead vehicle. In total, the IDM model has 6 tuning parameters { a, b, τ , s0,
SFv, β } with [13] fixing β = 4, reducing the dimensionality to 5.

Krauss Model: The default CF model in SUMO is Krauss’s [19], [20]. It is a collision
free model, with each follower vehicle having a safe following speed, vsafe, computed at
every simulation step from the velocity, vf , using the following equation:

vsafe(t) = vl +
g(t)− vl(t) · τ

vf
b·vf

+ τ
(4)

where t is the simulation time, vl(t) is the velocity of the lead vehicle at time t, g(t) is the
gap between the vehicles, τ is the reaction time of the driver, and b is the deceleration
function [21]. Because the acceleration should be bounded by the physical limitations
of the vehicle, the actual desired speed, vdes(t), is calculated as:
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vdes(t) = min [vsafe(t), vf (t) + a, v0] (5)

where a is the maximum acceleration capability of the vehicle and v0 is the maximum
speed that the driver would drive on the road according to Equation 2. The maximum
acceleration parameter does not represent the physical limit of the vehicle, but rather
the maximum acceleration that a driver would choose2 [21]. Like the IDM model, a, b,
and τ are available as tuning parameters.

Extended Intelligent Driver Model: The extended intelligent driver model was pro-
posed by Salles, Kaufmann, and Reuss in 2020 to more accurately model human driv-
ing behavior, especially the drive-off trajectories [22]. The model is based on IDM but
includes many improvements from both Treiber ([23], [24]) and the authors themselves.
For brevity, the equations for the EIDM are not listed in this work, rather the reader is
redirected to the referenced work. Along with IDM and the Krauss model, it also con-
tains tuneable acceleration, deceleration and headway parameters.

3 Data and Models

3.1 Radar Processing

The trajectory data was collected using radars from InnoSenT GmbH 3. The radar used
for trajectory processing is located on the north side of the west-most traffic signal
(TL1) in Figure 1 and captures the west-bound approach, as well as the east-bound
departure. The radars can report vehicle position, velocity, and vehicle length every
50ms, however, due to internet network speed restrictions, data for individual trajec-
tories is actually recorded with a period of 100-200ms. Vehicle positions are reported
in the radar’s coordinate system and must be transformed to match the positions to
the underlying road network. Vehicles that enter the radar’s field of view are assigned
a unique identifier, making it easy to extract the complete trajectory of a vehicle as it
passes through the radar. However, filtering the trajectories is necessary as trajec-
tories can have discontinuities, the radar can identify non-vehicle objects as vehicles
(data points in the grass in Figure 1), and the object id for a vehicle can switch while
the vehicle is still in the sensing range.

The radars are used for two tasks in this work: extraction of CF behavior from the
velocity profiles and volume calculation. To deal with radar data issues in the context of
velocity profile processing, a polygon is placed around the west-bound approach to TL1
in Figure 1. This region has high data integrity and low probability of interference. The
trajectory data is filtered so that only vehicles which pass completely through the box
are considered. Their trajectories are truncated to only include the intra-box data and
then processed according to the methodology in Section 3.3. The other tasks is volume
calculation, which uses the radars’ positional information to count vehicles that cross
the stop bar at all of TL1’s approaches. Filtering the radar with the aforementioned
strategy could introduce bias into the dataset as it only keeps vehicles for which the
radar is able to maintain a steady track, however these cases typically result when
vehicles become obstructed from the radar.

2https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#vehicle_

types
3https://www.innosent.de/
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3.2 SUMO Simulation

The simulated SUMO network represents a two intersection corridor of Tuscaloosa,
Alabama primarily consisting of US-82McFarland Blvd between Airport and Harper
Roads. Figure 1 shows the SUMO model of the target network overlaid on geo-located
satellite images. The call out displays the location of the radar, as well as a sample
of its geo-located data and the box used to filter trajectories. Both intersections in the
network are signalized (marked as TL1 and TL2 in Fig. 1), and the field controllers were
emulated using NEMA controllers in SUMO with matching configurations [25]. They all
operated in coordinated mode during the simulated period of time, with actuation on
the non-coordinated phases.

The polygon used to filter the real-world data was also integrated into the geo-located
SUMO simulation. By combining the floating car data output of SUMO with polygon-
based filtering, a data set was obtained that closely resembles the data described in
Section 3.1. The floating car output was processed using the same methodology that
was applied to the radar data.

Figure 1. SUMO model of the simulated network including two intersections, overlaid with a
close up of the radar location, sample data points, and the box used for filtering.

Simulation demand is generated using both the radar displayed in Figure 1 as well as
a radar on the other side of the intersection that captures the east bound approaches.
Data was collected from the radars on January 13th, 2023 and the simulation time
spans from 5:00AM to 11:00PM on the target day, covering periods of low volume as
well as the morning rush around 8AM, which is apparent in Figure 2. The box used for
radar filtering corresponds to the West bound straight volume.

To turn the radar data into traffic counts, the number of tracked objects that cross the
intersection stop bar for each approach are aggregated into five-minute intervals. Ad-
ditionally, turn count restrictions are put in place at TL2 so that the majority of traffic
traverses the entire network on US-82 (the major east/west road). The volumes and
turn counts are passed as an input to routeSampler [26] with the Poisson flow option,
which is chosen to increase the randomness of the simulation. The calibrated simula-
tion is evaluated against the GEH metric [27], which compares simulated volumes to
observed volumes using the following equation:
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Figure 2. Time plots of (top) SUMO simulation vs. measured volume passing through TL1 and
(bottom) corresponding GEH results.

GEHi =

√√√√2 (M i
t − C i

t)
2

M i
t + C i

t

(6)

where M i
t is the simulated hourly volume at location i and aggregation period t. Cor-

respondingly, C i
t is the corresponding measured hourly volume. Applying Equation 6

to the simulation output results in a 10 minute GEH < 5 at 94% of time window - loca-
tion pairs when simulating with SUMO default CF model parameters, which passes the
common GEH target of < 5 at 85% of locations [6], is visually represented in Figure 2.

3.3 Trajectory Processing

3.3.1 Acceleration & Deceleration

A sample of the raw and processed radar trajectories is shown in Figure 3. The left
figure is a time-space diagram of west-bound vehicles as they traverse the network.
The right plot shows a piece-wise linear fit overlaid on the raw velocity data of the red
vehicle in the time-space diagram. From each segment a fit quality, R2, slope, and
duration are obtained for further processing. The vehicle trajectory shown in Figure 3
captures sample of an accelerating and decelerating vehicle.

A graphical representation of the impact of minimum time and fit quality thresholds on
the distribution of measured parameters is depicted in Figure 4. The top row shows
contour of median acceleration and the number of unique vehicles as a function of
minimum time and R2 threshold. The bottom row shows the measured distributions for
acceleration and deceleration, with the label and color corresponding to the annotated
positions on the top row. Based on the figure, location 5 was chosen as the final ag-
gregation settings, with a minimum time of 1 second and R2 > 0.95, due to the high
confidence in the linear fit of trajectory while still containing enough samples to be rep-
resentative of the population. The resulting distributions are presented quantitatively
later in Table 1. The shapes of the distributions of acceleration and deceleration de-
termined in Figure 4 are right-skewed due to the low mean acceleration values and
because each parameter has a lower bound of 0. Consequently, median acceleration
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Figure 3. Examples of (left) raw data over a short time period capturing many vehicles and
(right) an example of piece-wise linear fit applied to velocity profile of a sample vehicle
trace.
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Figure 4. Highlights the sensitivity of the median (P50%) acceleration and number of vehicles
to the R2 and minimum time headway filter. The bottom row shows the measured
acceleration and deceleration kernel density estimations for the 5 called out R2 and
minimum time pairs.
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was considered as primary metric for evaluating threshold selection as it best repre-
sents central tendency of the acceleration’s and deceleration’s R2 values.

3.3.2 Headway & Free-Flow Speed

To determine the headway of vehicles in the radar data, a mapping process was per-
formed to assign each vehicle to its respective lane. This was achieved by dividing the
box illustrated in Figure 1 into two separate segments, thereby enabling lane identifica-
tion. The arrival time of each vehicle at distances of 100m, 60m, and 40m from the stop
bar was then calculated using linear interpolation. Vehicles that switched lanes during
the data collection period were filtered out. The remaining vehicles were sorted by time
and leader-follower pairs were identified for each lane. The headway was calculated as
the average time difference between the leader and follower at each of the three afore-
mentioned distances. Headway times of longer than 5 seconds were deemed outside
of the CF regime, inline with prior literature [10], [28], [29].

The derived acceleration and headway data was utilized to determine the free-flow
speed of the network. However, it was noted that the measured range was signalized
and a simple average would be significantly impacted by stopped vehicles. To address
this issue, filtering was employed in a manner similar to prior literature [10]. The method
considered only vehicles with time headway greater than 5 seconds and excluded ve-
hicles with acceleration or deceleration greater than 1 m/s2. As can be inferred from
the sample of raw data in Fig. 3 in just a few minutes of data there are large numbers
of free-flowing and leader/follower pairs from which to extract the desired behavioral
distributions.

3.4 Vehicle Distribution Creation

In the context of SUMO simulation, vehicle CF attributes are defined by the vehicle
type attribute, which can be assigned to each individual vehicle entering the network, or
specified in a vehicle type distribution file4 from which SUMO samples when generating
routes. The presence of individual vehicle data in the radar representation provides the
opportunity to construct a heterogeneous vehicle distribution through sampling, either
correlated or uncorrelated.

The correlation of parameters in the simulation of traffic flow has garnered attention
in the literature, as it has been shown to impact the realism of simulation results [30],
[31]. To create a correlated distribution from the radar data, only vehicles with deceler-
ation, acceleration, and headway less than 5 seconds are considered. These vehicles
are used to create synthetic vehicles by combining the acceleration and deceleration
events, resulting in a set of acceleration, deceleration, and headway values that all
derive from a single vehicle, in addition to corresponding vehicle length, which is mea-
sured by the radar. However, since the vehicle is in the CF regime, its matching speed
factor is not available. In this scenario, the speed factor is sampled from the overall dis-
tribution. There are 1135 vehicles in that radar dataset that makes 1290 accelerations
(refer to Section 3.3.1 for further details). Similarly, 682 vehicles decelerate, result-
ing in a total of 1193 recorded decelerations. Additionally, there were 1831 vehicles
with headways less than 5 seconds, out of which 48 vehicles were present in both the
acceleration and deceleration datasets. Because of the difference, due largely to the
dramatically reduced sample size, the correlated model parameters were not used fur-

4https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#route_and_

vehicle_type_distributions
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ther in this work. Future work will expand raw data recording period and perhaps result
in large enough size to apply correlated sampling for comparison. In this study how-
ever, only the uncorrelated case was considered in Section 4. In the uncorrelated case,
the acceleration, tau, deceleration, speed factor, and length columns are independently
sampled from the distributions of measured parameters.

The study also investigated the use of acceleration and deceleration measures that
occur outside the CF regime. This is because both the Krauss and IDM model’s repre-
sentation of CF acceleration is intended to reflect the maximum follower acceleration,
which could emerge in the absence of a leader vehicle. However, the measured dis-
tributions of parameters outside of the CF regime were found to not significantly differ
from those within the CF regime according to the Mann-Whitney test (U = 4.21e5,
p = 0.43), and thus were not included in the evaluation.

4 Results

The constructed distributions of CF parameters were simulated in SUMO Version

1.16.0 with a simulation step size of 0.1s. Two experiments were conducted, one with
the default CF model parameters and one with parameters sampled from the measured
distributions. In each experiment, the models had an actionStepLength of 0.2s5. All
vehicles were simulated as passenger cars with the emissions and fuel consumption
model PHEMlight/PC G EU4 [32].

To ensure the robustness of the findings, each CF model discussed in Section 2
(IDM, EIDM, and Krauss) was simulated 30 times, only varying the random seed. Sub-
sequently, the output of all 180 simulations was processed according to the methods
described in Section 3.3.

4.1 Simulation Comparison

In Figure 5, the empirical cumulative distribution functions (eCDF’s) obtained by sim-
ulating with both the default parameters of a CF model and the results obtained from
sampled parameters are presented. The colors in the figure are paired such that the
darker shade represents the sampled parameters and the lighter shade represents the
default parameters. However, it is immediately apparent that neither the sampled nor
default parameters accurately reproduce the empirical distributions of acceleration and
deceleration. Nonetheless, the default models do perform reasonably well at modeling
headway and free-flow speed, although they still under-predict the speed and fail to
capture lower headway vehicles.

The results are summarized in Table 1, with the mean (µ) and 50th percentiles (P50%).
The standard deviation of the distributions are not presented, as the majority cannot be
approximated by a Gaussian distribution. Also included in Table 1 is the resulting fuel
consumption per vehicle. In each row the bolded numbers represent the closest to the
real world. The default parameters perform best for all mean and median cases, with
the mean acceleration of Krauss being 0.05m/s2 away from the measured acceleration
mean. Krauss also approximates the free-flow speed the best. For deceleration, the
default IDM model has the closest mean and median (0.14m/s2 and 0.03m/s2 respec-
tively). The default IDM also performs the best at headway estimation. However, the
default parameters fail to capture the tails of the distributions well, which is understand-
able given that default parameters are a homogeneous fleet, as every car that enters

5https://sumo.dlr.de/docs/Car-Following-Models.html#actionsteplength
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Figure 5. Empirical cumulative distribution functions for acceleration, deceleration, headway
and free-flow speed. The colors are paired such that the darker shade represents
the sampled parameters and the lighter represents the default. The thin individual
lines represent the CDF from one simulation.

the network has the same set of parameters in the default case.

The explanation for the poor performance of the sampled parameters is two fold. For
one, the fact that CF model parameters are not physical or cannot simply be found via
macroscopic measurements has been discussed in literature [8], [11], [16]. Secondly
and perhaps more importantly in the context of SUMO, the low acceleration measured
in the real-world data (P50% = 0.77m/s2) does not result in realistic traffic flows when
applied to simulation. Long queues develop in turn lanes, gridlock ensues, and GEH
calibration fails in the west bound straight approach. This disruption of regular traffic
flow causes elevated fuel consumption per vehicle in the sampled simulations. Due
to the complexity of isolating the specific contributions of the parameters from the fuel
consumption resulting from congestion, the findings of the fuel consumption analysis
are not presented in this study. Future work must address this issue as the use of
microsimulation tools such as SUMO to study traffic control optimization for energy
reductions will rely on accurate predictions of driver behavior and driving trajectories
beyond typical measures of vehicles per hour or average speed.

5 Summary, Conclusions & Future Work

This work presented the efficacy of using measured distributions of acceleration, de-
celeration, time headway and free-flow speed as their corresponding parameters in
SUMO CF models. The distributions were acquired via processing of data from sig-
nal pole mounted radar units, which return both the position and velocity of individual
vehicles as they approach a signalized intersection. The acceleration, deceleration
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Table 1. Summarizes the eCDF’s presented in Figure 5. The simulated value nearest the mea-
sured is presented in bold. The columns “Samp.” and “Def.” correspond to Sampled
and Default parameters.

EIDM IDM Krauss Measured
Stat. Samp. Def. Samp. Def. Samp. Def.

Freeflow
Speed [km/h]

µ 76.8 77.8 73.9 76.3 74.9 78.1 80.6
P50% 76.3 77.9 73.0 76.1 74.0 78.1 81.3

Accel.
[
m/s2

] µ 0.4 0.8 0.3 0.6 0.4 0.8 0.9
P50% 0.3 0.5 0.3 0.3 0.3 0.6 0.8

Decel.
[
m/s2

] µ 0.7 1.8 0.6 1.5 0.8 1.9 1.4
P50% 0.6 1.6 0.5 1.4 0.5 1.9 1.3

Headway [s]
µ 3.3 2.5 3.4 2.8 3.5 2.5 2.7
P50% 3.4 2.1 3.5 2.6 3.6 2.1 2.7

and free-flow speed were found using piece-wise linear fit, and headway via linear
interpolation. After aggregating the data into corresponding distributions, they were
sampled and simulated in SUMO via vehicle distribution files. The SUMO demand
was calibrated with the radar data, ensuring that simulation matched the volume of the
measured day. Once simulated, the SUMO floating car data output was processed
in an identical manner to the radar data, and the resulting SUMO distributions were
compared to the empirical. In addition to the empirical distributions, the CF models
in SUMO were also simulated using their default parameters to assess how well the
defaults re-created the real distributions.

Based on the study’s results, it can be concluded that using only measured acceler-
ations and decelerations, independent of a leader-follower relationship, as a basis for
CF model parameters is insufficient. While these measurements can replicate the het-
erogeneity of traffic, conducting SUMO simulations with a range of low accelerations
(P50% = 0.77m/s2) leads to congested simulations that do not meet basic calibration
standards. Due to the ensuing congestion and calibration failure, it becomes infeasi-
ble to compare the fuel consumption of simulations with sampled parameters to those
with default settings. Consequently, initiating simulations with the default parameters
provided by SUMO may prove more advantageous than using the presented measure-
ments without further calibration of the car-following model.

However, there is a still a significant gap in distributions of primarily acceleration
behavior which should be investigated. Moving forward, the next step is to close the
loop between simulation distributions and their real-world counterparts by calibrating
the CF model. This can be done through either fitting the simulation distributions to
the measured data or analyzing the trajectories themselves. Both methods should be
examined and evaluated for their impact particularly on fuel consumption. Additionally,
it may be beneficial to assess how parameters change based on the time of day, volume
of traffic, and at different locations in the network, as well as the impact of correlated
versus uncorrelated behaviors on CF model parameters and compare their influence
on simulation outputs.
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