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Abstract. Developing new solutions to complicated large-scale problems typically requires 
large-scale numerical simulation. Therefore, traffic simulations often run against randomized 
simulations instead of real-world traffic situations. This paper demonstrates a method to cal-
culate the statistical significance of numerical simulations and optimizations in the presence of 
numerous random variables in complex systems using one-sided paired t-tests. While the pa-
per covers a specific Fujitsu traffic-optimization project which uses SUMO for simulating the 
traffic situation, the method can be applied to many similar projects where a complete investi-
gation of the solution space is not feasible due to the size of the solution space. 
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1. Introduction 

In 2020 the Hamburg Port Authority (HPA) initiated a traffic innovation project called MOZART. 
Its goal was to improve the car and heavy goods vehicle (HGV) traffic flow throughout the 
30km road network of the port region by using an advanced digital twin, microscopic traffic 
simulations, and the Fujitsu Digital Annealer Unit (DAU) [1] to create a globally optimized signal 
plan for all 35 intersections once a minute. This signal plan will help the Port of Hamburg to 
achieve their part in the UN Sustainable Development Goals, specifically regarding the sub-
goals of “climate action by reducing pollution”, “responsible production and consumption by 
streamlining transport of goods”, “creating sustainable cities and communities by reducing traf-
fic induces stressors”. 

Fujitsu developed a solution concept that uses real time traffic simulation combined with 
multiple computationally generated alternative signal plans for each intersection. Using these 
the solution simulates the traffic between the intersections in parallel for all possible combina-
tions of signal plans between adjacent intersections to calculate the coefficients of a stress 
function. This function is then written as a polynomial of quadratic order in binary variables 
called a Quadratic Unconstrained Binary Optimization (QUBO) suitable as input for the Digital 
Annealer. The solution then uses the Digital Annealer to find a global optimum of this stress 
function. For more details on the approach, see Traffic management through traffic signal con-
trol by Quantum-Inspired optimization. [2] 

After validating the basic viability of the approach, this project was turned over to our team 
to develop a solution which can be run 24/7/365 in cities. 
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2. The TraFO System 

The production application we are developing is called TraFO (Traffic Flow Optimization) and 
consists of a scalable ensemble of containers:  

 The TraFO container sits at the center of the application. It performs the setup of the 
optimization, calculates the QUBO, calculates the KPIs, orchestrates the other contain-
ers, and provides the UI.  

 The digital twin represents the real-world traffic. The digital twin is constructed using 
Vissim or SUMO networks and run in an instance of Vissim and SUMO [3] using traffic 
flow data for different time slots. We are using the available interface of these applica-
tions to collect the needed data for evaluation. 

 Functions to do data ingestion and data cleaning for sensor data is also included into 
the digital twin to ensure a high data quality for the traffic simulations. 

 Multiple instances can be used to run alternative scenarios in individually configured 
digital twins. 

 The Signal Program Generator container calculates and preselects alternative traffic 
light programs to the TraFO for use by the short-term simulations. It also checks the 
compliance of the traffic light programs with legal and regulatory requirements. Cur-
rently, the Signal Program Generator implements the German regulatory requirements 
laid out in the Richtlinien für Lichtsignalanlagen (RiLSA), Edition 2015 [4]. This can be 
expanded by other regulatory requirements like MUTCD for the United States of Amer-
ica. 

 

Figure 1. Structure of TraFO Optimization Platform 

Figure 2. Visualization of Traffic Controller Programs 
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 To archive the required performance, the 125 short term simulations for each step are 
distributed across multiple instances, at least 10, running SUMO using libsumo in a 
containerized environment. The ideal number of instances depends on the available 
hardware, typically one per available core. 

 The Digital Annealer calculates the optimization result.  
 A standard UI is provided to consolidate the results and configure the different compo-

nents. Customer specific UI, for example to display customer specific KPIs or add ex-
ternal data, can be added 

 We are using a containerized MongoDB to store the road network and other input data 
as well as the simulation results, vehicle trajectories and KPIs. 

In each optimization cycle, the TraFO container: 

1. Collects the up-to-date traffic situation and signal program from the Digital Twin. 
2. Passes them to the short-term simulations together with the possible signal programs 

from the signal program generator and starts the short-term simulations. 
3. Builds the QUBO with the results of the short-term simulations. 
4. Passes the QUBO to the DAU. 
5. Collects the optimal signal programs for each signal head from the DAU. 
6. And passes them to the long-term simulation at the start of the next cycle. 

2.1 Randomness in TraFO 

Since we cannot develop an application in live traffic, we must rely on traffic simulation tools 
to create a digital twin. In our project we use two different simulation tools: SUMO and PTV 
Vissim. Both tools use random number generators (RNG) to place vehicles and simulate driver 
behavior in traffic. Both also let users specify random seeds to reproduce simulation runs.  

Additionally, in TraFO, the generation of signal program alternatives and the short-term 
simulation use multiple random number generator instances to decouple different simulation 
aspects, including 

 randomness when loading vehicles (vehicle type distributions, speed deviations, ...) 
 probabilistic flows 
 vehicle driving dynamics 

Figure 3. UI for Digital Twin Visualisation 
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and more.  

Changes to the random seeds can lead to widely varying traffic flows as shown below. 
Depending on the traffic flow, one and the same alternate signal plan can be highly effective, 
or highly detrimental to the flow of traffic. 

In our project, we came across the following types of random number generators: 

1. Pseudo Random Number Generators in SUMO 
Sumo uses the Mersenne Twister [5] is a general-purpose pseudorandom number gen-
erator developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 
拓士). This algorithm is widely used by commercial software like Microsoft Excel, SAS, 
SPSS, and Matlab as well as standard libraries like the standard C++ library, CUDA, 
and the NAG Numerical Library. 

2. Pseudo Random Number Generators in Vissim 
PTV Vissim is a proprietary commercial software, so while it uses multiple random 
number generators to vary the patterns of stochastic assignments and traffic signals, 
the exact type could not be determined from the technical documentation.   

3. How Big is the Influence of Random Numbers? 

The number of possible combinations of random seeds between the long-term simulation and 
optimization is so large (~ 3.4*1038), that exhaustive sampling is impossible (~1028 years at 
1000 simulations per second). Additionally, we are using about 10 parameters to tune the 
short-term simulation, which further inflates the search space.   

3.1 Measuring Traffic Quality 

To score the simulation runs we chose four key performance indications (KPI) for comparing 
the different runs: 

 Average Speed: at every simulation step, the average speed of all vehicles in the net-
work is calculated and then averaged again over the run time of the simulation. A higher 
value is considered better. 

 Number-Of-Vehicles: at every simulation step the number of vehicles in the network is 
counted. The KPI is the average of all these sums. A lower value is considered better, 
because when having the same number of vehicles getting into the network that means 
more vehicles already leaving the network earlier. 

 Deceleration: at every simulation step, the average deceleration of all vehicles in the 
network is calculated. Deceleration in this case means, that only negative acceleration 
values were considered, using 0 for positive accelerations. This is used, to get value 
more fluent traffic, as stop and go creates much more fuel consumption and CO2 pro-
duction than a slower but steady traffic. At the end the values were averaged again 
over the run time of the simulation. A lower value is considered better. 

 Traffic-Jam: at every simulation step, the vehicles which drive at less than 5 km/h are 
counted. The Traffic-Jam KPI is the average of all these sums. A lower value is con-
sidered better. 

All KPIs are only calculated after a 900-second start-up phase without optimizations which 
is needed to populate each part of the network with enough vehicles to generate valid data. 

To understand the impact the randomness in simulating traffic, we started with an analysis 
of baseline simulations of the same situation using different random seeds.  

Further KPIs can be added to the list as long as they are numerical and metric. 
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3.2 Baseline Comparisons 

To get an impression of the difference between simulations of the same initial situation using 
different random seeds, we have selected two simulations in our application, showing their 
KPIs and the values for average speed over simulation time: once initialized with 9299 as the 
random seed and once with 9340. 

 

The average speed of these two simulations has a ratio of almost 2:3 just because of the 
randomness of the input data for the simulation. Given that an average improvement of about 
10% would be considered a huge success in the real world, any optimization effect would be 
buried by the differences created by the choice of the random seed.  

Table 1. KPI of baseline 9299 and 9340. 

Simulation 
Seed 

Average Speed Number Of Ve-
hicles 

Deceleration Traffic Jam  

9299 29.36 203.2 -0.791 65.1 
9340 20.51 289.7 -0.680 143.5 

Figure 4. Comparison of average speed over simulation time of two simulations 
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To get a better impression, we created 50 baseline simulations and generated a boxplot (see 
Fig. 5) from the generated data. 

As one can see, the measured KPIs vary widely even though we haven’t used the digital an-
nealer and haven’t generated any optimization or changed any traffic light program. The big 
question is now: If we already have such big differences in the baseline simulations, how 
could we prove that our optimization creates better results? Just running some optimizations 
for some randomly picked random seeds wouldn’t prove anything, even though one might 
get a decent hunch from running a few thousand simulations. 

4. Are We Really Improving Traffic? 

It would already be a huge success if we could improve the traffic flow by about 10%. As shown 
above, two baseline simulation can already have a bigger difference using the same pool of 
traffic light programs, caused just by variations in simulating the behavior of drivers. As each 
round of optimization creates a change in the overall simulated system, the vehicle behavior 
will be different over time. For example, if without optimization a car would have been waiting 
at a crossing, it is possible that the optimization has it now already driving past the intersection. 
This will influence the later simulation of other vehicles as well. 

Therefor it is not sufficient to just pick a few simulations and compare the baseline with 
the optimized one, but instead use a more sophisticated approach. 

4.1 Medical Science to the Rescue 

Our solution for this dilemma was to look at other discipline in sciences. How do they handle 
such uncertainties? After reviewing some approaches, we selected methods used in medical 
sciences and pharmaceutical testing [6]. These seem suitable, because the traffic simulation 

Figure 6.  Raw statistical data generated by simulation 

Figure 5. Boxplot for baseline simulations 
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programs essentially model human behavior and must deal with large solution spaces and 
incomplete knowledge of the “participants” in large scale medical studies as well.  

When doing new drug development or studies for new therapies, biometric statistical meth-
ods are used. Similar statistics are also used in human studies in psychology, for example 
when evaluating therapies or clustering human behavior. So, we took a detailed look at how 
they solve the problem of distributed data in randomized testing. 

Any study normally consists of three steps: the design of the study, the execution, and the 
evaluation. We will use the same three steps for our problem. 

4.2 Design of the Study 

In the design phase, one answers the following questions: 

 Which hypothesis(es) do we want to prove? 

 Which type of study do we conduct? 

 What aspects will we measure during execution? 

 How will we evaluate the generated data? 

 How many “participants” do we need? 
The hypothesis we want to prove is that using the optimization with the QUBO and the digital 
annealer results in better traffic flow. In other words, we want to check whether the traffic in 
the optimized simulation is more fluid than the baseline simulation. In statistics, one uses an 
inverted null hypothesis, which is: The traffic flow after optimization is not more fluid than the 
traffic flow in the baseline simulation. 

For the other prescribed steps, we build an analogy to medical studies. When we look at 
our generated data, we see that we can run a baseline simulation and an optimization simula-
tion using the same random seeds. This is reminiscent of “twin studies” in medical sciences. 
So, we ran baseline simulations and optimization simulations using the same random seed for 
our testbed and a fixed set of parameters for our optimization and calculated the above men-
tioned KPIs. 

To test whether one set of results were better than the other, we chose a one-sided paired 
t-test [6], a popular method to compare data of twin studies in medical biometry.  

One initial step is to calculate how many “participants” are needed for a statistically signif-
icant result. Using standard online tools, a Cohens d of 0.2 (the minimal feasible value) re-
quired 156 “participants”[7], [8]. This tells us that we had to run at least 312 (156 * 2) simula-
tions to achieve a useful result. Due to the parallel execution of the simulations in TraFO, this 
could be done in an acceptable length of time. 

4.3 Execution of the Study 

For the execution we had to run a lot of simulations and collect the data (see Figure 6). We 
had previously implemented a batch mode TraFO, which allows us to run a defined number of 
pairs of simulations (baseline and optimization) for a specific situation using different randomly 
generated random seeds. All data is saved in a MongoDB database and can be processed 
later. 

Because running simulations in our optimized version of SUMO is much faster than in 
Vissim, we focused our first evaluation runs on SUMO simulations. Using SUMO, we can run 
a single simulation of a 45-minute traffic flow in about 5 minutes with 11 parallel simulation 
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threads on a Fujitsu CELSIUS J5010 (Intel Core i7-10700, 32GB RAM) so we would have 
needed about one day to run all the simulations we needed.  

To save time, we separated the simulation runs into subsets, so that we could start evaluating 
data even while additional simulations were still running. For our first run we chose a set of 
optimization parameters which caused some improvements in traffic flow in randomly selected 
trial runs. 

4.4 Statistical Evaluation of the Study 

For the first evaluation we use SPSS to calculate the statistical results.  

When running our first evaluation using SPSS, we were surprised to see that all averages were 
slightly better in the optimization simulations than in the baseline simulations already (see Fig-
ure 7). Furthermore, we already got statistically significant metrics (Sig < 0.05) for the Traffic-
Jam KPI and a statistical trend (Sig < 0.1) for the Number-of-Cars KPI (see Figure 8). The 
results can be reproduced using the Excel implementation for the t-Test [9]. 

This shows that even with the first selected optimization configuration and our simple KPIs, we 
can show that our algorithm improves the traffic flow. Calculating Cohens d we can even show 
that the results are not only significant but also show a statistical effect. We expect that we will 
find other optimizations with even larger effects in the future. 

Because we want to run these steps with more optimization configurations in future, we 
added an implementation of the one-sided pair-test to TraFO using the SciPy library for Python. 
This will allow us to run more tests faster and displaying the results inside TraFO.  

Figure 7:  Mean and standard derivation for each data set 

Figure 8. t-test results 
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5. Conclusion and Outlook 

Because of the strong dependency of complex systems on pseudo random number generator 
seeds and initial conditions, it is often hard to separate effects of deliberate optimizations in 
digital simulations from spurious changes due to varying initial conditions. This becomes a real 
issue if the simulation of the real-world system relies on multiple independent simulations using 
random number generators. Traffic flow simulations often shows this behavior. 

This paper shows that using biometric statistical evaluation of a large number of simula-
tions for a set of simulation parameters can help prove that a specific computational approach 
is working and can also eliminate unsuitable combinations of parameters. Compared to the 
common approach to verify the effectiveness of new computational approaches in traffic sim-
ulation by “running a few experiments” or “eyeballing it”, it increases the confidence in the 
accuracy of the simulations and optimizations and makes it easier to explain the approach and 
its benefits to future users with hard statistical evidence.  

Additionally, these measures - for example Cohens d - will help identify the best set of 
optimization parameters early in research and simulation projects, so researchers and traffic 
engineers can home in on strategies that provide the highest added value. 

We will use one-sided paired t-tests in more simulations for our scenario with different 
configurations to evaluate the effects of different tweaks to the optimization algorithm. Our 
experiments already showed that it is possible to get a statistically significant improvement in 
our scenario at the port of Hamburg using the digital annealer. We are already using this ap-
proach to find the best parameter sets for Hamburg as well as for other situations. 

For example, we have now a tool kit to check quickly, whether more complex scoring 
algorithms or new optimization algorithm leads to better solutions. We already have a set of 
different methods for generating QUBOs for the digital annealer which we now can compare 
to each other quantitatively. 

In the future we want to use this approach in other projects, which also simulate scenarios 
based on human behavior or pseudo random number generators, including large scale SUMO 
simulations. We also want to encourage other SUMO users to use it as well. 

We also will continue to explore additional statistical tests for more detailed analysis with 
the Wilcoxon signed-rank test as the next candidate. 
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