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Abstract: Routing algorithms typically suggest the fastest path or slight variation to
reach a user’s desired destination. Although this suggestion at the individual level is
undoubtedly advantageous for the user, from a collective point of view, the aggrega-
tion of all single suggested paths may result in an increasing impact (e.g., in terms of
emissions). In this study, we use SUMO to simulate the effects of incorporating ran-
domness into routing algorithms on emissions, their distribution, and travel time in the
urban area of Milan (Italy). Our results reveal that, given the common practice of rout-
ing towards the fastest path, a certain level of randomness in routes reduces emissions
and travel time. In other words, the stronger the random component in the routes, the
more pronounced the benefits upon a certain threshold. Our research provides insight
into the potential advantages of considering collective outcomes in routing decisions
and highlights the need to explore further the relationship between route randomiza-
tion and sustainability in urban transportation.
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1 Introduction

Vehicular mobility is pivotal in global greenhouse gas emissions and determining the
urban environment’s sustainability [1]. Emissions of CO2 from road vehicles were 1.57
billion metric tons in 2012, accounting for 28% of US fossil fuel CO2 emissions [2],
causing climate changes, heat islands [3] and health-related risks [4]. Traffic conges-
tion, a significant source of CO2 emissions in urban environments [5], may arise due
to (unintended) drivers’ miscoordination, which may be exacerbated nowadays by the
massive use of GPS navigation systems. Typically delivered as phone apps, these
systems suggest the fastest path to reach a user’s desired destination. Although this
suggestion is undoubtedly advantageous for the user, especially when exploring an un-
familiar city, the aggregation of all single suggested paths may result in an increasing
urban impact (e.g., in terms of emissions). Indeed, a recent work shows that the higher
the fraction of vehicles following these apps’ suggestion, the higher the urban emis-
sions [6]. Several alternative routing algorithms have been introduced, which typically
slightly randomize the fastest path to increase route diversity [7]–[11]. However, it still
needs to be determined to what extent route diversification can help reduce emissions
and traffic congestion in urban environments.
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This paper provides a method to assess the impact of route randomization on the
urban environment using the mobility simulator SUMO and duarouter. We investigate
the impact of randomized routes on CO2 emissions and travel time in Milan, Italy. By
changing the fraction of randomized vehicles for different degrees of randomization, we
examine how the distribution of emissions across the roads and the vehicles’ travel time
change. We find that an optimal randomization degree exists, leading to a 15% reduc-
tion in CO2 emissions and an 18% reduction in travel time, compared to the baseline
case in which there is no path randomization. In particular, the CO2 distribution en-
tropy increases with the degree of randomization, leading to a more evenly distributed
emission on the road network. Our study provides valuable insights into the potential
benefits of incorporating randomness into route recommendations as it may increase
sustainability in transportation networks. We provide the code and the link to the data
to reproduce our study at https://bit.ly/route_randomization_sumo.

2 Related Work

Computing the shortest (or fastest) path between two given locations in a road network
is a largely addressed problem in mobility research [12]. The fastest path is the one that
minimizes the travel time to reach a desired destination. Although this suggestion at
the individual level is undoubtedly advantageous for the user, from a collective point of
view, the aggregation of all single suggested paths may result in an increasing impact
(e.g., CO2 emissions) [6].

Different works have focused on alternative routing [7], typically formalized as the
k-shortest path problem [13], [14], which aims to find the k > 0 shortest paths between
an origin and a destination in a network. Cheng et al. [8] demonstrate how, in most
practical cases, path diversification is crucial to solving the k-shortest path problem
since the generated paths have 99% overlap in terms of road edges. Suurballe [15]
proposes another method to generate k-shortest disjointed paths, in which the route
appears considerably diverse from the optimal path and the travel time and path length
increase considerably. In between the k-shortest path and k-shortest disjoint paths lie
several approaches that are a good tradeoff between the two approaches.

Liu et al. [9] propose the k-Shortest Paths with Diversity (kSPD) problem, defined
as top-k shortest paths that are the most dissimilar with each other and minimize the
paths’ total length. Given the kSPD problem, Chondrogiannis et al. [10] propose an
implementation and a study of the k-Shortest Paths with Limited Overlap (kSPLO),
seeking to recommend k-alternative paths that are as short as possible and sufficiently
dissimilar based on a similarity threshold defined by the user.

Chondrogiannis et al. in [11] formalize the Dissimilar Paths with Minimum Collective
Length (kDPML) problem based on the definition proposed by Liu et al. in [9]. Given
two locations on a road network, they compute a set of k paths containing sufficiently
dissimilar routes and the lowest collective path length among all sets of k sufficiently
different paths.

Cheng et al. [8] generate alternative routes by considering the road network as a
weighted graph and distorting the edge weights. They iteratively compute the opti-
mal path, applying a penalty on each edge of the optimal path found in the previous
iteration.

Another technique used to generate alternative routes is the plateau method [16]:
it builds two shortest-path trees, one from the source and one from the target, and
then joins the two trees to obtain the branches in common. These common branches
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are termed plateaus. Top-k plateaus are selected based on their lengths, and each
plateau is used to generate an alternative path by appending the shortest paths from
the source to the first edge of the plateau and from the last edge of the plateau to the
target.

All existing works validate and evaluate the goodness of their proposals from a the-
oretical and algorithmic point of view. None of them investigates the impact of route
diversification on urban welfare, for example, traffic congestion and pollution. In this
paper, we fill this gap and assess the collective impact of alternative routing as ran-
domization of the fastest path on emissions using the mobility simulator SUMO.

3 Simulation Framework

Our simulation framework is based on SUMO (Simulation of Urban MObility), an agent-
based tool that allows for intermodal traffic simulation, including road vehicles, public
transport, and pedestrians [17]. SUMO models each vehicle’s physics and dynamics,
supporting various route choice methods and routing strategies [18].

SUMO requires two elements to simulate traffic: a road network and a traffic de-
mand. The road network describes the virtual road infrastructure where the simulated
vehicles move during the simulation. It is a directed graph G = (V,E) in which V repre-
sents intersections and E represents roads. The traffic demand describes the vehicles’
movement on the road network. A vehicle path may be either a trip or a route. The
origin edge, the destination edge, and the departure time define a trip. A route also
contains all edges the vehicle passes through.

We control our SUMO simulations through TraCI1 (Traffic Control Interface) [19], a
Python controller that allows retrieving simulated objects’ values that are useful for
analyzing the simulation, such as the vehicle’s trajectory, its speed and acceleration,
total CO2 emissions, and fuel consumption.

3.1 Mobility Demand

The mobility demand D = {T1, . . . , TN} is a collection of N trips (one per each vehicle)
within a city. A single trip Tv = (o, d) is defined by its origin location o and destination
location d. To compute D, we first divide the area of interest into a grid with squared
tiles of a given side. Then, we use real mobility data to compute the flows between the
tiles obtaining an origin-destination matrix M where an element mo,d ∈ M describes
the number of vehicles’ trips that start in tile o and end in tile d. Finally, we iterate
N times the following procedure: we choose a vehicle v’s trip Tv = (eo, ed) selecting
at random a matrix element mo,d ∈ M with a probability po,d ∝ mo,d and uniformly at
random two edges eo, ed ∈ E within tiles o and d.

3.2 Randomized Fastest Path

In graph theory, the shortest path between two nodes is the path that minimizes the
sum of the weights of the path’s edges. The fastest path is the shortest path consid-
ering travel time as the edge cost. We define a randomized fastest path as a non-
deterministic distortion of the fastest path. The resulting path should not deviate con-
siderably from the optimal path in terms of length and duration.

1https://sumo.dlr.de/docs/TraCI.html
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We compute the randomized fastest paths using the SUMO tool duarouter2, which
allows us to compute vehicle routes using different algorithms (e.g., CHWrapper, A*,
and Dijkstra) and specify the degree of path randomization w ∈ [1,+∞).

If w > 1, duarouter uses an edge weight randomization method [8] to dynamically
distorts edge weights (i.e., travel time) by a chosen random factor drawn uniformly
in [1, w). The edge cost distortion is performed every time duarouter computes the
fastest path for a vehicle; hence, two vehicles with the exact origin and destination may
be assigned to two different randomized fastest paths (see Figure 1). The edge weight
considered by duarouter is the expected travel time, estimated for each edge as its
length divided by the maximum speed allowed on that edge. Duarouter randomizes
the edge weight f(e) of an edge e using a function fdua(e) defined as:

fdua(e) = f(e) · U(1, w)

where w is the degree of randomization and U(1, w) is a random variable drawn uni-
formly in [1, w). Note that for w = 1 there is no randomization. Furthermore, the higher
w, the more randomness is introduced into calculating the fastest path, and the more
(on average) the path deviates from the fastest path (see Figure 2). Given an origin lo-
cation o, a destination location d, and random weight factor w, we define the sequence
of SUMO edges computed with duarouter as DR((o, d), w).

Figure 1. The non-deterministic nature of the fastest path randomization. The original fastest
path is the black dashed line. We visualize the routes for 1000 randomizations of
the fastest path, using w = 5, between the exact origin and destination edges. The
intensity of the colour on a road edge is proportional to its likelihood of being selected
as part of the randomized fastest path.

3.3 Non-randomized and Randomized Traffic Demands

We derive two types of traffic demands based on a given mobility demand D: the non-
randomized traffic demand and the randomized demand.

The non-randomized traffic demand, NR, is a collection of N routes that link the
origin to the destination of each trip in D using the fastest path (i.e., using duarouter
with w = 1):

2https://sumo.dlr.de/docs/duarouter.html
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(a) (b)

(c) (d)

Figure 2. Randomizations (red lines) of the fastest path (black dashed line) for w=5 (a), w=10
(b), w=15 (c), and w=20 (d). Increasing w produces routes that diverge more from
the fastest path.

NRD =
D⋃

Ti=(oi,di)

DR((oi, di), 1)

The randomized demand, R, is the collection of N routes connecting the origins to the
destinations of each trip in D using randomized fastest paths (i.e., using duarouter with
w > 1):

RD,w =
D⋃

Ti=(oi,di)

DR((oi, di), w)

Given a mobility demand D, we compute NRD and RD,w for each w ∈ W , where W is
the set of randomization factors to study.
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3.4 Traffic Simulation

We use TraCI to collect edge and vehicle-related measures such as total travel time,
emissions (CO2, PM, and NOx), and fuel consumption. We use the HBEFA3/PC G EU4
emission model [20], which estimates the vehicle’s instantaneous emissions at a tra-
jectory point j as [21]:

E(j) = c0 + c1sa+ c2sa
2 + c3s+ c4s

2 + c5s
3

where s and a are the vehicle’s speed, and acceleration in point j, respectively, and
c0, . . . , c5 are parameters changing per emission type and vehicle taken from the HBEFA
database.

We compute the total quantity for each pollutant on each edge e ∈ E by summing all
the emissions corresponding to any vehicle v’s trajectory point that fall on e. Finally, we
construct a weighted road network G = (V,E) where each edge e ∈ E is associated
with the amount of emissions on it.

4 Experimental Settings

We simulate the effect of route randomization into a 45 km2 area in the city center of
Milan, Italy, for which we have GPS data3 describing 17,000 private vehicles traveling
between April 2nd and 8th, 2007 (114k GPS points). Previous works demonstrate that
the portion of vehicles in the dataset is representative of the real fleet of vehicles [22].
We discretize the urban area of Milan by splitting it into a grid of squared tiles (side of 1
km), and we detect the origin and destination tile of each vehicle’s trip to compute the
origin-destination matrix M of vehicles’ flows [23], [24].

We obtain the road network G = (V,E) of Milan using OSMWebWizard4, included in
the SUMO suite. Before conducting the simulations, we perform a preprocessing step
on the road network to correct inaccuracies that may negatively affect the simulations.
This preprocessing phase includes correcting lane number inaccuracies, addressing
road continuity disruptions, and modifying turns to align with real-world conditions.
Since the pre-computed traffic lights’ programs often differ from those in reality, we
set the traffic lights’ program to actuated, as suggested in the SUMO documentation.
The preprocessing steps are based on the methodology outlined in [18]. We use the
following netconvert options (recommended in the netconvert documentation):

--no-turnarounds true --geometry.remove --roundabouts.guess --ramps.guess

--junctions.join --tls.guess-signals --tls.discard-simple --tls.join

--output.original-names --junctions.corner-detail 5 --output.street-names

After the preprocessing, the road network includes 5,551 intersections (nodes) and
36,945 road segments (edges).

Given the preprocessed road network G and the OD matrix M , we compute the
mobility demand D with N = 15, 000 trips. This value of N minimizes the difference
between the average travel time of actual trajectories and simulated ones, a standard
way to assess a realistic estimation of the number of vehicles to simulate [6], [18]. We
associate at each vehicle’s trip in D a departure time assigned uniformly at random
between 0 and 3600 seconds.

3https://ckan-sobigdata.d4science.org/dataset/gps track milan italy
4https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html
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First, we compute the non-randomized traffic demand NRD: we connect each vehi-
cle’s origin and destination through the fastest path (w = 1). Second, we build the ran-
domized traffic demands RD,w for several randomization values w ∈ {2.5, 5, 7.5, 10, 12.5,
15, 17.5, 20}. Third, we create a mixed demand MPp,w specifying the fraction p of the
randomized fastest paths. In each MPp,w, a fraction p of the N vehicles chosen uni-
formly at random are assigned to their randomized paths computed with the random-
ization value w. In contrast, the vehicles’ remaining fraction (1− p) is assigned to their
non-randomized paths. We consider p ∈ [0, 1] at step of 0.1. The mixed demand allows
us to study the impact of the percentage of vehicles that follow a randomized fastest
path on the urban environment.

To make simulations more robust, for each value of p and w, we generate MPp,w ten
times, each with a different choice of randomized vehicles that are chosen uniformly at
random. Finally, we simulate each MPp,w in SUMO, and through the Python controller
TraCI we collect the emissions on each edge and the vehicles’ total travel time.

Finally, to confirm that the randomization of a path from an origin to a destination
grows with w, we take 15,000 paths for each value of w ∈ W (generated starting from
the trips in D). We measure the randomization of a path as the normalized Jaccard
coefficient, defined between two sets A and B as:

J(A,B) =
|A ∩ B|
|A ∪ B|

between the edges of the randomized paths (w > 1) and edges of the fastest path
(w = 1) (Figure 3a), computed for the same origin and destination. We also measure,
for different values of w ∈ W , the average path length (Figure 3b) and the average
expected travel time (Figure 3c). Figure 3 shows how increasing the value of w results
in randomized paths with a lower average Jaccard coefficient, higher length, and higher
expected travel time than the fastest path. Therefore, path randomized grows with
increasing w.
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Figure 3. The average normalized Jaccard coefficient computed between the randomized
paths and the fastest path (a), the average path length (b) and the average travel
time (c) for different values of w.

5 Results

We study how the distribution of CO2 emissions and travel time across Milan’s roads
change by changing with the p of randomized vehicles for different values of w ∈ W ,
where W = {2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20}.
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We find that the fraction p of randomized paths does impact the total CO2: introducing
randomization in the fastest path reduces the total CO2 emissions. When p > 0.1, the
emissions are lower than the baseline case (w = 1) and decrease with p, assuming their
minimum value for p = 1 (Figure 4a). This relationship is consistent across different
values of w.
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Figure 4. Total CO2 emissions (a) and Shannon entropy (b) of the CO2 distribution varying the
fraction p of randomized vehicles for different values of w. Points indicate the average
of total CO2 emissions (a) and average Shannon entropy (b) over ten simulations with
different choices of randomized vehicles (chosen uniformly at random). Vertical bars
indicate the standard deviation, and the grey dashed line represents the baseline
case (no randomization, w=1).

As Figure 4a shows, the configuration p = 1 and w = 10 corresponds to the minimum
value of total CO2 emissions, with a total emissions savings with respect to the baseline
of 15.61% (Figure 6a). We also compute the Shannon entropy of the total CO2 distri-
bution to capture the inequality of the distribution on the road network’s edges, defined
as:

H(X) = −
∑
x∈X

p(x) log p(x)

where X is a random variable. We find that the higher w, the more evenly the emissions
are distributed on the road network (Figure 4b). In particular, the distribution is the most
equal when all the vehicles follow a randomized fastest path, ∀w ∈ W .

The results for the travel time are in agreement with those of CO2 emissions: the
higher p, the lower the vehicles’ travel times (Figure 5a). Travel times are minimized
when p = 1 and w = 10, with an improvement of 18.74% with respect to the baseline
scenario (Figure 6b). The entropy associated with the total travel time is more variable
than the entropy of the total CO2; this may arise from the stochastic nature of each
simulation.

6 Discussion and Future Works

Our study investigates the effects of route randomization on CO2 emissions and travel
time in an urban environment. We find that the injection of randomness into the fastest
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Figure 5. Total travel time (a) and Shannon entropy of the travel time distribution (b) varying
the fraction p of randomized vehicles, different values of w. Points indicate the aver-
age total travel time (a) and average Shannon entropy (b) over ten simulations with
different choices of randomized vehicles (chosen uniformly at random). Vertical bars
indicate the standard deviation, and the grey dashed line represents the baseline
case (no randomization, hence w=1).
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Figure 6. The percentage of savings to the baseline case (p = 0), in terms of total CO2 (a) and
total travel time (b) for p = 0.5 (blue) and p = 1 (orange) for different values of w.

83



Cornacchia et al. | SUMO Conf Proc 4 (2023)

paths, which can be interpreted as an increasing “diversity” of paths on the road net-
work, is beneficial for reducing CO2 emissions and travel time. Presumably, path ran-
domization helps distribute the traffic more evenly among the different (non-fastest)
routes, preventing the emergence of detrimental and counterintuitive effects such as
the Braess paradox [25], [26].

Path randomization with w = 10 leads to the best improvement over the baseline, with
savings in CO2 emission and travel time of 15.61% and 18.74%, respectively. However,
increasing the random component in the randomization of the fastest path is beneficial
up to a certain threshold: when w > 10, CO2 emissions increase again. This result
suggests that more effort should be devoted on finding the dependence of the optimal
degree of randomization on the road network structure and the number of circulating
vehicles. In future works, we plan to explore the potential for scaling these results to
other cities and integrating them into real-world transportation planning and manage-
ment.

Our findings have practical implications for real-world transportation systems. Im-
plementing our approach could significantly reduce traffic congestion and pollution,
thus improving the overall efficiency of the transportation network. The approach is
also easy to implement and can be integrated into existing navigation systems with-
out significant modifications. Further research could investigate the impact of several
diversification methods and other transportation efficiency measures, such as fuel con-
sumption.

A further improvement would be to consider a stable user equilibrium (UE) [27] as
a baseline scenario instead of assigning the fastest path for each trip in the travel
demand. User equilibrium (UE) describes the condition in which each driver chooses
their route based on their individual preferences, resulting in a network-wide equilibrium
where no individual driver can reduce their travel cost (e.g., travel time) by unilaterally
using a different route. In other words, UE represents a state of traffic flow where all
drivers have chosen the shortest or fastest paths, given the prevailing traffic conditions
and their preferences or constraints.

In the meantime, our work is a first step towards designing next-generation routing
algorithms that, as our results suggest, should consider some degree of path random-
ization to increase urban well-being while still satisfying individual needs.

Underlying and related material

The code and the link to the dataset to fully reproduce the analysis presented in this
work is available on a GitHub repository at https://bit.ly/route_randomization_
sumo.
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