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Abstract: In transportation, a vehicle’s route is one of the most private information.
However, to mutually learn some phenomena in a city, for example, parking lot oc-
cupancies, we might have to reveal information about it. In this paper, we focus on
assessing the privacy loss in a vehicular federated machine learning system. For the
analysis, we used the Monaco SUMO Traffic Scenario (MoST). We also used the sim-
ulation inputs as statistical data to calculate privacy loss metrics. Results show that a
vehicular federated machine learning system may pose a smaller privacy threat than
individual learning, but its performance is lower compared to a centralized learning
approach.

Due to the vast amount of data and processing time, we also describe a method to
build a Docker image of SUMO together with a software client-server architecture for
SUMO-based learning systems on multiple computers.
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1. Introduction

Modern vehicles carry an abundance of sensors. Additionally, recent developments in
machine learning made it possible to process even more data about the transportation
infrastructure than at any time in the past.

As it would be impossible to store all this information, we shall build compact, predic-
tive models to utilize all the knowledge. These models are valuable inputs to optimize
the traffic in a city. In the future, these models can also be parts of autonomous driving
algorithms.

There are several ways to build machine learning models. In this paper, we consider
that vehicles try to learn such phenomena individually and as participants of a feder-
ated learning system. Like in mobile edge networks, federated learning might have
many advantages also in vehicular learning, including low latency, privacy, and efficient
use of network bandwith [1]. Therefore, with the help of the Monaco SUMO Traffic
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Scenario [2] (MoST) simulations in Eclipse SUMO [3], we analyze the performance of
these learning approaches and compare them to a centralized method in which the
infrastructure itself collects the data and trains the model.

Additionally, while sharing data, even in federated learning, we shall be cautious not
to share too much personal information, especially route origins, and destinations. As
the route is private information, keeping it hidden from unauthorized access is both
a data security problem and a legal obligation. In this paper, we also evaluate the
mentioned learning schemes from a data privacy point of view.

In the following, in Section 2, we review the relevant literature. Section 3 describes
the parametrization and properties of the used simulation. The mentioned learning
schemes are described in Section 4–6. Finally, Section 7 concludes the paper. More-
over, long-running computations required the dockerization of SUMO and a TraCI script,
which we describe in Appendix A. Appendix B, in addition, proposes a method to dis-
tribute SUMO and machine learning workers between multiple computers.

For further development, we published our source codes at https://github.com/
alelevente/sumo_sec.

2. Related works

Crowdsensing complex traffic phenomena, such as parking place availability [4], seems
to be a promising new way of optimizing the traffic flow in cities. However, sharing data
on Vehicular Ad-hoc Networks (VANETs) also poses some technical challenges. We
have to solve the problem of secure data exchange while respecting the limits of the
available network bandwidth [5].

Several papers focus on simulating cyberattacks on Connected Autonomous Vehicles
(CAVs) and VANETs, including active [6], [7] or Distributed Denial of Service attacks
[8]. These simulations usually use SUMO to evaluate vehicle movements.

Moreover, federated learning [9] also gained importance in machine learning on mo-
bile devices in recent years. Federated learning ensures that its participants shall not
exchange their training data. It guarantees a certain level of security and also reduces
communication costs. Therefore, a vehicular network can take advantage of the fed-
erated scheme as well [10]. Unfortunately, the security level in a federated learning
scenario highly depends on identically distributed datasets: with non-IID (not Identi-
cally and Independently Distributed) data, it is possible to carry out various attacks
against the participants [11]. However, there are numerous countermeasures to such
attacks; they might not be applied onboard a vehicle due to the limited amount of power
and computational resources.

In this paper, we measure the parking lot occupancy by multiple measurement se-
tups. We evaluate the idea that vehicular crowdsensing schemes can function as
cooperation-based location privacy-ensuring methods to hide routes, which is a crit-
ically privacy-sensitive property [12], of the vehicles. To infer this information, it is
enough to suppose a passive attack carried out by an honest-but-curious party.

3. Simulation

To obtain measurement results, we used the Eclipse SUMO traffic simulation tool with
the MoST scenario. We have changed the simulation timestep from 0.25 s to 1.0 s
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to reduce the computation time.1 We parametrized the simulation to have a maximum
of 15 minutes of departure offset stochastically for each vehicle. It models that the
population follows some daily routine; however, individuals might not depart at the
same time each day. That yields an average traffic demand similar to what the MoST
defines with a certain perturbance around it.

SUMO is supposed to provide training data on parking lot occupancies measured by
moving cars. Hence, during the simulation, we recorded the position of each vehicle
with 0.1 Hz frequency through the Traffic Control Interface (TraCI). We also recorded
the occupancy of parking lots once each minute. As the MoST originally defined the
scenario, the measurement times ranged from 4:00 a.m. to 2:00 p.m.

These measurements were repeated 60 times, corresponding to a measurement
series of 3 months of working day data. As running a single simulation takes approxi-
mately 1 hour on a PC, we sped it up by running multiple simulations in parallel. To this
end, as described in Appendix A, we created a Docker image that runs a TraCI client
and a SUMO instance.

We assume that a vehicle knows a parking lot’s occupancy if it passes through an
edge with a center that is not more than 50 m away from the edge of the parking lot.
This distance can be understood as the communication or visual range of the cars.
After the simulations had terminated, we determined for each vehicle its measured
parking lots and the actual occupancy values when the cars were nearby.

4. Centralized learning

We trained a neural network only with the simulated parking lot occupancy data to
obtain a baseline model. Figure 1 illustrates the scheme of this learning setup. For
large parking garages, it is possible to implement such an approach by collecting each
garage’s occupation data to train a neural network on a remote server. However, this
centralized setup requires an infrastructure that detects whether a parking lot is free or
occupied. Hence, real-world implementation would be impractical due to its installation
and operational costs.

Figure 1. Scheme of the centralized learning approach. The server has connection to each
parking lot; hence, it can collect data from them, and use this data for learning a
predictive model.

1Because of this, accidents might occur in SUMO due to the small τ values. In our case, this is only considered to
be a random event without any further investigation.

117
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4.1. Neural network architecture and parameters

The training data consisted of {ID of parking lot, timestamp, occupancy} records,
from which the first two properties were the training features and the occupancy column
was the label to predict. We normalized the timestamps (ranging from 4:00 to 14:00)
to the [0.0, 1.0] interval, and we standardized the occupancy data (ranging from 0.0
(empty) to 1.0 (full)) by the mean and standard deviation values measured on the first
simulated day. As there are relatively few parking lots in the MoST, we were able to
represent them by a one-hot-encoding.

The used neural network is quite simple: it consists of 3 hidden, fully connected lay-
ers (with [200, 100, 20] neurons respectively) with rectified linear unit activation (ReLU)
introduced as eq. (2) in [13]. As the parking lot occupancy prediction is a regression
problem, a mean squared error (MSE) loss function suffices. Finally, we chose the
RMSprop optimizer [14] because we empirically found that it results in a slightly faster
convergence.

Out of the 60 days of measurement, the first 55 days served as training data, and
the rest was the test data. During the training process, 30% of the samples were the
validation set. To achieve maximum performance as well as to avoid overfitting, we
applied an early stopping mechanism that terminated the training process if there was
no significant improvement (0.0001 improvements in MSE loss on the training set within
3 consecutive epochs).

4.2. Performance of the centralized model

In this centralized setup, we can utilize the whole dataset provided by SUMO. There-
fore, the expectation might be that this approach performs outstandingly well in the
parking lot occupancy prediction.

The results confirm this anticipation: on the last 5 test days, the model produces an
MSE loss value smaller than 0.002. As, e.g., Figure 2 shows, the estimation fits the
measured value of the parking lot occupancy with minimal error.

Figure 2. Parking lot occupancy estimation of the centralized approach
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5. Individual learning

As we have noted at the beginning of Section 4, a centralized free parking lot predic-
tion system would require many sensors and communication to track the occupancies.
Consequently, this results in a high installation and operational cost, especially in curb-
side parkings.

Fortunately, as modern vehicles will carry more and more sensors, they might be able
to measure the occupancy rate of the parking lots on the fly. However, such records
can require a vast amount of storage space or have a high communication cost when
sending them to a remote server. Therefore, we have to represent this information more
compactly. For example, a trained machine-learning model can efficiently encode such
data in a predetermined storage space (engineers can determine the number of model
parameters at design time). Based on this idea, we tested how an individual vehicle,
see Figure 3, can measure and learn the occupancy of the parking lots.

Figure 3. Scheme of the individual learning approach. Individual vehicles try to learn the occu-
pancy of the parking lots.

In the following, for illustration, we will see how vehicle commercial 3-1 98 from the
MoST learns and what performance it achieves.

5.1. Performance of the individual training process

To ensure that only the access to the data influences the training process, we trained
an identical neural network to the one proposed in Section 4.1. Hence, the only dif-
ference is, in this case, that the neural network utilized only the measurement data
of the parking lots which lay along the route of the commercial 3-1 98 vehicle. The
edges from which these parking lots are observable according to Section 3 are shown
in Figure 4.

Naturally, we shall not expect that the parking lot occupancies for the whole time
range can be accurately estimated. We can only assume that for the measured parking
lots at the observation time, the vehicle will be able to approximate the occupancy val-
ues. Figure 5 confirms this hypothesis: Figure 5a illustrates how the commercial 3-1 98

vehicle can predict the occupancy of parking lot no. 1140, which lays along its path.
Around the observation time (depicted as a red line), the vehicle can more or less
accurately estimate that this specific parking is full. On the other hand, parking lot
no. 1101 is not in the knowledge base of the commercial 3-1 98 vehicle; therefore, it
cannot accurately estimate its occupancy, see Figure 5b.

As a vehicle often follows identical routes at the same time of the day, corresponding
to the daily routine of its owner, even this model might be helpful to recommend parking
lots that are free with high probability at a given time.
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Figure 4. A section of the map being simulated by the MoST. Edges on which vehicle
commercial 3-1 98 measured the occupancy of the parking lots are depicted in red.
By connecting these points, we might obtain information about the vehicle’s route.

5.2. Vulnerabilities of the individual learning scheme

The trained neural network efficiently encodes the measured occupancy data; there-
fore, it can also be helpful to another vehicle unfamiliar with the environment (at a given
time in a district). Therefore, cars might share their trained models.

Supposing that the receiver might be malicious, we shall evaluate the possible vul-
nerabilities of such a data-sharing technique. To this end, we assume that the receiver
is honest-but-curious, trying to infer the route, i.e., the measured parking lots and the
observation time of the sender vehicle. The receiver is also an oracle possessing all
the occupancy data of the parking lots.

By calculating the prediction accuracy values per parking lot, the attacker can suc-
cessfully identify some measured parking lots, see Figure 6. We estimated that a
vehicle while following its route measures 5.22 parking lots on average in the MoST.
Therefore, an attacker can select 5 parking lots having the lowest prediction loss values
as the inferred route of the sender. That gives the malicious receiver a map similar to
Figure 4, on which it might be able to approximate the path of the sender by connecting
the edges with rational and legal routes.

To approximate the observation time, the attacker can apply the following heuristic:
first, it selects 5 parking lots, of which predicted occupations are the most accurate.
After that, it computes the prediction accuracy lp(t) of these parking lots per timestep.
To smoothen the achieved curve, it can apply a moving average with a window size
of e.g. 60 minutes. Let the smoothened curve be l̂p(t). Then the t̂m observation time
estimate can be defined as:

t̂m = argmin
t

l̂p(t). (1)
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(a) Estimation of the occupancy of a known parking lot

(b) Estimation of the occupancy of an unknown parking lot

Figure 5. Parking lot occupancy estimation of an individual vehicle

Figure 6. Average prediction accuracies for known and unknown parking lots.
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As Figure 7 illustrates, the heuristic of (1) can approximate the observation time of
commercial 3-1 98 with 8 minutes difference. Considering that the observation time
offset follows a uniform distribution in the [0, 15] minutes range, this difference is smaller
than the offset range.

Figure 7. Average prediction accuracies for known parking lots during the simulation time. The
minimum of the blue curve is at 10:25 which is the estimate of the observation time
according to (1).

6. Federated learning

As both the centralized and individual learning schemes have their drawbacks, it might
be fruitful to combine them. It would result in cheap measurements done by the vehi-
cles and an accurate model on the server side. It is the idea of the federated learning
scheme, see Figure 8.

Figure 8. Scheme of the federated learning approach. Individual vehicles train their own mod-
els which they send to the server. The server aggregates the models and shares this
federated model with the participating vehicles.
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Considering that the data provided by the SUMO simulations require approximately
240 GiB of storage space, its processing even on a high-end PC is not feasible. There-
fore, we sampled 10% of the vehicles. In this way, we had measurements of approx-
imately 4000 vehicles. This sampling can also represent the situation when only a
portion of the cars can measure complex phenomena such as the parking lot occu-
pancy.

After each simulated day, the server randomly chose 50 participant vehicles. These
participants received the actual federated model (in the beginning, it was initialized
randomly) and trained their local update models, identical to the one described in Sec-
tion 4.1, with all their data from previous measurements until the time of the training.
The participants send the update to the remote server which aggregates them by the
FedAvg algorithm [9] to obtain the next iteration of the federated model.

Unfortunately, operating this learning scheme requires either plenty of time or the
parallelization of the learning tasks. To this end, we developed a software architecture
that distributes the computation among multiple PCs. Appendix B highlights the main
components and design concepts of the architecture.

6.1. Performance of the federated learning scheme

We expect that the accuracy of the federated learning scheme shall converge to the
performance of the baseline, centralized approach. However, there might be some
rarely visited parking lots. Therefore, the training data of the federated learning scheme
might be sparser than in the centralized approach. That can reduce the numeric per-
formance of the federated system, which achieves an average MSE loss of a little bit
above of 1.0 on the test data.

Although this loss value is 3 magnitudes higher than the baseline, a significant part
of the imprecision comes from the prediction error of such remote parking places. In
real life, we may tolerate this kind of mistake because rarely visited parking lots are
usually empty. Hence, it seems more important to predict accurately the occupancy of
frequently used parking facilities. Figure 9 illustrates the performance of the federated
system on an often-used parking lot. As we can see, the shape of the prediction curve
is similar to the real one, but it does not fit as well as that in Figure 2. Due to the limited
datasets of the participating vehicles, this process requires either more communication
rounds or more participants to achieve the convergent state.

Figure 9. Parking lot occupancy estimation of the federated learning approach
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6.2. Vulnerabilities of the federated learning scheme

Considering that the federated learning scheme also incorporates data sharing, we
shall investigate the possible security vulnerabilities. Again, we are interested in the
routes of the vehicles, i.e., the measured parking lots and the observation times.

The whole federated system slowly converges; therefore, we shall concentrate on
the participants’ updates. The updates reflect the gradients of the loss function at
the participants; consequently, they contain implicit information from the participants’
training datasets [9]. Hence, if we compare the performance of the received updates
with the sent federated model, we might extract the route of the participant.

To evaluate the success rate of such a comparison-based honest-but-curious at-
tacker, we defined its accuracy as follows. For each participant, the attacker carries
out an inference fundamentally similar to the methods described in Section 5.2. The
difference is that, in this case, the attacker evaluates the performance of both the fed-
erated and the participant models per parking lot. Let us denote the MSE prediction
loss of the federated model on the ith parking lot as l

(f)
t (i), and the MSE prediction

loss of a participant’s model on this parking lot as l
(p)
t (i). We suppose that the models

perform better on the range of the training data (l(p)t (i) < l
(f)
t (i) if the participant vehicle

measured parking lot no. i). Therefore, (2) gives a heuristic that the participant is likely
measured parking lot no. j:

j = argmin
i

(
l
(p)
t (i)− l

(f)
t (i)

)
. (2)

Let us collect the 5 best parking lots by the above heuristic. Then, we can check
how many of these collected parking lots are in the measured parking lot list of the
given participants. This ratio will be the accuracy of the attacker: e.g., the accuracy
will be 1.0 if all 5 selected parking lots are in the list, up to 0.0 in case these two
sets are disjunct. Figure 10 illustrates the curve of this accuracy value. The heuristic
performs surprisingly well which proves that in the beginning of the training process, an
honest-but-curious attacker can succesfully infer which parking lots were measured by
a participating vehicle. Moreover, as the linear trend estimate indicates, the success

Figure 10. Position inference success rates
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rate of the attacker decreases as more and more training rounds are performed. This is
due to the convergence of the federated system: a participant in a well-trained scheme
would not be distinguished from the other participants. However, we shall note that as
a real-world traffic infrastructure constantly changes, we shall not assume that such a
convergent state exists.

Moreover, we also tried to estimate the observation times of the participating vehi-
cles. For this approximation, we calculated the l̂

(f)
p (t) and l̂

(p)
p (t) smoothened MSE loss

values on the identified 5 best parking lots per timestep of the federated and the par-
ticipant models respectively, similarly as in Section 5.2. Then, the observation time
estimation t̂

(p)
m can be defined as:

t̂(p)m = argmin
t

(
l̂(p)p (t)− l̂(f)p (t)

)
. (3)

Figure 11 illustrates the prediction power of the heuristic based on (3). As depicted,
the average prediction accuracy oscillates around 2 hours. Consequently, in half of
the measurement cases, the approximation error is even smaller than that. As the 1σ
standard deviation range shows, the estimate often might be accurate, leaving only a
marginal error. It concludes that an honest-but-curious attacker in a federated system
may successfully infer both observation time and position.

Figure 11. Observation time inference accuracies

As the linear trend indicates it in Figure 11, the observation time estimate gets more
accurate as the system trains. That can have various explanations. The first one is
that the federated system is yet to converge; therefore, if we perform more training
rounds, the probability of a successful observation time inference will decrease. The
second possible explanation relies on the execution order: first, a participant trains its
local model, then sends back its updates. The malicious server evaluates this update
and finally aggregates the received models into the federated one. In this order, a
participant can more accurately predict a specific parking lot at a given time than the
federated system, explaining why the trendline does not increase. Lastly, it is also
possible that we do not have enough data points to achieve a stable, constant value.
However, it is possible to proceed with the measurements; operating the federated
learning system is computationally really demanding.
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7. Conclusion

In this paper, we presented how communicating vehicles can measure and learn a
complex phenomenon, i.e., the parking lot occupation of the city. To obtain the input
data, we ran Eclipse SUMO multiple times with the MoST scenario. Unfortunately, run-
ning the simulations requires plenty of time. To mitigate the time demand, we created
a Docker image containing Eclipse SUMO and a TraCI script that can run in parallel in
several instances on a PC. As connecting this system with machine learning tools is
also challenging, we present a possible software architecture that allows us to distribute
the SUMO-based learning system among various computers.

We conclude that a centralized learning scheme can outperform a federated one, but
its real-world implementation is not feasible due to the need for thousands of sensors
in a city. On the other hand, vehicles might learn the parking lot occupancies in a spe-
cific district and time of the day; such individually trained models cannot perform well
outside the range of their training datasets. Assuming that this neural network model
is the compressed version of the collected data, it might be worth sharing it with other
vehicles. But it should be emphasized that this data sharing poses a potential privacy
risk as an honest-but-curious partner can infer the vehicle’s route and observation time.

We also tested a federated learning scheme to combine the benefits of cheap data
collection and acceptable model performance. However, such a federated system is
neither entirely secure, especially not at the beginning of the training process. It is a
challenging task to make this federated measurement and learning system protected
and well-performing. To this end, our future research focuses on solving that problem.

A. Creating a Docker image with SUMO and TraCI

As running even one instance of the MoST scenario in Eclipse SUMO takes approx-
imately one hour, running it in multiple instances in parallel is quite beneficial. Un-
fortunately, we ran into a problem2 when we tried to execute our TraCI script either
multithreaded or in separate processes.

As a workaround, we created a Docker image containing SUMO and our TraCI script
to collect measurement data. In our GitHub repository, one can find a Dockerfile that
creates an Ubuntu-based SUMO installation. Besides pulling the latest SUMO version,
the resulting image will incorporate the measurement script too.

B. A multi-computer client-server architecture for SUMO-based
learning systems

The operation of the described federated system requires training multiple neural net-
work agents. Unfortunately, it also consumes a significant amount of time even on a
high-end PC (with AMD Ryzen 7 3800X CPU, 32 GiB of RAM, and an Nvidia RTX3060
GPU). Moreover, we used Tensorflow to implement the neural network, which, for some
unknown reason, does not support multithreaded or process-based parallel training.
Therefore, we designed a framework to distribute the workload among various com-
puters, see Figure 12. This approach is fundamentally similar to the parallel training
described in [15]. However, a reinforcement learning process heavily depends on the

2As of Eclipse SUMO version 1.15.0, the problem may be somehow related to multiprocessing, as the circum-
stances of getting a TraCI error were not deterministic.
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Figure 12. Schematics of a distributed learning system based on SUMO simulations

simulation speed; in our case, the performance bottleneck is the training time of a
neural network.

One can deploy multiple SUMO containers, described in Appendix A, on a computer.
As SUMO efficiently uses the system memory and runs most of the time on a single
CPU core, the simulator server might not necessarily be a high-performance com-
puter.

Moreover, training neural networks can be much faster on computers with GPU. To
take advantage of it, we can create several train workers. These train workers shall
operate a simple HTTP server, e.g., implemented by Flask, and provide services such
as training a neural network. Or use the neural network to predict a value. These
services can be accessed by calling the corresponding HTTP requests. As the interface
is through HTTP protocol, we can deploy train workers to multiple computers. For
more complex tasks and setups, one might also place the train workers into Docker
containers and build up a Kubernetes-based system.
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