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Abstract: Deep Reinforcement Learning (DRL) is a promising data-driven approach
for traffic signal control, especially because DRL can learn to adapt to varying traffic
demands. For that, DRL agents maximize a scalar reward by interacting with an envi-
ronment. However, one needs to formulate a suitable reward, aligning agent behavior
and user objectives, which is an open research problem. We investigate this problem
in the context of traffic signal control with the objective of minimizing CO2 emissions at
intersections. Because CO2 emissions can be affected by multiple factors outside the
agent’s control, it is unclear if an emission-based metric works well as a reward, or if
a proxy reward is needed. To obtain a suitable reward, we evaluate various rewards
and combinations of rewards. For each reward, we train a Deep Q-Network (DQN) on
homogeneous and heterogeneous traffic scenarios. We use the SUMO (Simulation of
Urban MObility) simulator and its default emission model to monitor the agent’s per-
formance on the specified rewards and CO2 emission. Our experiments show that a
CO2 emission-based reward is inefficient for training a DQN, the agent’s performance
is sensitive to variations in the parameters of combined rewards, and some reward for-
mulations do not work equally well in different scenarios. Based on these results, we
identify desirable reward properties that have implications to reward design for rein-
forcement learning-based traffic signal control.

Keywords: Traffic Signal Control, Reinforcement Learning, Reward Modeling, Pollu-
tant Emissions

1 Introduction

Deep reinforcement learning (DRL) is a data-driven approach that holds promise for
improving traffic signal control (TSC), because DRL can learn to adapt to changing
traffic demands [1]–[3]. To achieve this, a DRL agent interacts with its environment and
learns to take actions that maximize a cumulative scalar reward. By doing so, the agent
can optimize the flow of traffic and improve the overall efficiency of the system.

In TSC, the actions correspond to changes in traffic lights and rewards correspond
to traffic flow metrics (e.g., average vehicle speed, braking accelerations, and queu-
ing lengths at intersections). However, in real-world applications of DRL, the agent’s
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reward should also reflect the users’ goals, which in TSC could be, to minimize traffic
delays [4], [5] and CO2 emissions [6], [7]. Nonetheless, it is not obvious how to select
reward formulations that are also effective in satisfying users’ goals. This is an open
and challenging research problem known as the ”agent alignment problem”. The opti-
mization goal of minimizing travel time in the context of TSC is challenging due to the
influence of various external factors, such as free flow speed and current congestion
level, which are beyond the agent’s immediate control [8]. While this makes travel time
an ineffective reward in practice [4], it is also not obvious which traffic flow metrics are
guaranteed to be effective to this goal. There are several studies that combine traffic
metrics as rewards for DRL agents [4], [5], [9]. Similarly, there is a growing body of
research on training DRL agents to minimize pollutant emissions in TSC [6], [7]. How-
ever, these DLR-based approaches provide limited insight into how the convergence
curves of traffic metrics behave relative to CO2 emissions during the training of DRL
agents. This information is important for designing reward functions that are effectively
aligned with the users’ goals. We investigate how to bridge this knowledge gap by per-
forming a systematic study of the reward design space, which comprises single-metric
rewards, combined-metrics and their corresponding parameterizations (weights in a
linear function). For each candidate reward, we train a Deep Q-Network (DQN) [10] on
two traffic scenarios, one with homogeneous traffic and one with heterogeneous traffic.
To evaluate the various reward model formulations, we adopt the SUMO (Simulation of
Urban MObility) simulator and its default emission model (Handbook Emission Factors
For Road Transportation - HBEFA 3.1) [11]. Our evaluation consist of measurements
of convergence curves of the agent’s reward and the corresponding CO2 emissions,
producing the following results:

1. a CO2 emission-based reward is inefficient for training a DQN agent,
2. only a few single-metric rewards were capable of minimizing CO2 emissions,
3. metrics that individually did not produce effective reward formulations, were, when

combined, successful in minimizing CO2 emissions,
4. and, even when there exists an effective instance of a combined reward (e.g.,

a combination of queue and brake), there are still variations (i.e., from different
parameterizations) of those same traffic flow metrics that produce ineffective re-
wards.

These results generalize both under homogeneous and heterogeneous traffic flow sce-
narios. Based on these results, we generated two contributions in the form of system-
atic analyses.

1. Property-based analysis of convergence curves. This analysis generates expla-
nations for the cases of insufficient alignment between the agent’s reward model
and the CO2 emission goal. The explanations consist of a paradigmatic classifi-
cation of the reward models through orthogonal categories defined by two proper-
ties. Informativeness captures how well the agent approximates the given proxy
reward, and expressiveness reflects how strong episode rewards correlate with
episode CO2 emission levels.

2. Sensitivity analysis of the challenges to align combined reward models with CO2
emission goals. This analysis shows that alignment has two levels of sensitivity:
the choice of traffic flow metrics, and the parameterization of these metrics in a
linear reward formulation.

The remainder of the paper is organized as follows. In Section 2, we present the prob-
lem of agent alignment and its impact on TSC and emissions. We contextualize our
work in relation to DRL for TSC, and for minimization of pollutant emissions (Section 3).
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The approach and experimental setup is detailed in Section 4, while the corresponding
results are presented in Section 5. The analyses of these results in terms of contribu-
tions, implications, and threats to validity are discussed in Section 6. Finally, we offer
our conclusions and ideas for future work in Section 7.

2 Foundations

Deep reinforcement learning (DRL) is a popular approach that combines deep neural
networks with reinforcement learning to enable agents to learn optimal behavior in
complex environments. However, ensuring that the goals of the system align with the
goals of the user is a critical challenge in DRL systems. Misaligned goals can result
in unintended and potentially harmful outcomes that undermine the users’ goals. This
section examines the challenges that make alignment difficult in DRL systems and
describes how reward models align with user goals.

2.1 The Agent Alignment Problem

The AI alignment problem [12] consists of finding ways to ensure that, quoting [13]: ”...
these [machine learning] models capture our norms and values, understand what we
mean or intend, and, above all, do what we want”. In other words, it involves matching
agent rewards and users’ goals regarding behavior [14], intent [15], incentive [16],
inner and outer alignment [17], and instruction alignment [18]. Behavior alignment con-
sists of producing predictions for given inputs, whereas intent looks at more general
specification that cover different desired behaviors. Incentive alignment studies how
rewards induce desired behaviors, whereas inner and outer alignment deals with par-
titioning the alignment in scopes that present specific dynamics. Instruction alignment
consists of communicating human intent as a sequence of instructions that must be
learned. These various definitions of alignment make specification, measurement, and
evaluation challenging.

Therefore, a more pragmatic approach is to look at the failure of the agent to align
with the user’s goals (misalignment). Misalignment can have unintended consequences
that are counterproductive (optimize against the users’ goals), futile (no effect on users’
goals), or simply could jeopardize users’ goals (suboptimal behavior). Additionally, mis-
alignment in DRL can increase the chances of reward hacking [19], [20]. For instance,
in the case of a game boat race, an agent maximized a reward by indefinitely hitting a
nearby target without ever concluding the race [21] – violating what the user intended.

One can argue for a proper definition for the user’s goal and how it should be reflected
on the reward model; however, this is still challenging, as evident in the many recent AI
failure cases reported in the ”Artificial Intelligence Incident Database”1. In other words,
there is no perfect alignment [15]. Instead, one needs to specify models that satisfy the
conditions of being sufficiently meaningful and precise to steer the process of achieving
user goals (e.g., reducing CO2 emissions) by optimizing traffic flow metrics. For that,
one needs a systematic way to evaluate how reward models align with user goals. Our
approach presented in this paper is to partition the alignment specification problem into
two metrics that allow to express a meaningful goal, and inform precisely enough how
this goal can be achieved.

1https://incidentdatabase.ai/
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2.2 Alignment Challenges

Partial observability in the form of hidden states (inherent to DRL environments) make
alignment more difficult to achieve by preventing the agent from observing all the effects
of its actions (in particular the delayed ones).The hidden states can result both from
misspecified (wrong) [22] and underspecified (incomplete) [23] models. In the context
of DRL, wrong or incomplete models can cause the agent to show good convergence
curves at training time, but present unexpected behaviors after deployment. This can
have consequences for the safety and cost of applications like autonomous vehicles
and robotics.

Delayed and stochastic effects of actions are challenges when performing credit
assignment, i.e., determining how each action contributed to achieve the users’ goal.
While delay and stochasticity cannot be eliminated, as they are properties of the envi-
ronment, one can have reward models that are less sensitive to these factors. In the
case of emissions, one can compare how different traffic flow metrics (e.g., average
speed versus queue length) relate to changes in CO2 emissions.

2.3 Deep Q-Network

Q-Learning is a popular reinforcement learning algorithm that helps agents make de-
cisions based on rewards in their environment. It involves estimating the action-value
function, which maps a state and action to the expected future rewards. In tabular
Q-learning, the action-value function is represented as a table, but this becomes im-
practical for large or continuous state and action spaces [24]. Function approximation
can solve this problem by representing the function using a neural network or another
approximator.

Neural Fitted Q-Iteration (NFQ) [25] is an extension of tabular Q-learning with function
approximation, improving scalability to large state-action spaces. However, NFQ uses
a fixed dataset; thus, it is susceptible to overfitting on the training data. To mitigate
this problem, Deep Q-Network (DQN) was introduced [10]. DQN builds on NFQ and
introduces two key components: the experience replay buffer and the target network.
The replay buffer stores the agent’s experiences that can be retrieved for updating
the Q-value estimates. The target network is used to set the TD targets, which are
calculated based on the immediate reward and discounted future returns. Finally, our
choice for DQN relied on its simplicity (off-policy and model-free), as it would allow
to establish a comparison baseline for more sophisticated approaches like Proximal
Policy Optimization algorithms (PPO) [26].

3 The State of the Art

This section introduces the topic of reward modeling in deep reinforcement learning
(DRL) and its application to traffic signal control (TSC).

3.1 Reward Modeling

Reward modeling consists of learning to achieve specific user goals without requir-
ing human feedback [14]. It has become a popular approach that precludes manually
solving the credit assignment problem (e.g., via reward shaping [27]). However, be-
cause designed rewards can still be tampered by a learning agent [19], one still has to
evaluate how alignment is done via reward modeling. This gives rise to the Optimal
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Reward Problem - ORP [28], which aims to reduce the alignment problem to a reward
modeling problem. This might involve defining intrinsic or extrinsic rewards [29]. The
intrinsic reward constraints the agent on how it can learn, whereas the extrinsic reward
instruments the user’s goal by steering the agent on what it can learn2. We translate
these intuitions respectively into two convergence properties named informativeness
and expressiveness (formalized in Section 6.1).

3.2 Reward Models for Traffic Signal Control

Minimizing travel time is the main goal of a TSC policy. However, because travel time is
affected by a multitude of factors and actions with delayed effects [8], traffic engineers
rely on proxy reward metrics, like average waiting time, average intersection speed,
or total braking acceleration. Accordingly, in DRL, various combinations for a reward
models were investigated: queue length and delay in [5], queue length and pressure
in [4], stop time and average speed and time lost [9], and many others (see Table-5 in
[8]). We extend this family of work by combining more metrics (vehicle speed, brake
acceleration) and evaluating their impact on CO2 emissions.

3.3 Pollutant Emissions in Traffic

Traditionally, the first solutions comprised non-DRL control (both with SUMO [31], [32]
and other simulators [33]–[35]). More recently, DRL-based TSC approaches to mini-
mize pollutant emissions have been investigated [6], [7]. However, these DLR-based
approaches provide limited understanding about the relationship between metrics for
emissions and traffic flow, in particular, regarding how the convergence curves of met-
rics behave during the training of DRL agents. Without a proper understanding of this
relationship, one is hindered in the task of reward modeling for aligning the agent’s re-
ward with CO2 emission goals in TSC. Therefore, to bridge this gap, we investigated
various formulations for a linear reward function based on traffic flow metrics, and com-
puted the corresponding CO2 emissions using SUMO’s provided emission model from
the Handbook Emission Factors For Road Transportation (HBEFA 3.1) [11].

3.4 Deep Reinforcement Learning for Traffic

The specification of the DRL approach goes beyond the choice of reward function: one
needs to choose an algorithm and how to model the state-space. Among the many
DRL algorithms to have been adopted [8], the DQN [10] algorithm has been one of
the most popular choices (Table-1 in [3]). The adoption of DQN for TSC stems from
its relative simplicity of having discrete actions, while still providing good convergence
behavior [36].

Concerning the state-space, the traffic environment has been modeled at various
levels of resolution, from coarse (flow) to fine (vehicle speed and position) [8], resulting
in tabular discretized metrics [37], and image representations [36]. We opted for a lane
segment level resolution and discretized metrics because studies could not show better
results when adopting higher resolution [38] or more complex state representations [5].

2This could involve curiosity-driven exploration [30], which attributes credit based on the novelty of the state-action
pair, usually measured by some information theoretic metric, e.g., entropy, mutual-information, or KL-divergence.
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4 Methodology

In this section, we outline the methods used to study CO2 emissions produced at sig-
nalized intersections. Our approach builds on the principles of reinforcement learning,
where an agent learns to make decisions based on the interaction with its environment.
We outline the traffic simulation scenario in Section 4.1 and formulate the reinforce-
ment learning task in Section 4.2, defining the states, actions, and rewards used by
the agent. Finally, in Section 4.3, we provide a detailed description of the experimental
setup, including the neural network architecture, hyperparameters, and the setup of the
traffic environment, used to train and evaluate the DQN algorithm.

4.1 Traffic Scenarios

We propose a scenario that comprises a controlled intersection (shown in Fig. 1), fea-
turing two incoming and two outgoing lanes. The intersection allows two types of
phases: either green or yellow in the north-south direction (NSG, NSY ); or green or
yellow in the east-west direction (WEG, WEY ). In both cases, the orthogonal direction
is set to red. Fig. 1 illustrates the intersection in NSG phase.

Figure 1. Screenshot (SUMO GUI) of a signalized intersection with four lanes.

We combine this infrastructure with traffic flows as shown in Fig. 2, consisting of two
types: a time-varying Bernoulli distribution, and a traffic flow that remains constant
throughout the simulation. At each second and on each road (north-south, west-east,
etc.), a car is released into the simulation with a probability of p. Each traffic demand
combined with the signalized intersection infrastructure gives rise to one scenario: a
heterogeneous traffic scenario, using the time-varying demand, and a homogeneous
traffic scenario (using the fixed demand).

For the heterogeneous traffic scenario, depicted in blue in Fig. 2, we deliberately
chose a peak traffic volume of p = 0.25 – the maximum probability of releasing a car.
This level of peak traffic makes the scenario challenging, as it exceeds the maximum
intersection throughput and causes congestion temporarily. In contrast, the homoge-
neous traffic flow, depicted in red in Fig. 2, has a fixed probability of releasing a car
with a value of p = 0.2. This value represents the maximum intersection throughput,
ensuring that the flow remains steady throughout the simulation.

4.2 The Reinforcement Learning Task

Traffic signals play a critical role in ensuring safe and efficient traffic flow at intersec-
tions. Fixed pre-timed controllers are often insufficient in optimizing traffic flow, as traffic
volume and driving behavior vary widely. Adaptive traffic signal control (ATSC) provides
a solution, which uses electrical sensors and sets signals based on the data, adapting
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Figure 2. The probabilities of releasing cars into the system over simulation time.

to the current traffic situation. One of the simplest methods to achieve ATSC is actu-
ated signal control, which triggers a specific signal based on sensory data gathered
around the intersection. Reinforcement learning (RL) is a possible solution to obtain
a program for ATSC. The output of the RL algorithm, the agent’s policy, becomes the
desired ATSC program, which works fully automated, and can be scaled. ATSC with
DRL has achieved outstanding results, outperforming conventional methods in many
situations. The agent repeatedly collects state information, acts, and updates its policy
with a scalar reward, while being trained in safe or simulated environments. For the
remainder of this Section, we will assume the environment described in Section 4.1
and specify the components of the reinforcement learning problem, the states, actions
and rewards of the agent.

The agent’s state or observation is a representation of the environment that the
agent perceives at any given time, including relevant information that the agent can
use to take actions that maximize its rewards. In the case of traffic signal control with
reinforcement learning, the DTSE (Discrete Traffic State Encodings) state [39] is a
commonly used representation that consists of two 2D matrices. The first matrix is
a binary position matrix that encodes the presence or absence of a vehicle at each
intersection, as depicted in Fig. 3 (b). The second matrix is a normalized velocity
matrix that tracks the average speed of the vehicles on a given segment, as depicted
in Fig. 3 (c).

Figure 3. Example of simulated traffic (a) with corresponding Boolean- (b) and Real-valued
DTSE vectors (c). Image source: [39]
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Our approach uses DTSE representations, which capture the position and speed of
vehicles – key factors in determining CO2 emissions. This allows the agent to make
informed decisions about when to change traffic lights to achieve the goal of our RL
task, which is to minimize CO2 emissions.

The agent’s actions are determined by the traffic scenario, as described previously.
That is, the agent takes action every ∆t (in seconds) and chooses from the set of al-
lowed phases A = {NSG,WEG}. Additionally, on each phase change, a yellow tran-
sition phase (NSY or WEY ) is induced to ensure safety. In contrast to our approach,
the agent could also cycle through a pre-defined sequence or operate in non-fixed in-
tervals. However, using a fixed action interval with a set of allowed phases provides
a balance between flexibility and difficulty, as non-fixed intervals make the problem
harder, and a pre-defined sequence limits the agent’s options.

The agent’s reward is composed of one or multiple of the following average traf-
fic metrics, aggregated over all lanes: queuing length (queue reward), vehicle speed
(speed reward), braking acceleration (brake reward), and CO2 emission rates (emis-
sion reward). Additionally, we provide linear combinations of average queuing length
and braking acceleration (queue+brake reward) as well as queuing length and speed
metrics (queue+speed reward).

4.3 Experimental Setup

Each experiment uses one of the intersection scenarios described in Section 4.1, with
either heterogeneous or homogeneous traffic. Each training run uses simulations that
last for 3600 seconds (simulation time), and the agent interacts in intervals of ∆t = 5s,
resulting in 720 steps t = 1, . . . , 720 per episode. At episode termination, the simula-
tion is reset, and the agent continues training. For a phase-switch, we selected a yellow
time to of tyellow = 2s. The agents observe DTSE features with speed and position in-
formation. To compute DTSE features, we split each road into 30 segments (segments
of length c ≈ 8.33m). Table 1 summarizes this general setup.

The DQN agent uses a Multi-Layer Perceptron (MLP) with two hidden layers as the
neural network, each containing 64 neurons, and a linear output layer with four neu-
rons (one for each action). We use the Adam optimizer [40] for mini-batch gradient
descent, with a batch size of 64 and an initial learning rate of α = 1e−4. To explore the
environment, the agent begins with 100% exploration (ϵ = 1) and gradually decreases
exploration linearly to 10% over the first third of training. The replay buffer holds up
to 2000 samples, and learning begins after the first episode (720 steps of initial ex-
perience). The target network is updated every C = 10000 (steps), and the agent’s
discount factor is γ = 0.99, which captures long-term rewards. Hyperparameters and
training setup are summarized in the second section of Table 1.

5 Results

This section is organized into three parts. In Section 5.1, we evaluate the suitability of
CO2 emission rates as a reward. In Section 5.2, we compare the performance of agents
trained on proxy rewards to those trained on a CO2 reward. Finally, in Section 5.3, we
examine how different combinations of reward parameters impact agent’s alignment.
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Table 1. Environment, hyperparameter and training setup.

Parameter Value Description

episode length 3600s episode length in seconds
∆t 5s interval in which the agent interacts in seconds
T 720 steps number of agent-environment interactions in an episode

tyellow 2s yellow transition time for phase switches
A {NSG,WEG} action space of the agent
S DTSE the agent’s observable state space
c 8.33m length of a DTSE segment

optimizer Adam optimizer
α 1e−4 learning rate

batch-size 64 mini-batch size
buffer-size 2000 size of the replay buffer

learning starts 720 steps number of steps of initial exploration without learning
C 10000 steps update interval for the target-network of DQN
γ 0.99 discount factor

5.1 CO2 Emissions as Reward

In Fig. 4 we show the performance of two DQN agents: one agent was trained on a
speed reward, and the other agent was trained on the CO2 emission reward. The solid
line represents the median episode emission rate in g/h, and the shaded area shows
the 95% confidence intervals. Our results demonstrate that while the agent trained on
the CO2 emission reward does improve in the first episode of training, it converges to
a higher emission rate than the agent trained on the speed reward, and does not show
any further improvement over time.

These findings suggest that training with the CO2 reward leads to suboptimal behav-
ior, as the agent is constrained in maximizing this reward and fails to learn an effective
policy for minimizing CO2 emissions. In contrast, the agent trained on the speed reward
is able to converge to a better policy for emission minimization, ultimately achieving a
lower emission rate.
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Figure 4. Two agents’ performance on minimizing CO2 emissions by following distinct formula-
tions of cumulative reward. The blue agent has an emission-based reward formula-
tion, whereas the red agent has a speed-based formulation.
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5.2 Proxy Rewards for CO2 Minimization

To explore alternative approaches to incentivizing emission reduction, we investigate
the use of various proxy rewards in this section. Specifically, we analyze the perfor-
mance of DQN agents trained on rewards based on queue lengths, braking acceler-
ations, average speed, CO2 emissions, a combination of queue length and braking
acceleration, and a combination of queue length and average speed.

We present the results of our experiments in Fig. 5. This figure summarizes the per-
formance of each agent on the different reward models, with each subplot showing the
CO2 emission rates (red line), proxy reward (green line), and maximum observed proxy
rewards (dotted yellow line). In addition, the shaded areas in each subplot represent
95% confidence intervals for the emission rates and rewards.

Based on the results presented in Fig. 5, we observe that the DQN agent trained on
the CO2 emission reward converged to a suboptimal policy after one episode, result-
ing in comparatively high emission levels. Similar behavior was observed for the DQN
agent trained on the queue reward, which achieved a reduction in CO2 emissions, but
at suboptimal levels. The agent trained on the brake reward had a positive correla-
tion between CO2 emissions and the episode reward, leading to no reduction in CO2
emissions.

Good emission performance was achieved by agents using a speed reward and a
combined queue and brake reward, denoted as queue-brake reward. The DQN agent
trained on the speed reward achieved a relatively low CO2 emission rate, while also
achieving the highest speed reward among all agents. The DQN agent trained on
the queue-brake reward achieved the lowest CO2 emission levels so far, showing a
negative correlation with CO2 emissions (see Table 2).

Overall, the queue-brake reward was the most effective in reducing CO2 emissions,
while the speed reward was effective in achieving a relatively low CO2 emission rate and
high speed reward. Conversely, the emission and queue rewards resulted in suboptimal
emission levels.

We calculated the degree of association between the episode CO2 emissions and
episode rewards as a measure of the behavior of the agent alignment (see Table 2).
For that, we adopted the Kendall-tau rank correlation coefficient3.

Table 2. Kendall-tau correlations (τ ) between episode rewards and episode emissions. All val-
ues were statistically significant (p-value ≤ 0.05).

reward τ p-value

emission -1.000 2.7e-91
speed -0.832 8.0e-64
queue -0.361 2.8e-13
brake 0.505 1.5e-24
queue-brake -0.893 2.9e-73

5.3 Sensitivity to Reward Parameters

In this experiment, we explored the impact of reward parameter combinations on the
performance of a DQN agent in managing traffic flow with the aim of minimizing CO2

3The Kendall-tau coefficient is a non-parametric statistic that quantifies the strength and direction of association
between two variables without assuming any specific distribution [41].
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Figure 5. CO2 emission rates in g/h (red) and absolute episode emission reward (green) of
DQN agents over training time. The solid lines depict the median values, while the
shades depict 95% confidence intervals. Each reward is combined to a ”best re-
ward” (yellow) that corresponds to the highest value on this reward that was observed
among all agents (trained with various rewards).
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emissions. We varied the ratio of queue and brake in a combined reward, and queue
and speed in a combined reward. For each combination of metrics, we trained six
DQN agents for 21800 steps and evaluated their performance in both heterogeneous
and homogeneous traffic scenarios.

In Fig. 6 we show the average episode CO2 emissions in g/h (y-axis) and weightings
of queue and brake reward (x-axis). We observed that a combination of both queue
and brake reward was necessary to achieve the lowest CO2 emissions.

Interestingly, we found that the combination ratio of (queue, brake) = (0.5, 0.5) pro-
vided the best performance across both traffic scenarios. Additionally, we observed
that combinations close to (queue, brake) = (1.0, 0) or (0, 1.0) demonstrated similar per-
formance to those combinations. This suggests that the agent focuses on only one
reward parameter, which does not lead to the best outcome.
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Figure 6. Episode CO2 emission rates in g/h (y-axis) for DQN agents trained with various
weighted combinations of queue and brake reward (x-axis).

For a combined queue speed reward, we would expect to see a similar trend in terms of
the combination of rewards required to achieve good performance. However, as shown
in Fig. 7, we observed that the level of queue metric must be zero (or close to zero) to
achieve good performance.

Overall, our findings highlight the importance of reward parameter selection in train-
ing agents to optimize traffic flow and minimize CO2 emissions.

6 Discussion

Next we discuss the results in terms of general properties for reward models, implica-
tions for modeling, and the threats to the validity of our results.

142



Schumacher et al. | SUMO Conf Proc 4 (2023)

(0
.0

,1
.0

)

(0
.1

25
,0

.8
75

)

(0
.2

5,
0.

75
)

(0
.3

75
,0

.6
25

)

(0
.5

,0
.5

)

(0
.6

25
,0

.3
75

)

(0
.7

5,
0.

25
)

(0
.8

75
,0

.1
25

)

(1
.0

,0
.0

)

parameters (weight queue, weight speed)

0

50000

100000

150000

C
O

2
em

is
si

on
in

g
/
h

CO2 emission for different queue and speed combinations

heterogeneous traffic
homogeneous traffic

Figure 7. Episode CO2 emission rates in g/h (y-axis) for DQN agents trained with various
weighted combinations of queue and speed reward (x-axis).

6.1 Informativeness and Expressiveness

The two convergence curves shown in Section 5 correspond to: (1) how well the reward
model informs the agent towards achieving the user’s goal (CO2) and (2) how well the
reward model expresses the behavior of the emission. We call these two properties
of the reward model informativeness and expressiveness. In other words, if the agent
fails to converge to the optimal reward, we deem the reward model uninformative (see
queue and emission reward in Fig. 5). Meanwhile, if the agent optimizes in the wrong
direction, in our case positive correlation between reward and emissions (see brake
reward in Table 2), then the reward model is not expressive.

These two properties are important because together they indicate if the agent is
sufficiently aligned to the user’s goals (minimizing CO2 emissions). The judgment of
sufficient alignment depends on how informative and expressive a reward model is.
This is challenging because informativeness and expressiveness are continuous met-
rics based, respectively, on the measures of distance (from optima) and correlation
(between reward and goal). Therefore, for the purpose of illustration and discussion,
we assumed two arbitrary thresholds, which we introduce next.

Informativeness. A reward model (Rmod) is informative (I(Rmod) = 1) if the distance
between the reward at convergence (Rcon) and the optimal reward (Ropt) is smaller than
δ. Formally, we have

I(Rmod) =

{
1 if (|Rcon −Ropt| < δ)

0 otherwise
, (1)

where Rcon is the episode reward and Ropt is Rcon of the best performing agent regard-
ing that reward.

Expressiveness. A reward model (Rmod) is expressive (E(Rmod) = 1) if the corre-
lation (Corr) between the sequence of the agent’s episode rewards (R) and the cor-
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responding episode CO2 emissions (G) has a certain direction (positive or negative)
and its magnitude is above a certain strength (ρ). The correlation should be negative
(∈ [−1, ρ]) if the user’s goal G has to be minimized, otherwise positive (∈ [ρ, 1]).

We formalized E for the case where G has to be minimized.

E(Rmod) =

{
1 if (Corr(R,O) ∈ [−1, ρ])

0 otherwise
, (2)

where the magnitude ρ depends on the use case. For the purpose of illustration and
discussion, we set next |ρ| ≥ 0.30, which corresponds to at least a medium strength
correlation [42] and be negative (as it minimizes emissions), hence, the threshold be-
comes Corr(·) ∈ [−1,−0.30].

Applying these formulas (Eq. (1) and Eq. (2)) as threshold criteria for classification,
we populated a Venn diagram (Fig. 8) with the results from Section 5. The intersection
area shows the reward models that are both expressive and informative, hence, they
are considered to be sufficiently aligned with users’ goals (minimize CO2 emissions).
Only the brake reward is considered not expressive, whereas queue, emission, and
queue-speed rewards are considered non-informative. Next, we discuss the implica-
tions of this classification.

Informative Expressive

speed

queue

brake

emission

queue
+

brake

queue
+

speed

Figure 8. Classification of the rewards in terms of their informativeness, expressiveness and
alignment (intersection).

6.2 Implications

Independent properties. The informativeness property did not necessarily imply ex-
pressiveness, and vice versa. Therefore, one has to monitor both properties while
designing reward models. This is an additional requirement that involves a careful
study of the thresholds that lead to agent alignment – satisfying users’ goals. Uninfor-
mativeness detection. Many of the reward models that were deemed uninformative
showed a very early convergence to a local minimum, e.g., queue reward and emission
reward – their green curves follow a step-like function (Fig. 5). This suggests that the
reward models provided a target that was too easy to learn; in other words, the agent
is overfitting to the data collected in the first epoch.

Combining metrics. The design of the reward model should therefore incorporate
metrics that make learning more challenging, for instance, with properties that are less
correlated with emissions (lower expressiveness). This might explain why a combina-
tion of brake (low expressiveness) and queue (low informativeness) produced a suffi-
ciently aligned agent, minimizing CO2 emissions. Looking at the convergence curve
of the proxy reward, green curve in Fig. 5, we can see diminishing returns over time,

144



Schumacher et al. | SUMO Conf Proc 4 (2023)

which suggests an increasing degree of difficulty for the agent to learn better policies
as the training progresses. In other words, relative to the queue reward model, adding
a brake metric made the learning more difficult. Conversely, adding the queue metric
to the brake reward model provided the expressiveness that was missing.

Complementary properties. However, looking for complementary properties is not
enough. Take, for instance, speed and queue metrics. Although the speed reward
model is complementary to the queue reward model regarding informativeness and
expressiveness – speed reward has higher correlation with emissions than the queue
reward (see Table 2) – the combination of queue-speed did not produce an aligned
agent. As we can see in Fig. 8, queue+speed convergence is categorized as expres-
sive, but not informative. This is confirmed by the sensitivity analysis of the parameter
weights for speed+queue combined reward (see Fig. 7).

Reward parameterization. Choosing the right traffic metrics to combine is not
enough. One still has to decide on the weights that each metric should have in the
reward model. While for the queue-brake reward we showed an optimum region (see
Fig. 6), there is no guarantee that the combination of other metrics would present the
same global optimum. This is important to design methods that systematically and effi-
ciently look for the optimal parameterization. The shape of this parameterization space
determines how informative and expressive a reward model should be to be considered
aligned to the users’ goal. Because a search in this space could be seen as a balance
between exploitation (following an informative signal) and exploration (expressing de-
sired behavior), one has to decide how to measure these properties. We note that
assuming that these properties have uniform values during training is not realistic.

Property uncertainty. Defining how expressive or how informative a reward is might
require new properties, for instance, properties that evaluate the uncertainty in the
learning (convergence) process. The brake reward model illustrates this case, where
there is larger than 10% variance in reward (green curve in Fig. 5) in the second half
of training. This makes it challenging to decide how many training steps to execute or
when training should stop, because slightly different stopping points could produce very
different policies. Ideally, an engineer would like to know about the trade-off between
reward model simplicity (only use the brake metric) and the risk of suboptimal rewards
(high uncertainty at convergence).

6.3 Threats to Validity

Threats to validity [43], [44] act in ways that can hinder the reproducibility of the exper-
imental results and corresponding interpretations.

Internal Validity evaluates if the causes of the measured effects can be attributed to
our experimental design decisions [45]. In our case, we chose a benchmark (the best
reward across agents - dotted lines in Fig. 5) and a set of proxy reward metrics (speed,
brake, queue). We computed the effects on CO2 emissions by varying the weights
of metrics on combined reward models (e.g., X-axis in Fig. 6). When we claim that
a given reward model is more or less informative or expressive, we are interpreting a
measurement, i.e., the effect of a parameterization choice, that can still be confounded
by what we did not control for, i.e, the other metrics not included in the given reward
model, which might still indirectly affect the CO2 emissions. To improve internal validity,
we suggest more extensive simulations with more complex scenarios, for instance, by
including real-world data.
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External Validity discusses the situations in which the research outcomes might
not generalize beyond the current experimental setup [45] comprised by both dataset
and models parameters. Concerning the dataset, we showed similar results in two
distinct scenarios of traffic demand. Although this might be a straightforward mitigation
of the external validity threat (Fig. 6), a recent survey [2] reported that only seven out
of 21 studies evaluated their models under distinct traffic scenarios. With respect to
parameterization, we showed that certain pairs of weights for the queue-break reward
produced suboptimal CO2 emissions (see the extremes of the bar chart in Fig. 6). This
highlights the challenge to generalize the combined reward results across a range of
parameter values.

Construct Validity concerns the situations for which the performance indicators
(thresholds) do not measure the actual concepts (constructs) [45]. This might hap-
pen because of bias in data generation, incorrect definitions, or inappropriate analy-
sis methods (see Statistical Conclusion Validity). In our study, the mismatch between
thresholds and the convergence properties (constructs) can happen through misspeci-
fication of the reward model and the properties themselves. One example is mistakenly
deeming a reward model to be informative or expressive enough, when it is not. The
reason for the mistake could be an inappropriate threshold or a reward model that is
incomplete. To mitigate that, we specified convergence properties that are indepen-
dent of the traffic signal control domain, but can be easily instantiated by choosing
classification thresholds that are meaningful to what a user consider to be a sufficiently
aligned agent reward model.

Statistical Conclusion Validity concerns the violations in the assumptions of the
adopted statistical methods [45]. One example of possible violation is wrong assump-
tion of normal data distributions. As we worked with small samples of reward out-
comes, we adopted a non-parametric method (Kendall-tau) to compute the correla-
tions, which we reported with their corresponding p-values (Table 2). Regarding conclu-
sions about categorization within the two properties (informativeness and expressive-
ness), although we specified thresholds that were appropriate to discriminate among
convergence curves, we did not take into account the inherent uncertainty in the con-
vergence curves. A possible improvement could be to incorporate uncertainty mea-
surements to the convergence analysis, for instance, the reward variance at the late
training stages (so to ideally minimize it).

7 Conclusion

In the theory of bounded rationality [46], agents are bounded in their learning by the
quality of the information they can access. We investigated this essential limitation
in terms of the reward model, which we evaluated concerning the agent’s alignment
with the users’ goals. Our main result is that, for the agent alignment with the goal
of minimizing CO2 emissions, it is necessary that the corresponding reward model
formulation be both expressive and informative.

7.1 Results and Contributions.

Results. We showed that not all reward models are sufficiently aligned with users’
goals (e.g., the models outside the intersection set depicted in Fig. 8). These results
were reproduced in two distinct traffic scenarios. The sufficiently aligned reward models
shared the characteristic of being both informative and expressive. However, the result
from queue+speed indicated that to determine if an agent is aligned, it is not sufficient
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to look at the properties of the single-metric based rewards. Only after combining the
individual traffic flow metrics into a properly parameterized reward formulation, one can
ultimately assess the agent alignment (again by evaluating its convergence properties).

Contributions. We provided two systematic analyses: (1) a property-based paradig-
matic classification for explaining the failure of an agent to align with users’ goals and
(2) a sensitivity analysis for explaining the challenges of aligning combined reward
models with CO2 emission goals.

7.2 Future work

Towards principles for reward model selection. We showed that combining com-
plementary metrics worked to some extent. However, some outcomes are still counter-
intuitive, i.e., we do not know how to predict good and bad combinations based on
the properties of single-metrics rewards. This is critical, because one still has to rely
on post hoc explanations (as we showed), instead of relying on principles to prioritize
reward model combinations systematically.

Reproducibility in more challenging scenarios. A natural step is to reproduce
our findings in more complex situations, for instance, incorporating real-data4 to the
simulations and a larger set of traffic flow metrics. Besides creating opportunities to
falsify our current claims, we could explore more challenging questions like the effects
of partial observability and confounding in reward modeling for agent alignment in TSC.

Alternative convergence property formulations. In order to evaluate non-linear
relationships, we plan to study expressiveness in terms of mutual information or metrics
like Wasserstein distance. Concerning informativeness, we plan to look at methods that
incorporate variance as a criterion of quality of convergence.
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