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Abstract. Traffic simulations play a crucial role in urban planning and mobility manage-
ment by providing insights into transportation systems. However, their effectiveness
heavily depends on accurate demand modeling, with calibration often requiring large
amounts of observational data. This poses a challenge in settings with limited data
availability. In this paper, we propose a methodology for calibrating SUMO scenarios
under data-scarce conditions. To contextualize our approach, we first review exist-
ing SUMO scenarios and their demand modeling strategies. We then introduce the
Mannheim SUMO Traffic Model (MaST) as a case study and employ the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) to optimize route probabilities as input
for the existing routeSampler tool provided by SUMO. Results indicate that our method
significantly improves calibration accuracy compared to baseline approaches both for
3-hour and 24-hour scenarios. While our findings suggest that the proposed method-
ology can support model calibration in data-limited environments, further research is
needed to assess its generalizability and effectiveness in different contexts.
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1. Introduction

Urban traffic creates intricate and complex systems, making anticipating and evaluating
potential changes difficult. Therefore, traffic simulations have become essential tools
for urban planning and traffic management. They enable researchers and policymak-
ers to analyze and optimize traffic flow, evaluate infrastructure changes, and forecast
future transportation needs in a safe environment without impeding urban populations’
mobility needs.

Like all models created to represent reality, the usefulness of traffic simulations
hinges on the degree to which they can reproduce real-world traffic conditions. The
process to improve said ability is called model calibration [1]. Model calibration is often
separated into different steps, ranging from general error checking, capacity calibration,
and route choice calibration to performance validation [2]. This work will focus on route
choice calibration, determining the routes travelers choose to reach their destinations.
It constitutes a crucial step for replicating traffic flows in dense urban networks where
multiple connections between endpoints exist [3]. For the traffic simulator Simulation of
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Urban MObility (SUMO), several approaches to tune traffic flows in this vein are avail-
able. Chief among them, the routeSampler tool allows for incorporating a large variety
of different data sources (e.g., induction loop counts, turn counts, Origin-Destination-
Matrices, etc.). However, literature on existing SUMO scenarios indicates the need for
large amounts of data to properly align the simulations to real-world data, which not
all municipalities may be able to produce.1 Consequently, this paper aims to demon-
strate a methodology for modeling demand in SUMO scenarios where comparatively
little data is available. To this end, our contributions are the following:

• Background: In §2, we briefly introduce relevant literature, listing existing SUMO
scenarios with a particular focus on the data they are built upon.

• Methodology: We present a new SUMO scenario (Mannheim SUMO Traffic
Model (MaST)) in §3, which serves as a case study to demonstrate our method.
Moreover, we describe our calibration pipeline, from data preprocessing and map
matching of GPS traces to the optimization process based on the already exist-
ing Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm, and,
finally, evaluation.

• Analysis: We systematically examine the performance of our calibration pipeline
compared to a standard procedure proposed in the SUMO documentation (pre-
sented in §4). Finally, we summarize our findings and list the limitations of our
approach in §5.

2. Related Work

Before presenting our methodology, it is crucial to review the avenues available for de-
mand modeling in SUMO as well as the approaches chosen in the SUMO community.
SUMO includes a variety of tools to model demand [4]. These encompass countless

Table 1. Overview input data for demand of public microscopic SUMO scenarios.

Scenario Size Input data for demand

Bologna (three small scenarios) [5] - Induction loops (636, every 5 minutes)
Luxembourg SUMO Traffic (LuST) [6] 156 km2 public statistics for activitygen
Berlin Sumo Traffic (BeST) Scenario
[7]

800 km2 demand extracted from MATSim sce-
nario, transferred using iterative traffic
assignment

Dublin [8] 17.5 km2 Induction loops (480, every 6 minutes)
Ingolstadt Traffic Scenario for SUMO
(InTAS) [9]

51.54 km2 Induction loops (24 junctions, every
lane, every 15 minutes), detailed pop-
ulation statistics

Ingolstadt [10], [11] 100 km2 ”[Induction] loops at all traffic lights in
the city“, demographic data

Monaco SUMO Traffic (MoST) Sce-
nario [12]

22 km2 public statistics for activitygen

Tokyo SUMO traffic scenario (ToST)
[13]

33.22 km2 Induction loops (7 junctions, each di-
rection, every 60 minutes), population
statistics

1A SUMO scenario denotes a single simulated environment, in most cases depicting an individual city or munici-
pality.
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tools that either create demand randomly (e.g., randomTrips.py ) or based on population
statistics and/or the map used (activitygen). Conversely, there are several tools that are
able to incorporate various observational data on traffic volume and flow. These differ
both with regards to which data types they can process (e.g., induction loops or Origin-
Destination-Matrices) as well as the degree of data coverage they require (e.g., dfrouter
needs full coverage of all source and sink edges).2

Table 1 provides an overview of publicly available microscopic SUMO scenarios,
focusing on the respective input data used to model demand. The different approaches
can be roughly separated into three groups:

1. The models simulating Luxembourg [6] as well as Monaco [12] constitute a group
relying solely on public statistics (i.e., mainly demographic data as well as data on
activity goals in the modeled area). This data is then fed into the activitygen tool
provided by SUMO. Neither paper features a quantified evaluation of the empirical
validity of said demand (most likely since the authors lack the data to do so). In a
similar vein, the BeSt scenario is built upon the demand of a MATSim simulation
of Berlin, which in turn was calibrated using census data [7].

2. The three scenarios situated in Bologna [5] and the urban scenario in Dublin [8]
are calibrated using solely observational data on traffic volume, namely induction
loops provided by the respective municipality. While the modeled demand is not
specifically evaluated for the Dublin model, the Bologna models appear to be
relatively close to the actual traffic volumes they are meant to replicate. It is worth
noting that both scenarios rely on very good data coverage, both in terms of the
number of sensors and the resolution with which they report traffic counts.

3. Lastly, both models based on the city of Ingolstadt [9], [10], [11] and the ToST
scenario of Tokyo [13] rely on a combination of demographic statistics and ob-
servational data on traffic volume in the respective urban centers. For Ingolstadt,
both projects evaluate the empirical validity of the traffic created, with the authors
behind InTAS reporting a Normalized Root Mean Square Error (NRMSE) of 0.33
and the other Ingolstadt scenario posting Absolute Relative Error (ARE) values
between 13% and 18% in the simulated timeframe.

Based on this overview, the subsequent chapter will serve to introduce our simula-
tion as well as our methodology for route choice calibration.

3. Methodology

3.1 MaST - Mannheim SUMO Traffic Model

Figure 1 shows the simulated area of our SUMO scenario for Mannheim.3 It cur-
rently covers the city center, namely the districts Innenstadt/Jungbusch, Schwetzinger-
stadt/Oststadt, and Lindenhof. The initial topography of the model is based on Open-
StreetMap data collected via the OSMWebWizard provided by SUMO, which was sub-
sequently manually checked and improved to account for any potential errors in the
importing process. The created network includes sidewalks as well as bike paths (al-
though the scenario does not simulate pedestrians and bike riders as of yet). More-
over, the model features the public transport infrastructure present in Mannheim (stops

2See [4] for a more thorough discussion of the different tools.
3In principle, the proposed method could have also been evaluated on an existing scenario. However, many

published scenarios do not share all data they were built with. More importantly, none of the discussed models
ships with an empirical route distribution that our pipeline relies on.
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Figure 1. Visual interface of Mannheim SUMO Traffic Model (MaST).

and rails) as well as the accurate timetables imported using data from Rhein-Neckar-
Verkehr GmbH (rnv). Finally, the traffic light programs for 20 crucial junctions around
the central ring of Mannheim were imported using the plans provided by the municipal-
ity. We run the scenario in two versions: One, which simulates the time frame from 6
am to 9 am, including the morning peak, and another, covering 24 hours from midnight
to midnight. Both are based on data from May 16, 2023, as this date allowed for max-
imum data coverage in terms of the traffic cameras (some of the sensors went offline
afterward). Table 2 offers an overview of descriptive statistics on MaST.

Table 2. Descriptive statistics on MaST.

Metric Value

Size 11.33 km2

Edge Length 635.7 km
Inserted Vehicles 41,793 (3-hour), 225,947 (24-hour)
Teleports 39 (3-hour), 609 (24-hour)
Avg. Travel Time (seconds) 326.15 (3-hour), 361.52 (24-hour)
Avg. Speed (m/s) 4.38 (3-hour), 7.18 (24-hour)

The following data sources were available for modeling the demand of the simula-
tion (visualized in figure 2):

• Induction loops: Mainly located at the entries and exits of the network, there
are eight induction loops operational in the simulated area (7 of which deliver bi-
directional data). They deliver one data package per direction per 60 minutes
and do not discriminate between different kinds of vehicles. The induction loops
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proved significantly more reliable when evaluating the different data sources at the
junctions for which both induction loop and camera data were available. There-
fore, they will form the sole basis for assessing the demand created for MaST.

• Traffic cameras: Moreover, 13 traffic cameras offer turn counts at various junc-
tions in the network in 10-minute intervals. While they can theoretically classify
different types of vehicles, internal evaluation has shown this functionality to be
unreliable. Thus, we only rely on the overall counts for the specified turns. Since
even these sporadically contained undercounts, we plausibilized those cameras
for which induction loop data was also available, effectively redistributing the vol-
ume indicated by the loops according to the turn probabilities computed by the
cameras.

• GPS traces: In addition to the two previous data sources deployed solely for rep-
resenting the empirical demand, to enable our optimization pipeline and feed the
RouteSampler tool provided by SUMO, we obtained GPS traces from a commer-
cial provider. The data set spans two weeks, from June 24 to July 8, 2024, and
contains 19,598 trips after filtering for trips of passenger cars traversing the sim-
ulated area during our initial target time frame from 6 am to 9 am.4 We use this
data both to create the set of routes used for calibration and to derive an initial
estimate of the overall frequency of an individual route.

Figure 2. Location of data sensors in Mannheim. Traffic cameras are marked red. Blue markers show
induction loops.

When comparing the data coverage described above to the SUMO scenarios in-
troduced in §2, it is noticeable that there is significantly less observational data avail-
able in Mannheim than in those scenarios relying solely on traffic counts for calibration
(Dublin and Bologna). Moreover, among those models that pair demographic statistics
and observational traffic data, InTas uses more induction loops with higher temporal
and spatial resolutions (i.e., individual lanes covered, reported every 15 minutes). The
other scenario situated in Ingolstadt has comparable data coverage to the Dublin and
Bologna models, with induction loop data available from every traffic light-controlled
junction in the simulation. In the following, we will describe our proposal to navigate
this relative scarcity of traffic data in Mannheim without relying on population statistics.

4We acknowledge the temporal mismatch between the different data sources (since the empirical data used is
from May 2023). However, this should not prove overly problematic as we are only using the information on the
empirical traffic distribution inherent to the routes as a prior. Moreover, the deployed map matching procedure
(see §3.2) only allows for routes valid in the created network.
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3.2 Map Matching Using Hidden Markov Models

Figure 3. Overall workflow of the presented method, from preprocessing and map matching to finding
the optimal route distribution for creating the final demand.

In contrast to other approaches (e.g., Stang and Bogenberger [14]), we do not aim
to develop a calibration method for route choices in SUMO from the ground up. Instead,
we utilize existing tools provided by SUMO and interject the results of our optimization
pipeline from outside. Figure 3 visualizes the proposed pipeline in its entirety. Among
the toolkit included in SUMO, the routeSampler module appears particularly well-suited
for our task [4]. For one, it offers great versatility concerning the counting data it can
handle as it can be used, among other alternatives, with edge counts provided by our
induction loops as well as the turn counts derived from the traffic cameras in Mannheim.
Additionally, it allows for providing a probability distribution together with the set of
routes from which it iteratively samples until the traffic counts are met. This is especially
important since the sampled route distribution, which in theory satisfies the traffic data,
might lead to traffic jams when running the actual SUMO simulation if the network does
not support the sampled traffic flows, preventing the counts from being met. Intuitively,
then, our method relies on having routeSampler enforce the fulfillment of the observed
traffic counts while our optimization pipeline produces the route probability distribution,
which best realizes these counts during simulation. The main advantage of following
this approach lies in the reduced dimensionality and complexity of the optimization
problem compared to sampling a demand distribution without such constraints.

Figure 4. Exemplary map matching from GPS trace (dashed line) to SUMO edges (path in light blue).
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As routeSampler relies on an initial route distribution (denoted R in the following)
from which to sample, it is crucial to provide it with a set of high-quality routes. Thus, the
first step is to convert the GPS traces available to SUMO routes. This task of matching
vehicle trajectories to a road network is commonly referred to as map matching [15].
While SUMO offers map matching tools of its own to handle GPS traces (e.g., duarouter
or tracemapper ), we found them to be inadequate in cases of missing GPS data points
or complex, overlaying network architectures.5

Therefore, we opted for deploying a Hidden Markov Model (HMM)-based approach
for map matching. A HMM is a robust statistical method for modeling generative se-
quences, where an underlying process produces an observable sequence.6 While they
have a large variety of applications, HMMs are particularly well-suited to map matching
as they can account for the connectivity of the road network via transition probabilities,
allowing them to better cope with complex and multi-layered networks. The goal, then,
is to find the most likely road segment (hidden state) for a given GPS point (observa-
tion), incorporating the transition probabilities from the last emitted road segment [17].
To this end, we deployed the implementation provided by the LeuvenMapMatching li-
brary [18]. Figure 4 shows an example of this process. After feeding all of our GPS
traces through the map matching process, we used the routecheck tool and duarouter
to detect and potentially fix unconnected routes. This procedure yielded an overall
number of 17,649 routes (6,617 unique). If one were to replace the HMM-based map
matching with tracemapper, one would instead receive 8,049 routes (3,014 unique)
while only marginally increasing the mean implausibility score from 1.11 to 1.21 as
computed by the implausibleRoutes tool.78

3.3 Optimizing Route Probabilities

Having created an appropriate set of routes R, it remains to design the optimization
process to produce a probability distribution for said routes. Since our target function,
namely, the deviation of simulated versus empirical induction loop counts, depends en-
tirely on the simulation and is thus non-differentiable, this task represents a derivative-
free or black-box optimization problem, which can be formalized thusly [19]:

Let x ∈ Rn and f : Rn → R. The goal is to find:

min
x∈Rn

f(x),

where the objective function f(x) can only be evaluated for any x ∈ Rn. No explicit
form, derivatives, or structure of f(x) are assumed to be available.

In our case x = [x1, x2, . . . , xm] ∈ Rm represents a probability vector, where xi is the
probability assigned to route i in a given route set R = {r1, r2, . . . , rm}. The objective
functionf(x) then corresponds to :

f(x) = EvaluateDemand(x,R,Observational Data),

where EvaluateDemand encompasses:

5See https://sumo.dlr.de/docs/FAQ.html#how_do_i_generate_sumo_routes_from_gps_traces for a
discussion of the different tools.

6See [16] for a detailed introduction to HMMs.
7See https://sumo.dlr.de/docs/Tools/Routes.html#implausibleroutespy for an explanation of the module.
8It is important to note that this comparison is not conclusive but rather meant to illustrate the fact that, for our

specific data, the HMM-based approach produced significantly more routes, while preserving the overall quality
of the route distribution.
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1. Generating a demand distribution by feeding x, the route set R, and our observa-
tional traffic data (both induction loops and traffic cameras) to routeSampler.

2. Running the MaST scenario with the generated demand.
3. Computing and returning the absolute differences between observed and simu-

lated induction loop counts.

There is a large variety of methods available to tackle problems of this nature [20].
We opted to deploy the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
algorithm due to its relative simplicity and favorable performance characteristics.9 The
core principle behind CMA-ES is aligned with general evolutionary concepts as it con-
tinuously samples candidate solutions according to an adapting distribution.

At every time step, a population of candidate solutions or individuals (we denote
an individual candidate vector with z ∈ Rm) is sampled from a multivariate normal dis-
tribution, which is parametrized by a mean vector m (our current best guess for every
element of z) and a covariance matrix C controlling the shape and orientation of the
search distribution as well as accounting for dependencies between the different ele-
ments in the distribution. After sampling, all candidate solutions are evaluated (using
f(x)), and m is updated based on a weighted average of successful individuals (in our
case, the best 25%) to increase the likelihood of them being sampled in subsequent
generations. Another crucial parameter in this process is the step size σ, which deter-
mines how quickly or slowly the search space is traversed. C and σ are adapted to
balance both exploration and exploitation [22].

As a starting point for our optimization process, we want to exploit the information
contained in our route set R created using the GPS traces provided to us. The natural
avenue of doing so lies in reframing the frequencies of the routes in R as an initial
guess for the mean vector m since they, even though most likely not representative
of the overall traffic in Mannheim due to the limited vehicle fleet of the commercial
provider, encode some information about the flow of traffic throughout our simulated
area. Given our route set R = {r1, r2, . . . , rm}, let the relative frequencies of the routes
derived from GPS traces be represented by p = [p1, p2, . . . , pm], where:

pi =
count(ri)∑m
j=1 count(rj)

, i = 1, 2, . . . ,m,

and count(ri) denotes the number of occurrences of route ri in the GPS trace data.
However, as indicated by figure 8 in §4, the scale of the individual values in p differs
greatly, ranging from 0.0057 % (occurring once) to 3.52 % (620 occurrences). Since
CMA-ES uses a single step size parameter σ for all dimensions (i.e., routes), we thus
cannot directly optimize x. Instead, we use a candidate solution z sampled from m as
a weight vector for p, effectively fine-tuning the probability distribution yielded by the
GPS traces, which gives the input x for our target function as:

x = z · p,

where the starting mean vector m0 is initialized as uniform weights (mi = 1 ∀i).
Intuitively, we thus start off with the relative frequencies contained in our data as a best
guess, which we then nudge up or downwards proportional to their size and depending
on their effect on the objective function EvaluateDemand.

9See [21] for a thorough introduction of CMA-ES.
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We first run this optimization process for the 3-hour scenario for 100 generations,
each with a population of 120 candidate solutions.10 The number of iterations was
chosen to approach the number of function evaluations of 30n (where n is the problem
dimension, in our case, 6,617) cited in the literature on CMA-ES as necessary for
achieving consistent improvement [21]. While our experiments fall well short of this
number (12,000 vs. 198,510), the ”head start” induced by the prior information of the
GPS traces should balance this out. Moreover, this should also help avoid moving
too much probability mass in the route distribution so as to create unrealistic demand
where, e.g., one route dominates the distribution entirely. Subsequently, we utilize the
outcome of this optimization round as input p for the 24-hour model, which we then
optimize for 50 generations (again with populations of 120 individuals each) as the
execution times greatly increase with the added simulation length.11

4. Results

Figure 5. Absolute Relative Error (ARE) and Normalized Root Mean Square Error (NRMSE) between
the simulated counts in the different experimental settings and the empirical induction loop data.

Figure 5 visualizes the overall results of our experiments. We compare the following
route distributions as inputs to our objective function EvaluateDemand in terms of how
closely they are able to match the induction loop counts in Mannheim:

• Random Routes 3h: To establish a simple baseline, we first created a random
route set using the randomTrips module shipping with SUMO. This avenue is the
simplest starting point for creating demand for a scenario. Out of our different
approaches, the random demand leads to the worst performance, posting an Ab-

10Running 60 simulations in parallel on an AMD Milan EPYC 7513 processor, the optimization took approximately
15 hours.

11Using the same setup as for the 3-hour scenario, optimizing took 148 hours.
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Figure 6. Best candidate solution in terms of ARE per generation for the 3-hour and 24-hour scenario,
respectively.

solute Relative Error (ARE) of 0.83 as well as a Normalized Root Mean Square
Error (NRMSE) of 0.89. Thus, less than 20% of the demand in our 3-hour sce-
nario is actually simulated. It is worth noting, though, that more tuning of the route
construction process would most likely have led to some improvements.12

• Map Matching 3h: Simply using a route distribution based on empirical data,
namely the output for our map matching pipeline described in §3, already brings
a large improvement to the simulation as the ARE decreases to 0.40 (NRMSE of
0.52).

• Map Matching 3h (Weighted): More improvements become apparent when we
additionally use the information on how often a specific route occurs in the data
set (using the –weighted argument of routeSampler ). With an ARE of 0.19 and a
NRMSE of 0.27, the route distribution already offers an acceptable performance
when compared to the approaches introduced in §2 (albeit in a smaller time frame
than some of them and, obviously, a very different context).

• Optimized 3h: Running the optimization process detailed above further improves
upon this. For the 3-hour scenario, the resulting demand distribution leads to
an ARE of 0.04 and NRMSE of 0.08, almost completely matching the counts
recorded by the induction loops. This is particularly noteworthy as the counts be-
tween the different sensor types are not entirely compatible with one another due
to measurement errors (even after plausibilization). That is to say, the sampling
provided by routeSampler contains an initial error caused by these incompati-
bilities approaching the ARE shown here. Figure 6 visualizes the optimization
process, where the ARE steadily decreases until it plateaus, thus indicating that
the number of generations is sufficient.

• Optimized 24h: Optimizing the route probability distribution x for the 24-hour
scenario yields an ARE of 0.14 and a NRMSE of 0.23. While this is considerably
worse when compared to the shorter setup, the difficulty of meeting the empirical
counts is also much higher. Comparing this result to the existing and published
SUMO scenarios, it appears in line with or slightly better than the two scenarios

12We used no additional arguments to routeTrips, simply creating 20,000 random routes to be able to match the
empirical counts, at least in theory.
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Figure 7. Amount of vehicles during the simulated time frame for the empirical induction loop data as
well as the 3-hour and 24-hour simulations settings (with optimized demand, respectively).

in Ingolstadt (NRMSE of 0.33 for InTas, ARE values between 13% and 18% for
the other project simulating Ingolstadt), although we do not deploy rerouting or
a warm-up phase here. When examining the optimization progress depicted in
figure 6, one can observe constant improvement, which does not plateau in the
same manner as the 3-hour scenario. Considering the resources already required
to run the optimization process for 50 generations, we opted against optimizing
for a longer period of time.

• Optimized 24h with Rerouting: To be able to better cope with the volume of ve-
hicles over the whole day, we evaluate a final setting where we still use the route
distribution that we optimized for the 24-hour scenario but now allow a percentage
of vehicles in the scenario to perform rerouting. In particular, we follow Harth et
al. [11] and set the rerouting probability of all vehicles to 0.2. Additionally, we also
select a step length of 0.25 for the scenario, resulting in 4 simulation iterations per
simulated second, and set the parameter max-depart-delay to 100, thus discard-
ing any vehicles that cannot be inserted into the simulation after 100 seconds to
avoid long traffic jams incurred by the insertion backlog. By sacrificing efficiency
for maximum performance in his way, we achieve considerable improvements,
halving the ARE to 0.07 and reducing the NRMSE to 0.13.

Figure 7 serves to illustrate the number of vehicles recorded by the available detec-
tors versus the simulated counts in the respective scenarios. The curve corresponding
to the optimized 3-hour scenario nearly completely shadows the empirical demand be-
tween 6 am and 9 am as indicated by its low ARE. In contrast, the optimized 24-hour
simulation does not quite match the empirical traffic volume as it struggles to reach the
afternoon peak of over 18,000 vehicles. Nonetheless, apart from traffic jams stemming
from said peak that do not dissolve fully until late evening, simulated volume mirrors the
real-world data fairly well. Finally, the optimized 24-hour setting with rerouting avoids
these problems and remains very close below the empirical curve throughout the sim-
ulated day.

Finally, figure 8 is meant to serve as a reasonableness check, describing the route
distributions resulting from the optimization processes vis-à-vis the initial route distribu-
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Figure 8. Distributions of route frequencies (left) and route lengths (right) for the route distributions
after map matching as well as after the optimization process (3-hour and 24-hour, respectively). The

white boxes designate the median values of the respective distributions.

tion originating from our GPS trace data set in terms of how many routes approximately
lie in the defined data ranges both for route frequency and length. The distributions in
terms of the frequencies of individual routes remain reasonably close to one another,
with the 3-hour optimization on average reducing the weight of the most frequent routes
and increasing the share of more infrequent routes. The 24-hour optimization process
then nudges the distribution back closer to the initial route distribution. For the route
lengths, one can observe a similar pattern. Once more, the route distribution optimized
for the shorter time frame leads to a reduction in the average route length, and the re-
sult of the 24-hour optimization resembles the initial distribution more closely. Overall,
these findings suggest no obvious exploit induced by the optimization process whereby
the initial route distribution would be altered in an unreasonable or overly drastic man-
ner.

5. Conclusion and Future Work

Accurately modeling demand is crucial in constructing an empirically valid SUMO sce-
nario. In the present paper, we proposed an approach for route choice calibration in
SUMO based on an evolutionary algorithm feeding existing SUMO tools. Using this
pipeline, we calibrated our MaST scenario to meet the empirical traffic counts available
in Mannheim as closely as possible. We then performed a structured evaluation of
the optimization process results and compared them against simple baselines. While
this evaluation indicates that our approach succeeds in closely matching the empirical
counts both for the 3-hour and 24-hour scenarios, there are a number of limitations of
our work to consider.

Crucially, our approach only delivers a possible demand configuration closely
matching the input counts as it compensates for the lack of information on traffic flows
between observations. The created demand thus may or may not resemble the ac-
tual traffic flows. Moreover, we fine-tuned and evaluated the demand for one particular
date, therefore not examining how well our approach generalizes from the input data.
In a similar vein, even though the CMA-ES algorithm is relatively efficient compared to
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other optimization methods, the number of iterations necessary — particularly for the
24-hour scenario — renders our optimization pipeline currently only suitable for histor-
ical simulation. Consequently, in scenarios with abundant data, it may be preferable to
directly model demand using tools like routeSampler, which do not necessitate continu-
ous simulation iterations and thus offer higher efficiency. Like the vanilla routeSampler
module, the suitability of our method directly depends on the availability of high-quality
routes to sample from. In cases where such routes are not available, alternatives such
as flowrouter, which do not require input routes, may be more promising.13

It remains for future research to perform extensive experiments to determine
whether the route distribution fitted to a particular set of observational data points
can be used to simulate other days or settings. Similarly, it might also be interest-
ing to compare the presented method to existing approaches already usable in SUMO,
such as Cadyts [23], in a structured manner as well as assuming a more microscopic
perspective to examine how well the created traffic flows fit individual counting sta-
tions. While we also attempted to optimize the turn probability distribution that can also
serve as input for routeSampler and should offer more generalizability, we were thus
far unsuccessful in improving performance as the sampling method of routeSampler is
biased towards under counts when confronted with an imbalance between turn proba-
bility data and traffic counts. Furthermore, we only utilized a small subset of the GPS
traces available (trips on business days between 6 am and 9 am). It might bring fur-
ther improvements or a faster convergence for the 24-hour scenario to select a route
distribution more representative of the time frame modeled.

Data availability statement

All data used to calibrate our model was provided by the municipality of Mannheim and
is not freely accessible. The counts provided by the traffic cameras can be found at
https://opendata.smartmannheim.de/dataset/ in 60-minute resolution. The GPS
traces used as a basis for the route distribution were commercially obtained and cannot
be publicly shared by us.

Underlying and related material

All code used to reproduce our results (including the Mannheim SUMO Traffic Model
(MaST) scenario) can be found at https://github.com/JakobKappenberger/mast.
Unfortunately, as we are not allowed to even publish the processed GPS routes, the
repository only contains random routes.
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