
SUMO User Conference 2025

Conference paper

https://doi.org/10.52825/scp.v6i.2605

© Authors. This work is licensed under a Creative Commons Attribution 3.0 DE License

Published: 15 Jul. 2025

HaTS - Hanover Traffic Scenario for SUMO

Nico Ostendorf1,2,* , Keno Garlichs1 , and Lars C. Wolf2

1Corporate Research, Robert Bosch GmbH, Hildesheim, Germany
2Institute of Operating Systems and Computer Networks, Technische Universität Braunschweig,

Braunschweig, Germany

Correspondence: Nico Ostendorf, nico.ostendorf@de.bosch.com

Abstract. Realistic and comprehensive traffic simulations are essential for the effec-
tive testing and evaluation of emerging technologies, such as Vehicle-to-X (V2X) com-
munication, and diverse use cases, particularly within complex urban environments.
While current traffic scenarios often focus on motorized vehicles, there is a need to
address the safety of vulnerable road users (VRUs), such as pedestrians and cyclists.
This is especially relevant in light of the European Union’s Vision Zero initiative, which
aims for zero road fatalities by 2050. Although a few pedestrian-focused scenarios ex-
ist, there is no scenario specifically addressing bicycle traffic, despite their status as
one of the most at-risk VRUs, with stagnant fatality rates in recent years. To address
this gap, this paper introduces the Hanover Traffic Scenario for SUMO (HaTS), a novel
traffic scenario including motorized vehicles and bicycles. HaTS provides a detailed
and accurate representation of the road network, traffic light systems, and buildings
within the city center of Hanover, Germany. A key feature of HaTS is its integration of
real-world traffic count data for both bicycles and motorized vehicles, enabling a real-
istic and representative traffic demand representation. Additionally, a novel metric is
employed for the parametrization of the scenario, enhancing the alignment between
real and simulated traffic volumes. For the validation we compare the results of the
HaTS with the real world traffic counts. HaTS is the first open-source SUMO scenario
focused on bicycles, providing a realistic representation of the road network and traffic
demand, thereby contributing to the advancement of urban traffic simulations.
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1. Introduction

In recent years, simulations have become increasingly important for the development
and analysis of various applications and use cases. Real-world testing of various road
traffic applications can be both expensive and hazardous, particularly when the appli-
cations have not undergone thorough validation and pretesting. For example in au-
tonomous driving functions, where the risks to testers can be significant. Additionally,
certain scenarios, such as providing traffic forecasts for large events, are impossible to
evaluate in real-world conditions. Simulations are especially important for applications
of Vehicle-to-X (V2X) communication. The aim of V2X communication is to enable use
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cases like collision warnings, cooperative lane merging, overtaking assists, and many
others, as outlined in [1]. Testing these newly developed V2X communication appli-
cations, especially those focused on safety, in simulations is essential. As a result,
various simulators and scenarios have been developed, with the Simulation of Urban
MObility (SUMO) [2] being one of the most renowned in research.

While past simulations have primarily focused on motorized vehicles, there is a
growing need to include Vulnerable Road Users (VRUs) such as pedestrians and bi-
cyclists. The European Commission’s Vision Zero [3] target, which sets the goal of
eliminating all road fatalities and serious injuries by 2050, highlights the critical need to
incorporate VRU safety into traffic planning and technology development. In particular,
the stagnant fatality rates for bicyclists [4], in contrast to the decreasing trends for other
road user groups, underscores that especially bicycles could profit from including new
technologies like V2X. However, existing simulation scenarios that include VRUs are
limited (e.g., [5], [6]) and tend to focus on pedestrians rather than bicycles.

This paper introduces the Hanover Traffic Scenario for SUMO (HaTS), a novel high-
density bicycle traffic scenario. HaTS is openly available to the entire research commu-
nity1. Hanover was selected for this scenario due to its high proportion of households
with bicycles and its status as one of the cities with the largest proportion of bicycles
in the modal split among cities with 500,000 or more inhabitants [7]. HaTS accurately
represents the traffic flows of motorized vehicles and bicycles from 6 am to 7 pm in
Hanover, Germany, including a realistic representation of the road network, buildings,
and traffic lights in the city center. The traffic flows for both vehicles and bicycles are
based on seven different real traffic counts at various crossings. To enhance the ac-
curacy of HaTS, we optimized its parameters using a newly introduced metric based
on the Normalized Root Mean Square Error (NRMSE), absolute error, and maximum
variations per parameter set. This approach significantly improves the representation
of traffic demands within the simulation. Additionally, this paper provides a step-by-step
description of the scenario generation process, which can serve as a valuable resource
for other researchers to create new traffic scenarios. By sharing this methodology, we
aim to facilitate further advancements in traffic simulation.

The remainder of this paper is structured as follows: Section 2 provides an
overview of existing traffic scenarios. Section 3 details the generation of the HaTS road
network, the extraction of traffic demand, and the parametrization process employed to
optimize the scenario. Section 4 presents the validation of the HaTS scenario, compar-
ing the simulated traffic demand against real-world traffic counts to assess its accuracy.
Finally, Section 5 presents a discussion and conclusion.

2. Related Work

In recent years, much research has focused on creating realistic SUMO city scenarios
for various purposes.

Lobo et al. [5] introduced the Ingolstadt Traffic Scenario for SUMO (InTAS), which
offers a realistic representation of road networks and traffic flow in Ingolstadt. This sce-
nario includes detailed features such as buildings, bus stops, and realistic traffic light
phases, and simulates private cars as well as public transport. The authors compared
the simulation results to real traffic data from 24 measurement points, with the scenario
representing traffic flows over the course of a full day. Simulated trips were generated
based on demographic data and real traffic information. The InTAS exhibits discrep-

1https://github.com/boschresearch/HanoverTrafficScenario

118

https://github.com/boschresearch/HanoverTrafficScenario


Ostendorf et al. | SUMO Conf Proc 6 (2025) ”SUMO User Conference 2025”

ancies between simulated and real traffic in situations with high traffic volumes. A key
distinction of our work is the inclusion of a realistic proportion of bicycles, in addition
to vehicles, within our simulated scenario. We also strive to achieve a more realistic
representation of high traffic demands during peak hours.

The Monaco SUMO Traffic scenario (MoST) [6] captures peak morning traffic in
Monaco, offering a 3D representation of Monaco with multimodal traffic. This scenario
encompasses private vehicles, commercial vehicles, public transport, pedestrians, and
bicycles. Unlike MoST, which derives trips from demographic studies without valida-
tion against real traffic flows, HaTS utilizes observed traffic counts to generate a more
realistic scenario. Furthermore, our scenario differs in that it not only encompasses
morning traffic but also includes evening traffic. Additionally, our scenario features a
higher volume of bicycle traffic compared to MoST.

The Luxembourg scenario (LuST) [8] is designed to simulate a complete day of mo-
bility in Luxembourg. It offers a high level of detail, incorporating all buildings, parking
lots, and realistic traffic flows. The evaluation of the scenario is based on demographic
data and certain measured statistics, such as average speed in specific regions. A key
distinction from our scenario is that LuST exclusively includes vehicles and does not
account for other road participants such as bicycles.

TAPAS Cologne [9] incorporates a road network imported from OpenStreetMap
(OSM) and offers various options for simulating traffic in Cologne. The traffic flows are
derived from demographic data and the daily activities of the city’s inhabitants. How-
ever, a key distinction is that the imported road network is not corrected and may not
always accurately represent the real topology of Cologne. Additionally, the represen-
tation of traffic lights and buildings is not realistic. Furthermore, the scenario’s large
scale results in extended computation times.

Schrab et al. introduced the Berlin SUMO traffic scenario (BeST) [10], which simu-
lates the traffic patterns over a full day in Berlin. BeST includes motorized private trips
that have been validated against real traffic data. Encompassing an area of 800 km2

and over 2.2 million trips, BeST is a comprehensive representation of urban traffic. A
notable distinction from our scenario is that BeST exclusively focuses on private vehi-
cles and does not consider other road participants such as bicycles.

The Turin SUMO Traffic (TuST) scenario [11] provides a comprehensive represen-
tation of realistic traffic within the city of Turin spanning an entire day. The traffic flows
and traffic light phases are derived from real traffic data, ensuring a high level of accu-
racy. The scenario exclusively includes vehicles, which distinguishes it from our work.

To the best of our knowledge, there is currently no SUMO scenario that incorpo-
rates a significant volume of bicycle traffic generated through traffic counts. As a result,
this research stands out from existing scenarios and offers a unique contribution to the
simulation of bicycle traffic in an urban setting.

3. Setup of Scenario

The setup of the HaTS was structured into three distinct steps, each will be explained in
this chapter. The initial step involved the development of the map and the road network
for the scenario. Subsequently, the second step entailed extracting the traffic demands
from the available data. Finally, the third step encompassed the parametrization of the
scenario.
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3.1 Map and Road Network

The area chosen for the HaTS is illustrated in Figure 1, with the simulation area outlined
by the red square. The blue triangles indicate the junctions where traffic counts were
conducted. This particular area in Hanover was selected due to its high traffic volume
and unique topology. It encompasses several of Hanover’s primary streets, residential
neighborhoods, and is situated near the city center. The waterfront area is a focal point
for cyclists, resulting in notable congestion for both bicycles and vehicles.

Figure 1. Selected Scenario Area and Traffic Count Stations. [12]

Using the OSMWebWizard2, we generated the SUMO network based on the Open
Street Map (OSM)3 representation of the selected area. Upon exporting the network,
we discovered that many streets did not accurately reflect the real world. This was
particularly evident in the representation of turning possibilities at intersections, as well
as discrepancies in the number of lanes and the placement of traffic lights. These
inconsistencies may be attributed to outdated information obtained from OSM. Despite
the regular updates on OSM, due to its crowd-sourcing approach, certain areas lack
sufficient detail and may only include street segments without specific lane or exclusive
lane information.

As a result, it was necessary to make adjustments to the exported network. Fig-
ure 2 illustrates such a correction. We compared each lane and intersection in our
simulation with satellite images from Google Maps[13] and manually rectified these
discrepancies using SUMO’s netedit4 tool. To streamline the scenario and maintain a
focused analysis on bicycles and vehicles, we removed all pedestrian paths, private
roads, car parking areas, railway tracks, and bus lanes from the simulation. After the
optimization, the road network consists of a total length of 224 km, divided between
bicycle and vehicle roads. Table 1 provides details about the road network.

Another important consideration is not only the adjustment of lanes and potential
turns, but also the management and positioning of traffic lights.

The osmWebWizard automatically generates traffic light programs, as OSM only pro-
vides the locations of the traffic lights but not the phases. In the area of HaTS 42 traffic
lights are included.

2https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html
3www.openstreetmap.org
4https://sumo.dlr.de/docs/Netedit/
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(a) Before Correction (b) In Google Maps [13] (c) After Correction

Figure 2. Crossing exported from OSM before and after manual correction. 

Table 1. Network Statistics.

Parameter Value

Total Area 5.5 km2

Exclusive Vehicle Road Length 48.9 km
Exclusive Bicycle Road Length 107.5 km
Both Allowed Road Length 67.6 km
Nodes 1074
Edges 2503
Traffic Lights 42

By default, all generated programs have a 90-second cycle and are of type
actuated. Actuated traffic lights respond to traffic demand, with each phase in the
program having a minimum and maximum time. Gap-based actuated traffic control,
which is supported by SUMO and widely used in Germany, operates by extending traf-
fic phases upon detecting a continuous flow of traffic. It then transitions to the next
phase after identifying a suitable time gap between successive vehicles or if the max-
imum time limit is exceeded. This approach facilitates improved distribution of green
time across phases and adapts cycle duration in response to changing traffic condi-
tions. [14]

However, it was necessary to logically verify the assigned phases. Real-world data
concerning the actual signal phase plans and timings for the intersections within the
HaTS study area were not available for this work. Therefore, we compared the traffic
lights with images from Google Street View, particularly for green arrow turns. We also
utilized our personal real-world experience of different phases and optimized all traffic
light phases to enhance traffic flow. It’s important to note that for all traffic lights we
maintained the actuated mode.

3.2 Traffic Demand

The traffic demand in the scenario is determined by real traffic counts, while the specific
routes are constructed randomly. The following section will outline the data set and
tools utilized to create the routes and distribute traffic.

121



Ostendorf et al. | SUMO Conf Proc 6 (2025) ”SUMO User Conference 2025”

3.2.1 Real Traffic Counts

The department of Planning and Urban Development of the city of Hanover has pro-
vided comprehensive traffic count data sets for the purpose of this research and we
would like to express our gratitude at this point.

The data includes counts from seven distinct crossings (c.f. blue triangles in Figure
1) and was collected in May 2022. Each data set contains detailed information on the
volume of vehicles and bicycles that passed through these areas during the hours of
6 AM to 7 PM, with a resolution of 15 minutes. Furthermore, the data sets include turn
counts at each crossing, which provide valuable insights into traffic flow patterns. For
instance, Figure 3 illustrates an example of turn counts at a T-crossing. Turn counts
specifically quantify the number of vehicles utilizing designated entry and exit points at
a crossing during a specified time period. In this example, the turn counts indicate that
32 vehicles traveled from south to east, while 44 vehicles moved from south to west.
In total, the traffic count data sets comprise 86 distinct turn counts across the seven
crossings, offering a robust foundation for analyzing traffic demand.

32

10

17

40

36

44

Figure 3. Example of turn counts at a T-crossing.

The total number of traces in the data set is illustrated in Figure 4. Vehicles and
bicycles exhibit a similar distribution throughout the day, despite the significantly higher
volume of vehicles compared to bicycles. The number of bicycle and vehicle traces be-
gins at a low level in the early morning (6 AM) and rises steadily until the morning rush
hour, which occurs between 7:45 AM and 8:45 AM. Following this peak, the volume of
traces experiences a slight decline until around 11:15 AM. After this point, the number
of traces gradually increases again, leading up to the evening rush hour (3:30 PM to
5:30 PM). From 5:30 PM until the end of the scenario the traffic demand decreases
again. Overall, the distribution of traces aligns with expectations, reflecting high traffic
demand during the morning and evening periods, primarily driven by commuting traffic
for both bicycles and vehicles. While there is still some traffic between the rush hours,
which is noticeably lower.

3.2.2 Traffic Demand Modeling

In order to model a realistic traffic demand, we used the traffic counts and the
routeSampler5 method of SUMO. This method is able to generate traffic demands
based on turn count, edge count, and origin-destination count data. To do this, we
provided possible routes in the network and the count data, allowing the routeSampler

to select the appropriate distribution of routes to generate specific traffic demands.

5https://sumo.dlr.de/docs/Tools/Turns.html
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Figure 4. Traces from real traffic counts for bicycles and vehicles.

To generate possible routes as input for the routeSampler, we utilized the 
randomTrips method6, which creates random possible trips, in conjunction with the 
duarouter method7, which generates routes based on those trips. In the context of 
SUMO, a trip defines t he s tarting a nd e nding p oints o f a  r oad u ser d uring t he simu-
lation, while a route specifies t he exact p ath, i ncluding a ll r oads t hat will be t aken to 
reach the destination.

The randomTrips method selects starting and destination points based on a de-
fined d istribution. To b etter r eflect th e tr affic pat terns in the  are a, we inc reased the 
probability of trips originating from or terminating at the fringes of the network, as most 
traffic in this region consists of t hrough-traffic. The duarouter method was then used 
to create routes based on the trips, utilizing the Dijkstra [15] route-planning algorithm. 
The Dijkstra algorithm finds the shortest possible route between starting and destina-
tion points. We parametrized the duarouter to allow also for routes up to 3 times longer 
than the shortest path, leading to a higher variation of possible routes. This is realistic 
as drivers may choose longer routes based on traffic conditions or for other reasons, 
e.g., to pick up additional passengers.

3.3 Scenario Parametrization

A SUMO simulation provides the possibility to set different parameters based on the 
specific s cenario. T hese p arameters d efine th e ha ndling of  di fferent si tuations and 
specific b ehaviors. The most important parameters set for HaTS a re summarized in 
Table 2.

Table 2. Simulation Parameters.

Parameter Value

start 0 s
end 46,800 s
step-length 0.1 s
ignore-junction-blocker 15 s
lateral-resolution 0.3
routing-algorithm Dijkstra
device.rerouting.probability 0.22
device.rerouting.period 300 s

6https://sumo.dlr.de/docs/Tools/Trip.html
7https://sumo.dlr.de/docs/duarouter.html
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Two necessary parameters are the start and the end time of the simulation. We
set the start time to 0 which is representative for 6 AM, the end time is set to 46800 s,
i.e., 7 PM.

The simulation step-length defines how often a simulation is updated. We set it
to 0.1 s but it could also be adjusted to a shorter or longer value between 0.05 s and
1 s if necessary.

By default, SUMO assumes that driving in parallel on a single lane is not possible.
For motorized vehicles this is true most of the time, but for bicycles it does not represent
the reality. In most cases bicycles drive next to each other, wait next to each other at a
traffic light or overtake without leaving a specified lane. For this reason we decided to
acitvate the SUMO SublaneModel8. The SublaneModel subdivides a lane into multiple
sublanes, allowing road users to drive adjacent to one another within a single lane,
provided there is sufficient space.

In some situations in a simulation it is possible that vehicles block an intersec-
tion. This behavior causes large traffic jams and unrealistic behavior. The parameter
ignore-junction-blocker allows road users to ignore such an junction blocking road
user after a specific time. This simulates realistic behavior like “finding a way around
the offending vehicle that is blocking the intersection”9. We selected a time of 15 s to
minimize the impact due to such junction blockers.

Another important parameter for the vehicles and bicycles is the car following
model. The default model is the Krauss model [16]. For the vehicles we therefore
choose the Krauss model. For bicycles, it is recommended to use the Realistic Bicycle
Dynamics Model (RBDM)10, as described in [17], which aims to capture realistic bicy-
cle behavior. In this study, we will proceed with the Krauss model for both vehicles and
bicycles, as it is part of the official version of SUMO. Nonetheless, all analyses con-
ducted are applicable to the RBDM as well, ensuring that our findings remain relevant
regardless of the model used.

3.3.1 Optimizing the Rerouting Probability

The last parameter we defined is the device.rerouting.probability. This parameter
allows road users to reroute their planned routes based on knowledge about the road
network if they for example face traffic jams on their initial routes. This parameter effec-
tively addresses traffic congestion in a realistic manner, similar to how a real-time traffic
navigation app, such as Google Maps [13], operates, without the need of teleportation
in the simulation. Figure 5 illustrates the simulated volume of vehicle traces compared
to the expected volume based on traffic counts, without defining a rerouting probability.
In the absence of this rerouting probability, the scenario experiences significant traffic
jams at certain points during the simulation. This highlights the critical importance of
this parameter in accurately modeling traffic dynamics and preventing congestion.

As this parameter is very scenario-dependent, it is necessary to define a metric
with which this parameter can be optimized. For this purpose Lobo et al. [5] introduced
to use the Normalized Root Mean Square Error (NRMSE):

NRMSE =

√∑N
n=1(xr,n−xs,n)2

N

x

8https://sumo.dlr.de/docs/Simulation/SublaneModel.html
9https://sumo.dlr.de/docs/Simulation/Intersections.html

10https://github.com/boschresearch/RealisticBicycleDynamicsModel
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Figure 5. Comparison between real and simulated traces of vehicles without a rerouting probability.

where xr,n represents the real amount of road users at timestep n, xs,n represents
the simulated amount of road users at timestep n, N represents the total number of
samples and x is the mean value of the measured data.

In our study, we observed that optimizing solely with NRMSE resulted in a rerout-
ing probability that accurately represented most of the scenario. However, during the
evening rush hours when the traffic volume was high, especially for vehicles, signifi-
cant traffic jams occurred, leading to a large number of vehicles being rerouted through
smaller streets. This led to a substantial disparity between real traffic and simulated
traffic, as illustrated in Figure 6. This behavior was also observed in the InTAS [5]
scenario, where the main issue was the mismatch between real and simulated traces,
particularly in dense traffic situations.
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Figure 6. Comparison between real and simulated traces of vehicles for best NRMSE case.

To address the optimization challenge of selecting the best rerouting probability, we
have developed a novel scoring system based on several distinct metrics. The first met-
ric is the Normalized Root Mean Square Error (NRMSE), as previously explained. The
second metric measures the absolute difference in the number of traces throughout
the entire simulation scenario. This metric aims to minimize significant discrepancies
between simulated and expected values. Unlike the NRMSE, which averages the error
over the entire scenario, this metric sums the errors across the whole simulation. The
final metric, the maximum difference, captures the largest variation between expected
and simulated traces at any point during the simulation. This difference is calculated
for each time slot, and the time slot with the highest discrepancy is used to represent
the specific rerouting value. A lower value is considered better, as this metric was cho-
sen to avoid high deviations in individual time slots, which is not taken into account in
the previous metrics. Therefore, it contributes to a more realistic representation of the
entire day.
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To determine the overall score, each individual metric is first normalized using the
following formula:

score = 1− value− xmin

xmax − xmin

where value is the current value, xmin is the lowest value and xmax is the highest
value observed. Subsequently, each metric is weighted equally, and a combined score
is generated. To ensure equal weighting for bicycle and vehicle traffic, we calculated
the score separately for both. If we calculated a combined score directly, the bicycles
would have a much lower weight due to the lower amount of traces. This approach was
chosen to achieve a balanced representation of the full traffic, as we aim for the most
realistic depiction. The results of this separated evaluation are plotted in Figure 7.
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Figure 7. Score of bicycle and vehicle traces.

For rerouting probabilities ranging from 0 to 10, both bicycles and vehicles exhibit
low scores. However, for rerouting probabilities above 10 a score between 0.8 and 1 is
consistently observed for vehicle traces, indicating relative stability. This stability arises
from the fact that even with a low number of vehicles opting for rerouting, the resulting
traffic jams are either resolved or not critical enough for rerouting to be advantageous.

Conversely, the situation is different for bicycles. For rerouting probabilities be-
tween 10 - 40, the score fluctuates between 0.8 and 1. However, beyond that range,
the score begins to decrease, reaching a score near 0.1 with a rerouting probability of
100.

To determine the best rerouting probability, both scores need to be combined and
normalized. The result of this normalization is depicted in Figure 8.

It is evident from the plot that the score is lower for low values of the rerouting
probability, increases with the probability until it reaches the maximum score value,
and then decreases again towards higher probabilities. The optimal value for de-
vice.rerouting.probability, which yields the highest score, is 0.22, with a score of
0.96.

4. Validation of Scenario

The HaTS scenario validation utilizes the traffic count data that was also used to gen-
erate the traffic demand. To conduct a comprehensive analysis of the differences be-
tween real measured and simulated traces, we separated the bicycle and vehicle traces
for validation. The traffic count data included turn counts at the included intersection,
as detailed in Section 3.2.1. For a highly detailed validation, we compared these turn
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Figure 8. Score of bicycle and vehicle traces combined in a normalized score.

counts to the simulation turn counts, resulting in 86 comparisons. To generate the
turn counts in the simulation, we utilized SUMO’s Multi-Entry-Exit Detectors11 at the
specific crossings to count the selected traces. The comparison between simulated
and expected traces for vehicles is illustrated in Figure 9, while Figure 10 depicts the
comparison for bicycles
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Figure 9. Comparison between real and simulated traces of vehicles.

The validation results for vehicles in Figure 9 indicate that the simulated traces
closely match the expected distribution from the traffic count, with some notable differ-
ences. At the start of the scenario at 6 AM, there is a significant difference between
the expected and simulated traces, primarily because the scenario has to build up from
zero vehicles first, and the vehicles start at the fringes of the road network, leading
to a high vehicle density at the fringes in the beginning. As a result, it is challenging
for the vehicles to reach the measurement points in time, leading to discrepancies in
the counts. Such a settling time is unavoidable in simulations. However, after the ini-
tial startup period, the differences in counts begin to decrease. Therefore, to ensure
valuable simulation results, the scenario should be initiated at 6:15 AM (900 seconds
in simulation time).

Another notable observation is that, particularly during peak traffic situations, the
increase in simulated traces does not exactly match the increase observed in the traffic
count traces. This can be attributed to congestion at the scenario fringes, as well
as the interaction between vehicles and bicycles, which is not accounted for by the
routeSampler. As a result, some vehicles arrive at the measurement points later than
planned, leading to their inclusion in the subsequent time slot for counting.

11https://sumo.dlr.de/docs/Simulation/Output/Multi-Entry-Exit_Detectors_(E3).html
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Furthermore, the simulation consistently generates a lower number of traces com-
pared to the expected counts from the traffic data. This discrepancy is primarily at-
tributed to rerouting, which can cause vehicles to bypass certain measurement points
due to traffic jams, resulting in an underestimation of the simulated traces compared to
the actual traffic count.
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Figure 10. Comparison between real and simulated traces of bicycles.

Similar to the vehicles, the validation results for bicycles in Figure 10 also exhibit a
comparable pattern. In the initial time slot, there is a significant discrepancy between
the simulated and expected traces for bicycles. However, after the settling period, these
differences decrease. Nevertheless, it is noticeable that during peak time slots, such
as 5:15 PM, the simulation exhibits a delay in representing the high volume of bicycle
traces. This delay can be attributed to congestion at the edges of the scenario and the
functioning of the routeSampler as explained for the vehicles. Interestingly, the delay
for bicycles is slightly more pronounced than for vehicles. This can be explained by
the higher relative increase in bicycle traffic from pre-rush hour to rush hour compared
to vehicles. As a result, there are numerous bicycle insertions occurring within a short
timeframe. Most of these insertions take place at the fringes of the scenarios, leading to
an increase in traffic density in those areas. Consequently, this results in smaller jams,
which in turn contributes to the observed delays. While a similar pattern is evident for
vehicles, the smaller slope in their traffic increase results in a comparatively reduced
delay effect.

Figure 11 illustrates the relative deviations between simulated and expected traces
for both vehicles and bicycles, confirming the previously discovered results and pro-
viding further insights. The highest difference is observed at the first time slot, and for
most time slots, there are slightly fewer simulated traces than expected, as previously
explained. The highest absolute difference observed for bicycles, excluding the settling
time, occurs at 9 AM, reaching 36%. In comparison, the highest absolute difference for
vehicles is 14%, noted at 3 PM. When examining the absolute median differences, bi-
cycles show a median difference of 6.6%, while vehicles exhibit a slightly lower median
difference of 5.2%. The representation for vehicles is generally slightly better than for
bicycles, which could be attributed to the routeSampler primarily being developed for
vehicles and not bicycles. Additionally, the interaction between vehicles and bicycles is
not accounted for, as the routes are generated independently of each other.

Another factor impacting the simulation accuracy is that real-world road partici-
pants do not always perfectly adhere to traffic rules, especially bicycles, which may
cross roads while leaving the bicycle lane or proceed through a red traffic light. In con-
trast, the simulation assumes near-perfect adherence to traffic regulations. This is only
slightly influenced by the tau parameter of the car-following model, which governs the
behavior of road users in terms of their following distance and response to traffic condi-
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Figure 11. Percentage variances between expected and simulated traces.

tions. As a result, the simulation imposes limitations on the number of bicycles that can
safely cross a junction within a given time slot. This discrepancy between real-world
behavior and simulated adherence to rules contributes to the observed differences in
representation between simulated and expected traces for both vehicles and bicycles.

The differences between simulated and expected traces vary between different
turn counts at crossings, while some turns are represented by the traces with a very
small difference, others are represented with a larger difference. In Figure 12 the best
and the worst case are plotted. For the best case (Figure 12a) the difference between
expected and simulated traces is very small with a median difference of 2.2%. In the
worst case (Figure 12b) the difference is higher with a median difference of 76.1%. The
high differences are due to rerouting and congestion.
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Figure 12. Best and worst turn count representation in Simulation.

5. Conclusion and Discussion

This paper presented HaTS, a novel scenario for the SUMO simulator that encom-
passes an urban environment with high-density bicycle and vehicle traffic. HaTS cov-
ers an area of 5.5 km2 with a total road length of 224 km, of which 175 km is dedicated
to bicycle traffic. The representation of the road network in HaTS, including lanes, inter-
sections, and traffic lights, closely mirrors the real road network of Hanover, Germany
due to manual corrections of the exported OSM road network, resulting in a highly
realistic simulation.

The traffic demand for vehicles and bicycles in HaTS is based on and validated
on real traffic counts. They were collected at seven distinct crossings from 6 AM to
7 PM, with a resolution of 15 minutes. This data set includes detailed turn counts for
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all possible trajectories at the crossings, allowing a more detailed representation of
the traffic demands. In order to improve traffic flow and the representation of traffic
demand, a novel metric was introduced to optimize the parameterization of HaTS. For
validation purposes, detectors were added to the simulation that were able to generate
traffic count files at the seven intersections with real data available. The validation
of HaTS showed that the representation of both bicycle and vehicle traces within the
scenario is very realistic. The median difference for vehicle traces over the whole
scenario is only 5.2% and for bicycles slightly higher, but still only 6.6%.

However, HaTS does also have limitations. The SUMO routeSampler encounters
challenges in creating accurate trips for bicycles compared to vehicles. In addition,
the lack of consideration for the interaction between vehicles and bicycles, as routes
are generated separately, leads to deviations between expected and simulated traces.
Real-world behavior that is not represented in simulations, such as bicyclists crossing
streets while leaving designated lanes or disregarding red traffic lights, also contributes
to these deviations.

Furthermore, the concentration of traffic counts in a limited segment of the road
network restricts the validation of traffic traces in other locations. Another limitation
involving the traffic counts is that they are based on video analysis. The accuracy of this
method is susceptible to environmental conditions, such as weather or lighting, as well
as technical factors and the specific algorithms employed. The error margin associated
with the reported traffic volumes remains therefore undetermined. Furthermore, the
analysis lacks dynamic traffic parameters. Real-world vehicle speed data, which could
be used to characterize traffic flow and identify congestion dynamics, were not available
in the data. Similarly, direct measurements of vehicle travel times between network
points were not available.

However, despite these limitations, HaTS is the first scenario capable of represent-
ing realistic, high-density urban bicycle and vehicle traffic. HaTS enables the testing
and analysis of new technologies, such as V2X, to improve road safety for bicycles
and vehicles. Notably, HaTS12 is open source, providing a valuable resource for the
research community to further explore and improve urban traffic simulation.

Author contributions

The authors contributed to this paper in the following ways: Nico Ostendorf was respon-
sible for the conceptualization and methodology, developed the software, conducted
the analysis of the results, and prepared the original manuscript draft. Keno Garlichs
and Lars Wolf contributed to the validation of the results and the reviewing and editing
of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to thank the Department of Planning and Urban Development
of the city of Hanover for providing real traffic counts.

12https://github.com/boschresearch/HanoverTrafficScenario

130

https://github.com/boschresearch/HanoverTrafficScenario


Ostendorf et al. | SUMO Conf Proc 6 (2025) ”SUMO User Conference 2025”

References
[1] CAR 2 CAR Communication Consortium, Use Cases, Accessed: January 2025. [Online].

Available: https://www.car-2-car.org/fileadmin/documents/General_Documents
/C2CCC_UC_2097_UseCases_V1.0.pdf.

[2] P. A. Lopez et al., “Microscopic traffic simulation using sumo,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), 2018, pp. 2575–2582. DOI: 10
.1109/ITSC.2018.8569938.

[3] European Commission and Directorate-General for Mobility and Transport, Next steps
towards ‘Vision Zero’: EU road safety policy framework 2021-2030. Publications Office,
2020. DOI: 10.2832/391271.

[4] Directorate-General for Mobility and Transport. “2023 figures show stalling progress in
reducing road fatalities in too many countries. ”[Online]. Available: https://transport
.ec.europa.eu/news-events/news/2023-figures-show-stalling-progress-reduci

ng-road-fatalities-too-many-countries-2024-03-08_en.

[5] S. Lobo, S. Neumeier, E. M. G. Fernandez, and C. Facchi, “Intas - the ingolstadt traffic
scenario for sumo,” SUMO Conference Proceedings, vol. 1, pp. 73–92, Jul. 2022. DOI:
10.52825/scp.v1i.102.

[6] L. Codeca and J. Härri, “Towards multimodal mobility simulation of C-ITS: The Monaco
SUMO traffic scenario,” in VNC 2017, IEEE Vehicular Networking Conference, November
27-29, 2017, Torino, Italy, Torino, ITALY, Nov. 2017. DOI: 10.1109/VNC.2017.8275627.

[7] Landeshauptstadt Hannover, Leitbild Radverkehr: Masterplan Mobilität 2025, Accessed:
January 2025. [Online]. Available: https://www.hannover.de/content/download/2218
34/file/Leitbild-Radverkehr-der-Landeshauptstadt-Hannover.pdf.

[8] L. Codeca, R. Frank, and T. Engel, “Luxembourg sumo traffic (lust) scenario: 24 hours of
mobility for vehicular networking research,” in 2015 IEEE Vehicular Networking Confer-
ence (VNC), 2015, pp. 1–8. DOI: 10.1109/VNC.2015.7385539.

[9] S. Uppoor and M. Fiore, “Large-scale urban vehicular mobility for networking research,”
in 2011 IEEE Vehicular Networking Conference (VNC), 2011, pp. 62–69. DOI: 10.1109
/VNC.2011.6117125.

[10] K. Schrab, R. Protzmann, and I. Radusch, “A large-scale traffic scenario of berlin for eval-
uating smart mobility applications,” in Smart Energy for Smart Transport, E. G. Nathanail,
N. Gavanas, and G. Adamos, Eds., Cham: Springer Nature Switzerland, 2023, pp. 276–
287, ISBN: 978-3-031-23721-8.

[11] M. Rapelli, C. Casetti, and G. Gagliardi, “Vehicular traffic simulation in the city of turin
from raw data,” IEEE Transactions on Mobile Computing, pp. 1–12, 2021. DOI: 10.1109
/TMC.2021.3075985.

[12] OpenStreetMap, OpenStreetMap, Accessed: January 2025. [Online]. Available: https:
//openstreetmap.org.

[13] Google, Google Maps, Accessed: January 2025. [Online]. Available: https://www.goog
le.com/maps/@52.3626336,9.7227989,119m/data=!3m1!1e3?entry=ttu&g_ep=Egoy

MDI1MDEyMi4wIKXMDSoASAFQAw%3D%3D.

[14] German Aerospace Center, Simulation of Urban MObility, Accessed: Mai 2024. [Online].
Available: https://sumo.dlr.de.

[15] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathe-
matik, vol. 1, no. 1, pp. 269–271, 1959, ISSN: 0945-3245. DOI: 10.1007/BF01386390.

[16] S. Krauss, P. Wagner, and C. Gawron, “Metastable states in a microscopic model of traffic
flow,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, vol. 55, no. 5,
pp. 5597–5602,

131

https://www.car-2-car.org/fileadmin/documents/General_Documents/C2CCC_UC_2097_UseCases_V1.0.pdf
https://www.car-2-car.org/fileadmin/documents/General_Documents/C2CCC_UC_2097_UseCases_V1.0.pdf
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.2832/391271
https://transport.ec.europa.eu/news-events/news/2023-figures-show-stalling-progress-reducing-road-fatalities-too-many-countries-2024-03-08_en
https://transport.ec.europa.eu/news-events/news/2023-figures-show-stalling-progress-reducing-road-fatalities-too-many-countries-2024-03-08_en
https://transport.ec.europa.eu/news-events/news/2023-figures-show-stalling-progress-reducing-road-fatalities-too-many-countries-2024-03-08_en
https://doi.org/10.52825/scp.v1i.102
https://doi.org/10.1109/VNC.2017.8275627
https://www.hannover.de/content/download/221834/file/Leitbild-Radverkehr-der-Landeshauptstadt-Hannover.pdf
https://www.hannover.de/content/download/221834/file/Leitbild-Radverkehr-der-Landeshauptstadt-Hannover.pdf
https://doi.org/10.1109/VNC.2015.7385539
https://doi.org/10.1109/VNC.2011.6117125
https://doi.org/10.1109/VNC.2011.6117125
https://doi.org/10.1109/TMC.2021.3075985
https://doi.org/10.1109/TMC.2021.3075985
https://openstreetmap.org
https://openstreetmap.org
https://www.google.com/maps/@52.3626336,9.7227989,119m/data=!3m1!1e3?entry=ttu&g_ep=EgoyMDI1MDEyMi4wIKXMDSoASAFQAw%3D%3D
https://www.google.com/maps/@52.3626336,9.7227989,119m/data=!3m1!1e3?entry=ttu&g_ep=EgoyMDI1MDEyMi4wIKXMDSoASAFQAw%3D%3D
https://www.google.com/maps/@52.3626336,9.7227989,119m/data=!3m1!1e3?entry=ttu&g_ep=EgoyMDI1MDEyMi4wIKXMDSoASAFQAw%3D%3D
https://sumo.dlr.de
https://doi.org/10.1007/BF01386390


Ostendorf et al. | SUMO Conf Proc 6 (2025) ”SUMO User Conference 2025”

[17] N. Ostendorf, K. Garlichs, and L. C. Wolf, “Enhancing Car-Following Models with Bike
Dynamics for Improved Traffic Simulation,” in 2025 IEEE International Conference on
Mobility, Operations, Services and Technologies (MOST).

132


	Introduction
	Related Work
	Setup of Scenario
	Map and Road Network
	Traffic Demand
	Real Traffic Counts
	Traffic Demand Modeling

	Scenario Parametrization
	Optimizing the Rerouting Probability


	Validation of Scenario
	Conclusion and Discussion



