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Abstract. In recent years, Unmanned Aerial Vehicles (UAVs) have emerged as effec-
tive tools for traffic monitoring and control by offering high-resolution, aerial observa-
tions of vehicular movement. Although UAV simulation is well established, tools to cap-
ture microscopic traffic measurements from UAV-based observations remain limited.
This paper introduces SUMO-UAV-Py, an open-source SUMO plugin that integrates
UAV-based sensing into microscopic traffic simulations in Python. SUMO-UAV-Py cap-
tures detailed vehicle observations by dynamically employing multiple UAVs to observe
traffic measurements based on their position and field-of-view (FoV). Performance eval-
uations on a mid-sized network demonstrate that SUMO-UAV-Py maintains simulation
performance comparable to standard post-processing methods, confirming its suitabil-
ity for large-scale traffic monitoring research.
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1. Introduction

Traffic simulation is an essential tool for analyzing and improving modern transportation
systems. As urban environments grow more complex, the need for accurate and scal-
able traffic monitoring solutions has become increasingly evident. Among emerging
sensing technologies, Unmanned Aerial Vehicles (UAVs) have gained significant atten-
tion for their ability to monitor road networks from an aerial perspective using onboard
cameras. UAV-based sensing has been widely explored for a variety of transportation-
related applications, including traffic monitoring, control, and data collection [1], [2], [3]-
However, despite their potential, conducting real-world UAV experiments can be chal-
lenging due to operational constrains and regulatory restrictions, making simulation-
based approaches an attractive alternative for the development and validation of UAV-
based traffic sensing.

UAV-based microscopic simulation can provide fine-grained traffic data that many
existing studies currently lack. For instance, some works on UAV-based traffic state
estimation rely solely on macroscopic measurements (e.g., average density and speed)
[4], [5], thus missing the opportunity to capture individual vehicle interactions. Such
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efforts could benefit from a UAV-based microscopic framework, which enables higher-
resolution data collection for more accurate validation in traffic monitoring approaches.

Despite the growing body of work on UAV-based traffic estimation, few traffic sim-
ulators frameworks explicitly focus on integrating UAV sensing at a microscopic level
within large-scale transportation simulations. SUMO (Simulation of Urban MObility)[6]
is a well-established, open-source traffic simulator designed for microscopic modeling
of complex road networks. Its open-source nature is potentially suitable for UAV re-
search, as it enables customizable data extraction and manipulation through tools like
the TraCl interface.

To effectively enable UAV operations, in SUMO, we present a new open-source
plugin, SUMO-UAV-Py, that extends SUMQO’s capabilities to incorporate UAV-based
sensing. The plugin’s goal is to simulate the aerial vantage point and data collection
processes of UAV traffic monitoring in an efficient and flexible manner. While SUMO-
UAV-Py does not explicitly focus on high-fidelity UAV flight physics, its modular archi-
tecture allows the integration of external modules or extended libraries to accommo-
date advanced aerodynamic and environmental models. The plugin enables multiple
UAVs to be freely positioned above the road network, collecting detailed vehicle-level
information and thus allowing researchers to evaluate the performance of UAV-based
algorithms before deploying them in real-world scenarios.

Our contributions in this paper include the development of SUMO-UAV-Py, an
open-source and lightweight plugin for SUMO that enables UAV-based microscopic
traffic observations. SUMO-UAV-Py offers a flexible, modular framework that supports
dynamic UAV positioning while capturing detailed vehicle-level information during sim-
ulations, providing a robust platform for aerial traffic monitoring.

The remainder of this paper is organized as follows. Section 2 reviews existing
software and simulation frameworks that combine UAVs and traffic networks, highlight-
ing the gap addressed by our proposed plugin. Section 3 details the architecture and
design principles of SUMO-UAV-Py, while Section 4 presents the plugin’s user options
and features. Section 5 presents an experimental use case and performance results.
Finally, Section 6 concludes the paper and outlines future work directions.

2. Related Work

A variety of simulation platforms and co-simulation strategies have been proposed to
study UAVs in either autonomous navigation or broader traffic management contexts.
High-fidelity environments like AirSim [7] leverage the Unreal Engine to simulate real-
istic visual and physical conditions for autonomous vehicles, while other environments
couple SUMO and AirSim to explore lane-based Unmanned Traffic Management (UTM)
concepts [8]. Similarly, UTSim [9] targets UAV air traffic control and communication as-
pects, and commercial traffic simulators such as PTV Vissim have been adapted for
3D UAV visualization [10].

In the context of open-source UAV simulation, UavSim [11] provides a lightweight
platform for comparing multi-UAV path planning algorithms, and [12] introduces a mod-
ular UAV simulation framework that provides kinematic and energy models of multiple
UAVs. Another study [13], explores UAV swarm navigation in urban environments, us-
ing sensing for velocity and position estimation within the swarm while [14] introduces
a co-simulation framework for UAV physics and wireless communication modeling. In
contrast, the work in [15] aims to simulate a swarm of drones for traffic monitoring in
the context of a Smart City developed in Unity game engine.
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While these tools and frameworks provide robust solutions for UAV flight dynamics,
swarm coordination, or communication modeling, they generally do not prioritize or
fully implement UAV-based ground traffic sensing at a vehicle-level scale. In contrast,
SUMO-UAV-Py aims to fill this gap by integrating a lightweight, open-source extension
for a microscopic UAV-based traffic observation.

In addition to the UAV simulation frameworks discussed above, several established
microscopic traffic simulators are widely used for modeling urban traffic. Commer-
cial products such as Aimsun provide detailed microscopic simulation and analysis,
including support for pedestrians, bicycles, and vehicles exhibiting non-lane-based be-
havior [16]. Also, VISSIM offers a multimodal traffic simulation environment with a
user-friendly interface and high-quality 3D visualization [17]. Among the open-source
options, MITSIMLab is a microscopic traffic simulation model that assesses the effects
of different traffic management system designs on operational performance [18], and
MATSim supports large-scale, agent-based simulations [19]. SUMO is an open-source
microscopic traffic simulator under active development that is highly configurable and
provides direct data access via the TraCl interface, making it particularly well-suited for
integrating our UAV-based sensing plugin and achieving detailed, real-time microscopic
traffic observations.

Through direct access to SUMO’s internal states via TraCl, SUMO-UAV-Py aims
to support real-time vehicle-level data collection, while allowing users to modify UAV
trajectories dynamically. Moreover, its modular design facilitates coupling with external
simulators or advanced UAV models, ensuring flexibility for researchers who require
refined aerodynamics, path planning, or environmental conditions.

3. Plugin Architecture

SUMO-UAV-Py is a Python-based plugin designed to integrate SUMO’s traffic simu-
lation with UAV-based sensing. It accepts user-defined drone parameters, launches
SUMO with the specified network configuration, and generates detailed aerial obser-
vations of vehicular traffic at each simulation step. In this section, we examine SUMO-
UAV-Py’s implementation, including its communication framework, the implemented
UAV motion model, and our visualization technique.

3.1 Implementation Overview

SUMO Network & j SUMO
Configuration File Simulation Parameters
Network & U AVTData
Traffic Data
ISUMO-UAV-Py User Options & \( W Plugin Microscopic
Configuration File Parameters 'L SUMO-UAV-Py J Outputs UAV Observations

Figure 1. High-level overview of SUMO-UAV-Py: initial parameters from configuration files are used to
initialize SUMO and SUMO-UAV-Py, which communicates with SUMO-UAV-Py, to allow the
communication between the two entities. The output of SUMO-UAV-Py is stored as a file containing
Microscopic UAV Observations.
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Figure 1 presents a high-level diagram of SUMO-UAV-Py’s architecture. Two con-
figuration files serve as the initial inputs: the SUMO configuration file, which provides
the network topology and simulation parameters, and the SUMO-UAV-Py configuration
file, which specifies all UAV-related settings, including the total number of UAVs, their
speed, rotation speed, and field-of-view (FoV) angles. SUMO supplies network and
traffic data to SUMO-UAV-Py, while SUMO-UAV-Py sends updated UAV positions and
orientations back to SUMO. The plugin then records all drone-based observations in
an output file.

The SUMO-UAV-Py configuration file includes a list of 5D waypoints for each UAV,
given by (¢,7,y, 2,¢). Here, t is the simulation time in which the UAV starts its move-
ment to a position (z, y z), with a yaw orientation ¢.

The output file contains attributes that mimic real-world UAV sensor data for each
simulation step, as detailed in Table 1.

Table 1. Output File Attributes.

Attribute Name Type Description

Step Number Current simulation step number.
Seconds Number Simulation time in seconds.

UAV_ID String Unique identifier of each UAV.

UAV_Pos (z,y,z,0) 4D coordinates of each UAV.

VehiclelD String IDs of the detected vehicle.

Veh_Pos (z,y) 2D coordinates of each detected vehicle.
Veh_Speed Number Speed of each detected vehicle.

3.2 Communication

The core of SUMO-UAV-Py’s implementation relies on a TCP-based communication
loop between SUMO, TraCl, and the SUMO-UAV-Py Python script, as illustrated in
Figure 2. At each simulation step, SUMO-UAV-Py computes the UAV’s new position,
sends it to SUMO via TraCl, and retrieves the list of vehicles that fall within the UAV’s
calculated FoV. This connection enables continuous monitoring of both UAV motion and
network-wide vehicle states. To optimize performance, SUMO-UAV-Py uses TraCl's
object variable subscription to specify a set of variables (e.g., position, speed) that
should be automatically returned in each step, avoiding the overhead of individually
querying every vehicle.

3.3 Motion Model

To define each UAV’s trajectory, SUMO-UAV-Py reads an initial 5D waypoint
(to, %o, Yo, 20, %) and the next 5D waypoint (¢,z,y,z,¢). At simulation time ¢, the
UAV rotates from ¢, to align with the direction of (x,y, z), then moves from (zo, yo, 20)
toward (z,y, z). Upon arrival, the UAV performs a final rotation to match the yaw angle
¢. This sequence of moves “rotate-move-rotate” provides a basic yet flexible approach
for most UAV path scenarios.

In SUMO-UAV-Py the transitions between waypoints follow a lightweight linear ap-
proach model. Given two 3D points (z1,y1,21) and (zs,y2,22), the travel distance is
computed as the Euclidean distance

d=/(z2— 1)+ (o — 11)> + (22 — 21)2. (1)
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Figure 2. Sequence diagram of TCP communication among SUMO and SUMO-UAV-Py, using TraCl.

The number of steps required to reach the next waypoint, with a simulation step length
At and horizontal speed v, is calculated using

d
Nmove: e 2
v At 2)

Similarly, to calculate the number of rotation steps needed to cover a yaw-angle differ-
ence A¢ with yaw rate w we use

A¢

Nrotate = m (3)

For more complex flight paths the plugin is integrated with a discrete movement op-
tion that overrides the built-in dynamics, in which users manually supply 5D waypoints
(t,z,y, z, ¢), enabling seamless coupling with external trajectory planners.

Furthermore, SUMO-UAV-Py is able to determine the vehicles observable to each
deployed UAV by calculating their camera FoV. The camera is fixed at a 90-degree
angle relative to the ground, yielding a rectangular projection whose width and height
scale linearly with altitude h. As illustrated in Fig. 3, for camera angles « (horizontal)
and g (vertical), the half-view tangent geometry gives

FoV,=2h tan(%), FoV, =2h tan(%), (4)
which are used to compute the FoV rectangle.

The computed dimensions F'oV, and FoV,, define a rectangle centered at the UAV’s
current position (z,,v.), oriented according to the UAV’s yaw angle ¢. To evaluate
which vehicles are visible during each simulation step, SUMO-UAV-Py computes the
global coordinates of the rectangle’s corners after applying a planar rotation around the
UAV center.

To compute the rotated position of a FoV corner, the point (z,y), defined in the
local axis-aligned FoV frame, is first translated so that the UAV center (., y,) is moved
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Figure 3. Rectangular FoV representation for a 90° camera angle at height h.

to the origin. A rotation by the yaw angle ¢ is then applied using a 2D rotation matrix.
After the rotation, the point is translated back to its position relative to the UAV in the
SUMO coordinate frame.

This results in the following transformation:

() =m[()- )

where R(¢) is the 2D rotation matrix defined as:

+(50) ®

cos¢ —sin ¢)

sing  cos¢

ro) = ( ©
Here, (z,y) are the local coordinates of a FoV corner, and («’,y’) are the corre-
sponding coordinates in the global SUMO frame. This procedure is applied to all four
corners of the FoV rectangle to compute its rotated projection on the plane. Vehi-
cles whose positions fall within this transformed rectangle are marked as visible and
recorded, based on data retrieved via TraCl subscriptions at each simulation step.

3.4 Visualization

When SUMO runs in graphical mode, SUMO-UAV-Py visually represents each UAV
and its FoV by drawing polygons and points-of-interest (POls). The rectangular FoV
polygon moves and rotates with the UAV’s position (z,y, z) and yaw angle ¢. Also, it
changes size relative to the UAV’s altitude. The UAV position is marked with a POI
icon. Figure 4 shows an example screenshot of these polygons and POls in SUMO’s
GUI.
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Figure 4. Example screenshot of SUMO-UAV-Py’s polygon- and POI-based visualization in SUMO’s
GUI

4. User Options and Features

The plugin offers a wide range of user-oriented features that maximize flexibility and
ease of configuration. In addition to the ability to bypass UAV graphics for performance-
oriented experiments, users can tailor multiple aspects of the simulation to fit specific
research scenarios. These options can be selected via the configuration file.

4.1 UAV Model Parameters

The UAV dynamics generated by SUMO-UAV-Py are described by a lightweight linear
motion model as stated in Section 3.3. However in respect to realistic modeling of
speed, FoV characteristics and battery life approximations SUMO-UAV-Py comes with
two preset options of well-known commercial UAV models: Mavic 2e [20] and Mini 3
pro [21]. For further customization, the plugin offers a Manual option, which allows
users to specify custom values for maximum speed, yaw rate, and FoV dimensions.

The optional battery mode can be enabled, to assign a finite flight duration to each
UAV. When battery levels drop to five minutes remaining, a warning is issued, and if
depleted, the UAV ceases operation. This feature is essential for simulating realistic
mission constraints.

4.2 UAV Observation Mode

SUMO-UAV-Py supports three observation modes:

* Hovering: The UAV rotates and moves toward the next waypoint, moving with a
uniform speed. When it reaches the desired waypoint, it hovers until its time to
move to the next waypoint. Hovering mode collects data continuously regardless
of being stationary or in motion.

« Sampling: The UAV follows the same motion pattern as in Hovering mode, but
records data only when stationary, thus capturing isolated sampling points.

» Spinning: Upon reaching a waypoint, the UAV rotates in place to maximize its
FoV by covering a full or partial rotation. This mode is particularly useful when a
wide-angle observation is desired as illustrated in figure 5.

4.3 Real-time interactions

In parallel with the TraCl loop, SUMO-UAV-Py implements a separate threaded mecha-
nism to handle real-time interactions to modify the existing UAV flight paths or add new
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Figure 5. FoV coverage visualization in the 2D plane in the Spinning UAV Observation Mode for
different simulation steps.

ones. This thread allows users to submit new waypoints in real-time (either through a
local interface or an optional remote connection). Such interactions immediately update
the drone’s trajectory without pausing the simulation, allowing the users of SUMO-UAV-
Py to implement their own open-loop or closed-loop logic, to dynamically adjust UAV
positions as the simulation proceeds. The local interface for real-time modifications its
shown in figure 6.

@ Local GUI
Enter UAV ID:

Submit Break

Figure 6. SUMO-UAV-Py interface for real-time UAV updates.

4.4 GUI Dialog

SUMO-UAV-Py provides a GUI dialog that includes all user-defined parameters in a
single interface. This interface allows users to configure the total number of UAVs, se-
lect flight modes, set battery options, and specify the network and SUMO configuration
file among others. Figure 7 shows the dialog window, illustrating how various simulation
and UAV settings are easily accessible in one place.
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GUI Option |

Uav Made Hovering
Online _ | Remote Server
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Delay
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Figure 7. GUI dialog for SUMO-UAV-Py configuration and user options selection.

5. Performance Evaluation

To evaluate SUMO-UAV-Py’s computational overhead, we conducted a benchmark us-
ing a real-world traffic scenario from the city of Bologna [22] (A.Costa scenario from
iTetris). The scenario includes 8,600 vehicles, 179 edges, 112 nodes, 267 lanes and
a total lane length of 33.52 km. All simulations covered three hours of virtual time and
were executed on a machine with a 12th Gen Intel® Core™ i9-12900K processor and
32 GB of RAM.

We compared two approaches for capturing vehicle-level measurements of traffic:

+ SUMO-UAV-Py Logging (No GUI): SUMO-UAV-Py records all vehicles within
each UAV’s FoV in real time. The number of UAVs was varied from 0 to 32 across
different runs.

» Post-Analysis Parsing: SUMO was run in an identical setup, generating floating
car data (fcd-output) file instead of the SUMO-UAV-Py implementation. A Python
script using the library xml . etree.ElementTree then parsed the file to identify the
same vehicles that would have been observed by the UAV(s).

Each scenario was executed five times for each UAV count (0 to 32) under identical
conditions. We recorded the total simulation time, including post-processing in the
second approach, and then computed average run times and standard errors. Figure 8
shows the results, where the “Plugin” line corresponds to aerial measurements logged
by SUMO-UAV-Py and the “Post-Analysis” line represents offline parsing method.

Importantly, the UAV=0 case reflects the base simulation performance of SUMO
without any UAV logging. In this case, SUMO-UAV-Py simply initializes but performs
no additional computations. This allows us to measure the plugin’s overhead relative to
SUMO’s base performance. In the figure, a horizontal line indicates this base SUMO
timing as a reference.

For the case of zero UAVs, SUMO-UAV-Py runs faster than the post-analysis ap-
proach, because the latter requires additional processing to write and export the float-
ing car data file. As the number of UAVs increases, the run times for both methods
remain comparable, and there are instances in which SUMO-UAV-Py outperforms the
post-analysis script. This result is partly due to SUMO-UAV-Py logging only those
vehicles within each UAV’s FoV, while the post-analysis method processes the entire
network file. Overall, the extra computational cost of SUMO-UAV-Py’s real-time data
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extraction is minimal. These results confirm that SUMO-UAV-Py is well-suited for large-
scale simulations where both detailed observations and computational efficiency are
essential.

SOF ! ! ! 1 ! ! ! -
=== Base Performance

-- | =¥= Post-Analysis =
—— Plugin

= >
S o

=)
&

ot
ot

Average Simulation Time (s)

e
&

=
(=

4 8 12 16 20 24 28 32
Number of UAVs

Figure 8. Benchmarking of the SUMO-UAV-Py plugin versus a post-analysis script as described in
Section 5. The results are the averaged timing over 5 executions for different number of UAVs. The
shaded regions represent the standard errors. The horizontal line represents the SUMO base
performance.

6. Conclusion

This paper introduced SUMO-UAV-Py, an open-source plugin that integrates UAV-
based sensing into SUMO’s microscopic traffic simulations. By allowing researchers
to specify UAV properties such as speed, FoV, and flight mode, SUMO-UAV-Py gen-
erates high-resolution aerial observations of traffic in a fully customizable manner. lis
modular design enables users to incorporate custom external modules for UAV dynam-
ics or path planning, offering a flexible framework for diverse research applications.

Performance evaluations showed that SUMO-UAV-Py’s real-time data extraction
imposes only a minimal additional computational cost compared with standard post-
analysis approaches, and we demonstrate how the plugin scales up with the number
of UAVs relative to SUMO’s base performance. These results underscore the plugin’s
suitability for large-scale simulations where both detail and efficiency are critical. In
future works, we plan to extend the basic motion model by introducing additional FoV
constraints and variable camera angles, as well as to incorporate macroscopic UAV
measurements such as density, flow, and average speed. We also welcome commu-
nity feedback to drive further performance improvements and refinements. Overall,
SUMO-UAV-Py provides a robust platform for advancing UAV-based traffic monitoring
research.

Data availability statement

The code of SUMO-UAV-Py is open source and available on github: https://github
.com/TsioutisCh/SUMO-UAV-Py. The referred network data used for the performance
evaluation are also included. Video and an example output dataset of the plugin are
included as well.
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