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Abstract. Short dwell times at bus stops are crucial for efficient public transport op-
erations, yet existing traffic simulation tools commonly simplify passenger boarding.
In this paper, we extend the SUMO-based co-simulation framework, Sumonity, to in-
corporate a sub-microscopic pedestrian model for city bus boarding. Our approach
simulates real-time passenger flow, pathfinding, and door congestion in a Unity-based
environment. We conduct a full-factorial simulation experiment with four bus door con-
figurations, ranging from fully open double doors to partially closed options. We also
consider different passenger loads between 1 and 50, yielding 200 unique scenar-
ios. Detailed spatiotemporal data on passenger movements and boarding times are
generated for each scenario. Analysis of crowding behaviors and door usage reveals
significant sensitivity of boarding times to both passenger volume and door availability.
These findings demonstrate the importance of accurately modeling pedestrian interac-
tions for reliable dwell-time forecasts and underscore the potential of sub-microscopic
pedestrian simulations.

Keywords: Sub-Microscopic Traffic Simulation, Pedestrian Modelling, Dwell Time,
Microscopic Traffic Simulation

1. Introduction

Public transport efficiency plays a pivotal role in urban mobility, where growing ridership
and sustainability goals emphasize the need to optimize bus operations [1]. Among
the critical factors affecting bus service reliability and overall passenger experience
is the dwell time—the interval a bus spends at stops to accommodate boarding and
alighting passengers. Longer dwell times can accumulate in a transit network, reducing
schedule adherence and passenger satisfaction.

Existing traffic simulation tools, such as SUMO, provide robust frameworks for
modeling vehicular movement at a microscopic level. However, passenger processes
are often simplified: individuals are typically lined up in fixed positions at bus stops
and are teleported onto the bus. This approach disregards the dynamic interactions
among passengers, variations in bus interior layouts, and real-world phenomena such
as queue formation and congestion at doors. To address these limitations, we extend
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the capabilities of the SUMO-based co-simulation framework, Sumonity [2], by inte-
grating sub-microscopic, three-dimensional pedestrian models for passenger board-
ing. Our approach aims to capture realistic movement behaviors at the doors, enabling
more accurate dwell-time estimations. In this paper however, we focus on boarding
time and exclude the alighting process. Specifically, we investigate how different door
configurations (e.g., fully open or partially closed double doors) and varying passenger
loads (from 1 to 50) influence boarding times.

The remainder of this paper is structured as follows. Section 2 provides a literature
review that summarizes key findings on dwell times and related passenger-flow mod-
els. Section 3 details our methodology, including the simulation scenario setup and the
enhancements made to the pedestrian simulation model. Sections 4 and 5 present and
discuss the results, with a focus on how door configurations and passenger volumes in-
fluence boarding times and movement patterns. Finally, Section 6 concludes the paper
by highlighting our key contributions, addressing limitations, and outlining directions for
future research.

2. Literature Review

Bus dwell time is commonly defined as the interval between a vehicle’s arrival at a
station and its departure, encompassing passenger boarding, alighting, and related
door operations [1], [3], [4]. While numerous variables affect dwell time, the volume of
boardings and alightings is frequently highlighted as a principal factor: larger passen-
ger counts often lead to congestion at vehicle entrances and increased friction among
riders, thereby prolonging service intervals [5], [6], [7]. Beyond passenger loads, bus
design characteristics, including door width, the number of doors, and low-floor con-
figurations, also streamline boarding and alighting [8], [9]. Notably, low-floor buses
improve boarding speeds for older adults and individuals with mobility impairments,
further enhancing operational efficiency [10]. Fare collection methods likewise shape
dwell time dynamics; for instance, cash payments at a front door slow boarding pro-
cesses, whereas electronic payment systems and pre-paid fares can reduce passenger
queues [11], [12].

In addition to vehicle and passenger attributes, contextual and route-related vari-
ables are equally important. Locating bus stops directly after intersections can min-
imize delays from congested turning lanes and crossing pedestrians [13], whereas
stops placed before intersections or in areas with limited visibility risk increased dwell
durations due to pedestrian conflicts and blocked exit paths [14]. Peak-hour conditions
exacerbate these challenges because limited interior space constrains passenger flow
and intensifies crowding [15]. Methodologically, linear or multiple regression models
have traditionally been employed to estimate and predict dwell time [11], [16]. How-
ever, advanced approaches such as hazard-based models [17] and machine learning
techniques [18], [19] are gaining traction, offering more detailed insights by capturing
nonlinearities and complex variable interactions. Despite extensive research on con-
ventional bus operations, gaps remain around automated shuttle services, where the
absence of a human driver, novel sensor configurations, and distinct interior layouts
could alter boarding and alighting patterns [20]. As public transit systems increas-
ingly adopt automation, future studies must examine how sensor-based infrastructure,
remote supervision, and user-interface innovations influence dwell times and overall
service effectiveness.
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3. Methodology

3.1 Study Design

Figure 1. Simulation Scenarios: (1) all double doors opened, (2) all doors opened but only one side, (3)
only front double door open, (4) front and rear double door opened.

In this study, we model the boarding process of a city bus, aiming to address limi-
tations in standard SUMO simulations that assume fixed passenger positions and tele-
portation onto the vehicle. By contrast, our approach enables passengers to queue,
navigate, and interact realistically.

Multiple bus configurations (see Figure 1) are examined to explore how door ac-
cess—such as fully open or partially closed double doors—impacts boarding efficiency.
In each scenario, the bus is empty, and passengers range from 1 to 50, allowing us to
assess the effect of passenger load on boarding time. The door configuration, together
with the passenger volume, constitute the independent variables, while the principal
dependent variable is boarding time, measured from the moment passengers arrive at
the bus stop area to the time the last individual finishes boarding.

To reduce complexity, we do not simulate seat selection or movement within the
vehicle beyond a certain point. Each passenger starts from a randomly assigned po-
sition in the bus stop area and proceeds to their nearest available door. The scenario
ends once the passenger reaches a designated area inside the bus, ensuring minimal
obstruction for subsequent boarders.

3.2 SUMO Integration

Our simulations build on the Sumonity framework [2], an open-source solution that
combines SUMO with the Unity game engine for sub-microscopic traffic simulation.
The Sumonity codebase is publicly available on GitHub1.

1https://github.com/TUM-VT/Sumonity
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Using SUMO’s TraCI API, we retrieve real-time pedestrian states—positions at
each timestep (see Figure 2). Traditional SUMO workflows teleport passengers onto
the bus, but in Sumonity, passengers continuously walk from the platform into the ve-
hicle. As soon as a pedestrian enters the defined bus stop area, a waiting position is
assigned; once the bus arrives, the system attaches a bus identifier to the passenger,
signaling the start of the boarding process and defines a goal point near the closest
door. Detailed position data are then recorded for subsequent dwell-time analysis or
human-in-the-loop research.

Figure 2. Data flow of the Sumonity pedestrian simulation system used in this study.

3.3 Simulation Model

3.3.1 Pedestrian Simulation Model

The simulation model encompasses four key areas: Physical Agent Space, Path
Search, Speed Choice, and Animation. We further describe thresholds and model
assumptions.

Physical Agent Space

Each passenger is represented by a circular agent with a radius of 0.45m, based on
standard pedestrian-flow and transportation literature [22], [23]. This simplified model
omits individual variability in body size but provides a baseline for crowd interactions;
future extensions could incorporate heterogeneous agent sizes.

Path Search

The environment is preprocessed into a navigation mesh (navmesh), which partitions
the walkable area into convex polygons. We employ an A* pathfinding algorithm within
Unity to guide passengers around obstacles, including bus doors, walls, and other
agents. The input geometry specifies the 3D layout, while real-time collision checks
ensure agents avoid overlap.
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(a) Physical Agent Space and Interaction
Space based on [21]. (b) Speed-density correlation [22].

Figure 3. Key concepts in the pedestrian simulation model.

Speed Choice

Agent speed adapts to crowd density in a predefined interaction space. We approxi-
mate this space with a rectangular bounding box, inspired by the agent space model
and the NOMAD model [21], [24]. At each timestep, the local density is computed, and
speeds are updated according to the empirical relationship from Weidmann [22]. This
allows agents to slow down in dense areas, capturing typical pedestrian-congestion
behavior.

Animation

Although root-motion animations can enhance realism, especially for human-in-the-
loop applications, we use only visual (non-root-motion) animation. The agent’s motion
is determined by explicit velocity and heading updates, while the animation layer serves
mainly for visual plausibility.

Door-Balancing and Deadlock Avoidance

Passengers may reroute to a less crowded door if their velocity remains under 0.75m/s
for 2 seconds (see Figure 4). Should any agent’s average speed drop below 0.1m/s
for 1.5 seconds, the system interprets this as a deadlock and repositions one agent
slightly to clear the blockage. If a deadlock persists beyond 180 seconds, the run is
terminated and the data excluded from the final dataset.
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Summary of Model Parameters:

• Physical Agent Space: ragent = 0.45m
• Path Search: Navigation mesh, A* algorithm
• Speed Choice: Density-based according to Weidmann [22]
• Agent Interaction Space: Ls = 0.84m, Lf = 5.95m (adapted from [21])
• Animation: Non-root-motion humanoid avatar

3.3.2 Simulation Runs

We adopt a full factorial design featuring four door configurations (Fig. 1) and pas-
senger counts ranging from 1 to 50, leading to 200 unique scenarios. Each sce-
nario is repeated 100 times to capture variability and ensure reliable statistics, totaling
20,000 runs. Key outputs include boarding times, agent trajectories, and crowd den-
sity heatmaps, which are aggregated and analyzed in subsequent sections to evaluate
boarding efficiency and crowding behaviors.

Figure 4. Pedestrian agents boarding the bus.

4. Results

4.1 Passenger Occupation Analysis

Figure 5 shows the spatial distribution of passenger positions represented as a
heatmap generated from a 2D histogram. In this figure, green points indicate door
centers while purple points mark the goal locations inside the bus. A black rectangle
outlines the bus, with its position and dimensions based on predefined parameters.

To analyze pedestrian occupation in the 2D space, we use a bin size that cor-
responds to the physical agent space (radius 0.45m), resulting in grid cells of size
64 × 64 cm. The heatmap clearly reveals the trajectories taken by passengers from
their randomly assigned starting positions in the bus stop area. Depending on the sce-
nario, one or two distinct streams of boarding are observed as passengers converge
toward the open door(s). Notably, in scenario 3—where only the front door is open—a
significant backlog of passengers is apparent, indicating congestion at that door.
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(a) Scenario 1: all doors open (b) Scenario 2: all doors half open

(c) Scenario 3: only front door open (d) Scenario 4: front & rear door open

Figure 5. Heatmap for passenger occupancy analysis for 40 agents. The points green points highlight
the door positions. The purple points the goal points in the bus.
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4.2 Boarding Times

We apply a linear regression model to estimate boarding times, with boarding time as
the dependent variable and the number of boarding passengers as the independent
variable. Each scenario is evaluated separately. Figure 6 displays the scatter plots,
density plots, and corresponding linear regression lines for all scenarios, while Table 1
provides detailed statistics and regression model parameters. For the analysis, we
removed outliers exceeding the 75th percentile by more than 1.5 times the interquartile
distance.

The key parameters in our regression analysis are the intercept and the β co-
efficient. The intercept varies across scenarios, which is plausible since it depends
heavily on the starting positions and also serves as an indicator of the average agent
backlog at the doors. Notably, scenario 3 (only the front door open) exhibits a neg-
ative intercept. The β coefficient represents the boarding time change per additional
passenger. Among the scenarios, scenario 1 (all doors open) has the smallest change
rate (β = 0.500), followed by scenario 2 (all doors half open, β = 0.557) and scenario 4
(front and rear door open, β = 0.790). In contrast, scenario 3 (only the front door open)
shows by far the highest change rate with β = 2.275.

(a) Scenario 1: all doors open (b) Scenario 2: all doors half open

(c) Scenario 3: only front door open (d) Scenario 4: front & rear door open

Figure 6. Scatter plots including density plots and linear regression line for all scenarios.
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Table 1. Descriptive statistics and regression model parameters for each scenario.

Scenario N Mean SD SE R2 Intercept β

1 4925 16.243 8.158 0.116 0.779 3.587*** 0.500***
2 4898 20.484 9.083 0.130 0.781 6.406*** 0.557***
3 4793 52.582 36.215 0.523 0.830 -6.430*** 2.275***
4 4750 22.761 12.907 0.187 0.784 2.896*** 0.790***

Included Data: npass = [1, 50], time < 75-Quartile +1.5× Inter-Quartile-Distance
Note: N = Number of included simulation runs; SD = Standard deviation; SE = Standard error;

***p-value < 0.001;

5. Discussion

The regression model parameters yield several insights. Analysis of the β coefficient
shows that scenarios with all doors open (scenarios 1 and 2) exhibit the lowest board-
ing time change rates—even when the doors in scenario 2 are only half open. In
contrast, scenario 4 (front and rear doors open) shows a change rate approximately
40% higher than that of scenario 2, despite having a larger combined door width (four
single-door widths versus three single-door widths). This finding suggests that increas-
ing the number of accessible doors helps distribute passengers more evenly, thereby
reducing boarding times at higher passenger volumes.

Notably, the regression model for scenario 3 (only the front door open) stands
out. Its negative intercept, which lacks a meaningful real-world interpretation, may
indicate that an alternative modeling approach could better capture the underlying dy-
namics. Nonetheless, the significantly higher boarding time change rate in this sce-
nario—approximately three times or more than that of the other scenarios—reflects the
severe congestion caused by having a single open door.

Since real-world validation of our simulation scenarios is not feasible, we compare
our results with findings from the literature. For example, [8] analyzed the influence of
door width (double versus single), bus-door distance, and payment method on board-
ing times. Their study reported values of 1.50 seconds for double doors and 1.67 sec-
onds for single doors, which are about one second higher than our simulated values of
0.500 and 0.557 seconds, respectively. This discrepancy is plausible, as their analysis
includes the time required for passenger movement inside the vehicle, which our sim-
ulation deliberately omits. Importantly, the ratio between single-door and double-door
scenarios remains consistent, with the double-door configuration requiring roughly 90%
of the duration of the single-door scenario. Furthermore, comparison with the Highway
Capacity Manual (HCM) [3] reveals similar per-passenger boarding times; for instance,
the HCM estimates approximately 0.5 seconds per passenger for a scenario featuring
three double doors and a prepaid fare system.

6. Conclusion and Outlook

In this paper, we presented a sub-microscopic traffic simulation framework for modeling
bus boarding processes. Our novel approach integrates microscopic traffic simulation
with a pedestrian model based on navigation meshes and 3D simulation techniques.
By simulating boarding scenarios with passenger counts ranging from 1 to 50 and var-
ious door configurations, we developed linear regression models to estimate boarding
times. Our results indicate that both the number of doors and their configuration (dou-
ble versus single) significantly affect boarding times due to congestion at the doors. In
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particular, the scenario with only one open door led to congestion, resulting in much
higher boarding time change rates per additional passenger.

Future work should include a sensitivity analysis of key model parameters. For
example, the speed adjustments based on local pedestrian density may differ in these
specific boarding scenarios compared to previous model settings. Similarly, refining
the agent interaction space and incorporating variability in physical agent dimensions,
reflecting differences in passenger body sizes, could further enhance model realism.
Moreover, while this study focused solely on the boarding process, future simulation
models should also address the alighting process and the interactions between board-
ing and alighting passengers.

Data availability statement

The data can be obtained by contacting the corresponding author or the Chair of Traffic
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Underlying and related material

The implementation of the given framework is published on the GitHub page of
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