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Abstract. Swift advances in computing and artificial intelligence (AI) technologies of late have 
prompted the increasing applications of digital twins (DiTs) to various sectors for boosting ef-
fectiveness and productivity. DiTs have been envisioned to possess immense potential for 
transforming numerous domains and sectors in the recent report of National Academics due 
to their powerful real-time decision-making based on modeling and simulating physical sys-
tems. This paper deals with a novel design of digital twin-aided municipal traffic control (DiTAT) 
for best traffic management over a targeted municipal region, based on real-world traffic video 
imagery gathered by available roadside surveillance cameras. DiTAT analyzes sequences of 
video frames to extract traffic volume details, including the start time, speed, incoming zone, 
and outgoing zone of every vehicle in existence. Being DiT-based, DiTAT employs the auto-
mated, open-source traffic simulator (SUMO) as the digital twin of the physical roadway con-
figuration over the target region to try various traffic light control settings under the extracted 
traffic volume details for identifying the most favorable setting. The identified setting is then 
sent to the physical roadway traffic lights for realization to manage traffic during the next time 
window, when its resulting traffic is simulated by SUMO again to get the best setting for the 
subsequent time window reactively. This process repeats continuously window by window, 
with a bidirectional interplay between SUMO simulation and physical traffic for the target re-
gion. DiTAT is demonstrated to lift transport performance under real-world traffic scenarios. 

Keywords: Digital Twins, SUMO Traffic Simulation, Traffic Control, Video Image Processing, 
YOLO (You Only Look Once) AI Tool 

1. Introduction

Evolving over time, DiTs [1] enable effective optimization persistently by monitoring system 
behaviors continually. Uninterrupted system monitoring for traffic control is realized by road-
side surveillance cameras, whose deployment has grown rapidly in many municipalities.  While 
the concept of digital twins (DiT) has gained attention in recent technological advancements, 
its application to computationally efficient traffic control remains to be further explored. This 
paper deals with a novel design on digital twin-aided municipal traffic control (DiTAT) for best 
traffic management over a targeted municipal region of interest. DiTAT leverages live traffic 
video streams obtained from physical roadways over a target municipal region to identify the 
most desirable traffic light setting on the roadways in real-time. It employs an efficient AI-based 
object detection and tracking technique called YOLO (You Only Look Once) [2] to extract traffic 
volume details from video streams, including the start time, speed, incoming zone, and out-
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going zone of every vehicle in existence therein. Extracted traffic volume details are then in-
putted to an automated, open-source traffic simulator (SUMO) [3] [4], which serves as the DiT 
of the physical roadways at the targeted region to simulate transportation performance under 
various traffic light settings for identifying the most desirable setting with the best performance 
in real-time. The transport performance metrics include throughput over the physical roadways 
and the mean travel time of vehicles between when they come to exist in video streams and 
when they exit. 

1.1 Motivation and Challenges 

Existing efforts have focused on developing transportation systems with intelligence [5] [6] to 
provide users with more information content and safety and to increase the level of interactions.  
From the end user and municipal transportation infrastructure standpoints, optimizing traffic 
performance naturally stands out as the key objective.  Such optimization requires external 
monitoring continuously as traffic volumes fluctuate over time, usually achieved by aerial cam-
eras positioned at critical intersections. These stationary cameras help to capture road condi-
tions and traffic flows, producing real-time streams of videos for analyses.  Video streams con-
tain moving entities such as vehicles and motorcyclists/cyclists, which are analyzed over con-
secutive video frames to get their times to exist plus travelling speeds and directions needed 
for simulating traffic flows for transportation performance optimization. This real-time surveil-
lance is critical for agile decision-making on-site and for long-term traffic optimizations, based 
on changing traffic flow patterns dictated by date/time, weather conditions, and special events 
taking place in the area. The challenges of traffic performance optimization include (1) obtain-
ing traffic volume details from sequences of video frames rapidly and automatically, (2) decid-
ing the most favorable traffic light settings at roadway intersections based on observed traffic 
to optimize transport performance metrics reactively, and (3) predicting the upcoming traffic 
volumes for identifying the best traffic light setting proactively, in particular in response to ac-
cidents, emergency situations, special events, and extreme weather conditions. The first chal-
lenge can be met with online video processing for object detection and tracking, e.g., YOLO 
[2]. SUMO (Simulation of Urban MObility) simulator inputted by analyzed or predicted traffic 
volumes to imitate roadway traffic serves as the digital twin of physical roadway traffic situa-
tions, able to try various traffic light settings (referring to the green-yellow-red cycles) for choos-
ing the best setting in terms of performance metrics. This way enables traffic control for best 
transport performance reactively, based on real-time traffic volumes to address the second 
challenge. The third challenge is not dealt with in this article, left for future investigation. 

1.2 Background and Pertinent Work 

This section provides background and existing work pertinent to our paper, including DiTs, 
traffic control, YOLO, and SUMO, as follows.  

1.2.1 Digital Twins (DiTs) 

Digital Twins (DiTs) are in a wide range of usages these days, especially for the many-scenario 
optimization cases like traffic control [5] [6] [7] [8], manufacturing [9], and electric power sys-
tems [10]. DiTs typically involve the physical-to-virtual (PTV) twinning and virtual-to-physical 
(VTP) twinning processes [11] [12].  The physical side of a DiT refers to a real entity or system, 
whereas its virtual side incurs a high-fidelity software implementation of the physical entity/sys-
tem, able to faithfully realize changes in the physical side at the same rate.  Hence, changes 
in the physical or virtual side should be mirrored to the other side [11], with both sides exhibiting 
identical states at all times to obtain a fully twinned system. 

DiTs have been applied for traffic control to explore various aspects, ranging from the 
development of intelligent transport systems [5] to traffic simulation [6] and traffic flow genera-
tion for highways [14]. Specifically, intelligent transport systems treated in [5] resorted to inno-
vative developments in modeling transport systems, regulating traffic flows, and providing end 
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users with greater information content and safety, able to qualitatively increase the level of 
interactions between road users in comparison with conventional transport systems. Later 
work on motorway traffic simulation with real-time data integration during system run-time was 
pursued [6], built on a developed novel paradigm in microscopic motorway traffic modeling.  It 
was demonstrated by a continuously synchronized digital model to simulate on-the-fly syn-
chronized digital replicas of real traffic utilizing SUMO. Meanwhile, an end-to-end traffic flow 
generation for implementing digital twin highway systems was treated in [13], employing a 
paired radar-camera sensing system and a developed fusion framework. It followed a unified 
coordinate system to combine the traffic flow data among multiple sites at a targeted highway 
to construct a dynamic real-time traffic flow digital twin model for the highway. All aforemen-
tioned DiT pursuits on traffic control focused on intelligent transportation, traffic simulation on 
motorways, or highway traffic flow generation for the digital twin model, instead of the aim of 
this work to apply DiTs for traffic light setting optimization to get the highest throughput and/or 
the shortest travel time. 

1.2.2 Traffic Control  

Municipal traffic management is often acute, previously solved by control centers. Such man-
agement by a control center can fall short in timely response to actual traffic scenarios on 
roadways, as it typically follows preset traffic light patterns at roadway intersections. In addi-
tion, it becomes more unlikely to yield efficient transport flows on roadways when the vehicle-
to-population ratio grows, thus calling for digitizing transport via intelligent systems [5]. An in-
telligent transport system makes it possible to deal with several traffic-related tasks, providing 
critical services for city traffic police, ambulances, fire departments, traffic alerts that inform 
drivers of real-time traffic changes or hazards, etc. [14]. 

1.2.3 YOLO (You Only Look Once) 

As a popular AI tool with high efficiency, YOLO performs real-time object detection and tracking 
speedily in a single pass, making it ideal for dynamic environments where real-time processing 
is critical [2]. Integrated with a Deep Neural Network (DNN), YOLO can be used effectively for 
tracking both moving and stable objects in various environments. For live dynamic environment 
analysis, especially in the context of tracking moving/stable objects, an agile and responsive 
framework could incorporate the following components: static objects (e.g., buildings) and dy-
namic objects (e.g., moving cars and pedestrians). YOLO is effective, able to accurately clas-
sify objects and locate them in real time. Once an object is detected, its trajectory can be 
tracked across successive frames.  For moving objects, algorithms like SORT (Simple Online 
and Realtime Tracking) [15] or Deep SORT (Deep Learning-based SORT) [16] can be used to 
link detections between frames and track the movement. These tracking algorithms are typi-
cally faster and more accurate when paired with YOLO. 

YOLO operates through a series of steps [2]. First, the input image is divided into a grid, 
where each grid cell is responsible for making object predictions. If an object is detected within 
a grid cell, YOLO makes successive predictions for its attributes, such as the class (e.g., a car) 
and bounding box coordinates. YOLO applies the non-maximum suppression algorithm [17] to 
address overlapping bounding boxes and ensure precise object localization, selecting the best 
bounding box for the detected object. The YOLO network architecture mainly consists of cas-
caded convolutional and fully connected layers, enabling efficient feature extraction and clas-
sification. 

1.2.4 SUMO 

SUMO is a traffic modelling and simulation platform that leverages a digital environment to 
replicate real-world traffic dynamics, particularly well known for its microscopic traffic simula-
tion capabilities [3] [4] [18]. In general, traffic control simulators support various levels of anal-
ysis: macroscopic, microscopic, mesoscopic, and submicroscopic ones. In a macroscopic sce-
nario, traffic density is managed based on average vehicle dynamics. The microscopic level 
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focuses on individual vehicles, allowing for more detailed behavior analysis. The mesoscopic 
approach combines both macroscopic and microscopic elements, offering a balanced perspec-
tive. Submicroscopic simulation extends the analysis further by considering individual vehicles 
along with their surrounding sensors and on-board devices, providing a highly detailed traffic 
representation [19].  

SUMO, as a microscopic simulation platform, supports multi-modal simulation, including 
vehicles, motorcycles, bicycles, pedestrians, and public transport. It also integrates traffic sig-
nal control and allows the use of OpenStreetMap [20], for realistic road network representa-
tions. These features make SUMO simulation a versatile tool for applications, ranging from 
intelligent transportation systems to smart city planning [3] [4] [18]. 

While some simulation platforms accept video inputs, SUMO simulation primarily relies on 
user-defined control for simulation scenarios. In this work, we enhance SUMO's capabilities 
by incorporating real traffic videos as an input source. Through a preprocessing step for object 
detection and tracking, we generate Extensible Markup Language (XML)-based simulation 
files that automate scenario creation and control within SUMO simulation seamlessly. 

2. DiTAT Design Overview 

As the first step for validating our developed DiTAT, real-time data obtained from real-world 
video clips is first mirrored by SUMO simulation to create a dynamic and accurate DiT of the 
current traffic scenario. A critical innovation in this way is using short video clips of current 
traffic to recreate and parameterize the simulation for multiple traffic scenarios. This DiT so 
created enables the exploration of various scenarios, helping to analyze the most suitable time 
interval for regulating the traffic light settings to better traffic management, as the result of 
improved traffic performance metrics (e.g., the throughput and mean travel time of each vehi-
cle). These decisions include updating traffic light timings, alerting traffic police, and broad-
casting updates via GPS systems to inform drivers of real-time traffic changes or hazards. 

Figure 1 illustrates the proposed design of DiTAT, where the SUMO simulation is em-
ployed as the digital twin of the physical roadway configuration over the target region. There 
are mainly two sources of data in support of SUMO simulation, with static data and dynamic 
data referring respectively to road network layout information and to information about the traf-
fic volumes including vehicle movement details. These static and dynamic data are extracted 
from video analysis on the CCTV-captured real-time video clips via YOLO. They are further 
converted into XML files, which can run in simulation software (like SUMO) to simulate resulting 
traffic flows. 

2.1 Static Data 

Traffic control systems and road network layout constitute static data which supply fixed road 
information for simulation. The source of our static data is from CCTV-captured traffic videos 
[21]. Figure 2 shows the screenshot of the real-world CCTV captured traffic data.  

The surveillance camera videos provide insights into the number of lanes, intersection 
type, and the presence of traffic lights. Attributes, like the type in the node file, are used to 
define the role of each node, categorizing it as either a traffic light or a priority intersection. 
Additionally, other key attributes (such as the number of lanes, priority, etc.) are gathered to 
ensure an accurate representation of the road network. Using static data, we generated the 
network file, which is validated using OpenStreetMap (OSM). Figure 3 shows the manually 
generated network layout. OSM gives the privilege to select the desired location and provides 
the network layout, including detailed road layout, lane with its configurations, and traffic lights. 
The downloaded network file was employed as a reference to validate our manually defined 
road network layout. As the static data does not change, it serves as the initial input for our 
simulation. 
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2.2 Dynamic Data 

Vehicle movements, speed changes, and direction changes are essential dynamic data nec-
essary for simulating real-world traffic videos in a simulation environment. Traffic data is ex-
tracted from real-world traffic video streams and successfully converted into XML files to ac-
curately replicate real traffic flows in the SUMO simulation environment.  

Figure 1. DiTAT System Overview (TS: Traffic Scenario). 

 

 
Figure 2. Real-World Road Layout. 

 

 
Figure 3. Manually Generated Road Layout. 

2.2.1 Vehicle Detection and Tracking Using YOLO 

YOLO [2] is a deep learning-based model that is used effectively for detecting and tracking 
objects. We are using a pre-trained YOLO model that identifies vehicles in each frame and 
assigns a unique identifier (Vehicle ID) to each vehicle. As illustrated in Figure 4, YOLO as-
signs a green bounding box around each detected vehicle, which helps to visually represent 
the detected vehicle in each frame. Along with that, the positional information (X, Y coordi-
nates) is also provided by YOLO. This allows continuous tracking of each individual vehicle 
across each frame and gives information as they move across different frames. YOLO also 
has the ability to define the class of vehicles. The type of vehicles can be cars, buses, motor-
cycles, cycles, trucks, etc. For our case, we are only considering 3 vehicle types: cars, buses, 
and trucks.  

2.2.2 Zone-Based Analysis on Object Movements 

The real-world video is divided into four zones: east, west, north, and south, as visible in Figure 
4. This way allows to better analyze object movements, where an object can be a vehicle or 
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motorcyclist/cyclist. It helps to determine the entry and exit zones of each object, essential for 
proper tracking of moving objects. Each moving object is assigned an entry zone, from which 
the object enters the intersection. Additionally, the exit zone for each object is also captured. 
Each object’s entry and exit zones provide valuable insights into the traffic patterns and flows.  
They also make it possible to get the route information for each moving object. This zone-
based analysis is also essential for understanding traffic congestion, as it can get information 
on how long objects are stationary in one zone, mostly because of waiting at a red light.  For 
simplicity, a moving object is referred to as a vehicle hereafter. 

2.2.3 Travel Time and Departure Time  
To measure the travel time of a vehicle, two reference lines are defined within the traffic frames: 
a start line and an end line, as illustrated in Figure 4. These lines serve as fixed markers to 
determine how long it takes for a vehicle to traverse a particular section of the road.  

A counter that represents the frame number is assigned to each video frame, and it incre-
ments as the video sequence progresses. Since, we have defined two different reference lines, 
representing the start and end time points. Whenever a vehicle crosses the start line, the frame 
number at that instance is recorded, and whenever the same vehicles cross the end line, the 
corresponding frame is noted as the end frame count. The difference between these two start 
and end frame times gives the number of frames it requires for the vehicle to travel between 
the two reference lines. The total time taken by the vehicle to travel (in seconds) is calculated 
by:  

                                           𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒  =  
𝐹𝑟𝑎𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐹𝑃𝑆
     (1) 

Additional parameters, such as vehicle departure times, are also recorded, as they are 
required for simulation. The departure time of vehicles is determined based on when they enter 
the frame. The frame at which YOLO detects the vehicle is noted and divided by Frames Per 
Second (FPS) to obtain the time (in seconds) when the vehicle appears on the screen. That 
frame number is used for determining the departure time of the vehicle. 

Figure 4. Vehicle Detection and Tracking Using YOLO. 

2.3 Generation of SUMO-Compatible XML Files 

The static road network layout file and the dynamic vehicle route file are necessary to run a 
SUMO simulation.  

The generation of static road network layout involves 3 important files: 
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 Node File (.nod.xml): This file defines the intersection points and the junctions in 
the road. It also includes the signal locations and priority intersections. 

 Edge File (.edg.xml): It defines the road segments that connect different nodes, 
which finally represent the real-world road links. 

 Type File (.typ.xml): The file contains the characteristics of the road, such as the 
number of lanes and speed limits.  

Once the node, edge, and type XML files are generated, they are converted into a network 
file (.net.xml) using the standard SUMO tool of ‘netconvert’ for converting plain XML files into 
SUMO-compatible network files (.net.xml). Any obtained SUMO network file (.net.xml) repre-
sents a 4-way intersection, as depicted in Figure 3. It is validated against the OSM-derived 
network layout to ensure that it accurately represents the real-world traffic infrastructure as 
derived from OSM data. 

Apart from the static road network file generation, a dynamic route file (.rou.xml) is required 
to simulate the vehicle movement in the network. The information extracted from YOLO along 
with other parameters during real-time video analysis is used to make the route file. A simple 
conversion using python is carried out where every tracked vehicle information is converted 
into XML files as required by the simulator. The details extracted in the dynamic video analysis, 
such as vehicle id, departure time, speed, route, and vehicle type for each vehicle are used to 
create the route (.rou.xml) file. This route file serves as a dynamic input to the SUMO simulator 
to replicate the real video traffic flow in the given network manually created. Such an approach 
ensures the accurate and real representation of traffic volumes as in the real world. 

Lastly, in order to be able to run the simulation in SUMO, a SUMO configuration (.sumocfg) 
file is necessary, obtained by combining static and dynamic data and by referring to the location 
of each file. The configuration file is the main input to initiate SUMO simulation. It indicates the 
road network to be used, and vehicle traffic in the simulation. Additionally, it also holds settings 
like simulation duration and step length. Input with this configuration file, simulation can be 
performed. 

2.4 SUMO Traffic Simulation 

The open-source traffic simulator (SUMO) serves as the DiT of the physical roadways to sim-
ulate various traffic scenarios to figure out the most favorable setting for the subsequent time 
window. DiTAT simulates 20 different traffic scenarios, plus one static traffic scenario in each 
12-minute real-world video. Different decision intervals are evaluated, represented by X, as 
shown in Figure 1, where X means the time at which the decision is made to adjust the traffic 
light setting (i.e., the green-yellow-red cycle). For this study, the decision intervals of 2 minutes, 
3 minutes, 4 minutes, and 6 minutes are explored. A thorough analysis is done at each time 
interval using the key transport performance metrics: throughput and mean travel time. The 
throughput represents the number of vehicles passing through the intersection per minute un-
der the current traffic light setting, whereas the mean travel time indicates how long on average 
it takes for a vehicle to travel from the entry line and the exit line.  

At every X interval, different traffic light settings are tested to obtain their throughput and 
average time via SUMO simulation, as digital twin-aided control. The setting that yields the 
best throughput is desirable, chosen for use in the next time window. This process repeats 
window by window, which ensures robust and dynamic traffic control.  

The time period of each traffic light (green, yellow, and red) is dynamically adjusted 
through TraCI (Traffic Control Interface) [22], which is a Python-based API that gives access 
to control SUMO traffic simulation in real-time. TraCI provides the ability to extract real-time 
vehicle information during SUMO simulation, such as the current vehicle position, lane number, 
and speed. Additionally, it provides flexibility for the dynamic modifications of the traffic signals. 
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For instance, consider the traffic intersection shown in Figures 5, 6, and 7, where the intersec-
tion layout has the lane number defined for each direction. Green lines in Figure 5 represent 
the traffic flow within each lane during the course of simulation. The phase for Figure 5 is 
defined as “GGGrrrrrrrGGGrrrrrrr”, denoting a 15-second green light duration for the North-
South direction and a 15-second red light duration for the remaining directions. This phase is 
followed by a yellow light duration for 5 seconds in the North-South direction and then a red 
light in the remaining direction, as depicted in Figure 6, followed by green lights for turning to 
the east and west direction respectively for 5 seconds, as illustrated in Figure 7. Afterward, the 
traffic light cycle is for East-West traffic in the next phase. 

A total of 21 scenarios are tested in a similar manner but having varying cases. Some of 
the key scenarios include:  

 Balanced traffic movement, with an equal amount of green light for the NS and EW 
directions each. 

 Longer green lights are provisioned for direction with greater vehicle movements.  
 Shorter green lights for both directions upon more frequent phase changes.  
 Priority for turning traffic to enable vehicles with uninterrupted flows. 
They ensure that DiTAT employs possible scenarios before choosing the optimal setting 

for the next time window. 

3. Evaluation and Result Discussion 

This section details our DiTAT evaluation and obtained results in comparison with those under 
the static traffic light setting for the data extracted from real-world 12-minute traffic videos avail-
able to the public [21]. The transport performance metrics of our evaluation are the throughput 
(the number of vehicles exiting from a roadway intersection per minute) and the mean travel 
time (for a vehicle to travel from its entering zone of the intersection to its exiting zone, in 
second).  Bar graphs below show the comparative performance metric results of DiTAT and 
static traffic light settings under different decision intervals (2, 3, 4, and 6 minutes).  DiTAT 
adjusts the traffic light settings at decision time points adaptively, whereas the static setting 
employed a fixed traffic light setting.  Our evaluation was conducted on various real-world traf-
fic videos, with the results of two representative 12-minute videos taken at one traffic intersec-
tion (i.e., 116th & NE12th St.) in the City of Bellevue, Washington [21].  

        
Figure 5. Green Phase for 

NS Direction. 

  
Figure 6. Yellow Phase for 

NS Direction. 

 
Figure 7. Red Phase for NS 

Direction. 
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Figure 8. Comparative Results of DiTAT and Static Traffic Light Settings. 
(for the first video under the traffic light setting time of 6 minutes, with Y-axis referring to vehicle count 
per minute for throughput and to the mean travel time of a vehicle across the pair of reference lines).  

3.1 Evaluation Results 

Figure 8 shows the evaluation results for the first video when the traffic light setting is changed 
once in 6 minutes (i.e., the time window for light setting changes), for the traffic light cycle time 
to range from 2 minutes to 6 minutes.  The unit of Y-axis is the vehicle count per minute for 
throughput results, and it is in seconds for mean travel time results.  As can be seen, DiTAT 
gives rise to the best performance at the cycle time = 6 minutes, if both metrics are considered.  
For the cycle time of 2 minutes, DiTAT has a slightly larger throughput value (13.9 versus 12.3) 
but a substantially longer mean travel time (25.3 seconds versus 10.4 seconds), in comparison 
to the cycle time of 6 minutes.  When compared with the static setting under the cycle time of 
6 minutes, DiTAT is marginally superior in both metrics. 

Figure 9. Comparative Results of DiTAT and Static Traffic Light Settings. 
(for the first video under the traffic light setting time of 4 minutes, with Y-axis referring to vehicle count 
per minute for throughput and to the mean travel time of a vehicle across the pair of reference lines). 

The evaluation results for the first video when the traffic light setting is changed once in 4 
minutes are demonstrated in Figure 9, where the traffic light cycle time equals 2 minutes and 
4 minutes. It is found that DiTAT enjoys better performance for the cycle time of 4 minutes, 
exhibiting a higher throughput and yet a smaller travel time, when compared with those for the 
cycle time of 2 minutes.  Furthermore, DiTAT under the cycle time of 4 minutes has a markedly 
higher throughput (of 14.2 versus 10.1) in comparison to its static setting counterpart, albeit a 
slightly longer travel time (21.8 seconds versus 20.4 seconds). 

 

 

Time (in Minute) 

Time (in Minute) 
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Figure 10. Comparative Results of DiTAT and Static Traffic Light Settings. 
(for the second video under the traffic light setting time of 6 minutes, with Y-axis referring to the vehicle 

count per minute for throughput and to the mean travel time of a vehicle across the pair of reference 
lines). 

Figure 10 depicts the evaluation results for the second video when the traffic light setting 
is changed once in 6 minutes (i.e., the time window for light setting changes), for the traffic 
light cycle time to range from 2 minutes to 6 minutes.  The unit of Y-axis is the vehicle count 
per minute for throughput results, and it is in seconds for mean travel time results.  As can be 
seen, DiTAT again has the best performance at the cycle time = 6 minutes, when both perfor-
mance metrics are taken into consideration, since its throughput is slightly smaller (22.7 versus 
23.5) but its mean travel time is lower substantially (13.2 seconds versus 27.5 seconds) when 
compared with the cycle time of 2 minutes.  DiTAT has compatible performance when com-
pared with its static traffic light setting counterpart.  

Figure 11. Comparative Results of DiTAT and Static Traffic Light Settings. 
(for the second video under the traffic light setting time of 4 minute, with Y-axis referring to the vehicle 
count per minute for throughput and to the mean travel time of a vehicle across the pair of reference 

lines). 

The evaluation results for the second video when the traffic light setting is changed once 
in 4 minutes are shown in Figure 11, where the traffic light cycle time equals 2 minutes and 4 
minutes.  It is found that DiTAT enjoys better performance for the cycle time of 4 minutes, 
exhibiting a slightly lower throughput but a noticeably smaller travel time, when compared with 
those for the cycle time of 2 minutes.  Additionally, DiTAT under the cycle time of 4 minutes 
enjoys a marginally higher throughput (of 22 versus 21.5) and a measurably smaller travel 
time, in comparison to its static setting counterpart. 

 

 

Time (in Minute) 

Time (in Minute) 
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3.2 Discussion 

Overall, the traffic light setting time of 6 minutes for DiTAT appears advantageous when both 
transport performance matrices are taken into consideration, always outperforming its static 
light setting counterpart.  DiTAT may exhibit a markedly higher throughput than its static coun-
terpart, for the cycle time of 4 minutes. 

DiTAT is suited for deployment in the field since it makes near real-time control decisions 
on the fly. Its involved YOLO starts to process video frames as soon as observing several of 
them, with its processing times on the arrival frame stream no more than the inter-frame time 
interval (~ 35 ms), The SUMO simulator takes some 50 seconds to start and can be launched 
soon after YOLO starts its process, waiting for the output file produced by YOLO to complete 
before its simulation scenarios actually proceed.  Multiple threads carry out simulation scenar-
ios concurrently, as they are all independent.  Under the MacBook Pro we employed, each 
simulation thread takes some 50 ms to consume the YOLO output data corresponding to 1-
minute video frames.  Hence, the traffic light setting decision will be available in less than 1 
second after the video frames of a traffic light cycle (say, 3 minutes) end, achieving near real-
time decision-making.  In addition, DiTAT can work (with proper result adjustments) when the 
surveillance camera moves to the sides of an intersection.  The adjustment depends on the 
position after a move. 

4. Conclusion 

This proposed design on digital twin-aided municipal traffic control (DiTAT) seeks to boost 
traffic management in municipalities, where abundant road-side surveillance cameras exist for 
monitoring traffic continuously.  Data observed by those cameras are pre-processed in real 
time by YOLO as the input of a digital twin (DiT) realized by the SUMO simulator, which simu-
lates the physical roadway configuration of a target municipal region with inputted traffic vol-
umes to arrive at the best control settings of all involved traffic lights at an intersection in the 
next time window reactively.  Our performance evaluation based on two real-world traffic vid-
eos indicates that DiTAT leads to improved transport performance, possibly with noticeable 
throughput improvement when the traffic light cycle time equals 4 minutes.  Further investiga-
tion into proactive traffic light settings for DiTAT is underway, relying on traffic predictions for 
more pronounced performance improvement. 
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