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Abstract. Urban traffic management is a critical challenge in modern cities, neces-
sitating innovative solutions to optimize traffic flow and reduce congestion. This re-
search presents the development of an AI engine leveraging spatio-temporal learning
techniques for urban traffic calibration. The proposed methodology leverages digital
twin scenarios driven by microscopic simulations, which capture detailed vehicle be-
haviors—including interactions, lane changes, and driver dynamics to provide granu-
lar insights into urban traffic patterns. At the core of the AI engine is the Dynamic
Spatio-Temporal Graph Attention Network (DSTGAT), a hybrid model that combines
multi-head Graph Attention Networks (GATv2) with Long Short-Term Memory (LSTM)
networks. DSTGAT exploits the joint spatio-temporal relationships inherent in traffic
data by processing sequential snapshots of urban traffic, where each snapshot is rep-
resented as a graph with nodes indicating urban zones and edges carrying continuous
flow values. The GATv2 layers, enhanced with residual connections and batch normal-
ization, extract robust spatial embeddings, while the LSTM aggregates these embed-
dings over time to capture dynamic patterns and predict future traffic flows in real-time.
The AI engine incorporates an iterative feedback loop that continuously refines the OD
demand using synthetic scenarios, improving estimation accuracy across diverse ur-
ban environments. Preliminary results show that the DSTGAT-based framework lowers
OD-estimation error on simulated data, suggesting its usefulness as an input to down-
stream traffic-management strategies.
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1. Introduction

Rapid urbanization and the complexity of modern transportation networks have inten-
sified the challenges in traffic management. Modern cities need optimized traffic flow,
real-time calibration and the integration of Artificial Intelligence (AI) into traffic systems
offers a promising solution.

One of the biggest challenges in deploying deep learning techniques is obtaining
proper datasets to train, validate, and test the models. Nevertheless, these models
are linked to specific urban environments and the AI designed in one city can hardly
be applied to a different one due to the spatial and temporal dependencies. In this
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study, we demonstrate how a traffic simulation environment can be used as a digital
twin to artificially create datasets, which can then be effectively used to train spatio-
temporal models specific to urban traffic patterns. These virtual datasets can bridge
the gap between cities with different traffic behaviors, providing a scalable solution for
overcoming the challenges imposed by spatial and temporal dependencies. By gener-
ating realistic traffic conditions similar to those encountered in diverse environments,
the digital twin allows for model transferability and rapid adaptation of AI systems to
new cities or changing traffic scenarios, without relying on the availability of large-scale
real-world datasets. This approach opens the door for more flexible, data-driven traffic
management solutions.

This research introduces an AI engine that uses spatio-temporal learning tech-
niques in microscopic simulation data that capture individual vehicle behaviors, includ-
ing movements, interactions, and lane changes, for urban traffic calibration. Our ap-
proach is built around the Dynamic Spatio-Temporal Graph Attention Network (DST-
GAT), which combines multi-head Graph Attention Networks (GATv2) and Long Short-
Term Memory (LSTM) networks to merge spatial and temporal information. Each traf-
fic snapshot is modeled as a graph, where nodes represent Traffic Assignment Zones
(TAZs) and edges carry continuous flow values. GATv2 layers, enhanced with residual
connections and batch normalization, extract robust spatial embeddings that are then
aggregated over time by an LSTM to predict future traffic states.

Our AI engine accurately calibrates and predicts traffic flows, a crucial step for
effective traffic management. Synthetic scenario testing, varying origin-destination ma-
trices and traffic densities, validates the method’s robustness and adaptability across
different urban conditions.

Key contributions of this work include:

• A robust pipeline that integrates SUMO with an AI calibration engine, ensuring
realistic simulation inputs and dynamic demand adjustments.

• A methodology for pre-training DSTGAT on historical datasets and fine-tuning it
online with real-time data, enabling continuous calibration and rapid adaptation to
evolving traffic conditions.

• A comprehensive validation framework that yields results closely aligned with real-
world traffic behavior.

Figure 1. Overview of traffic calibration workflow.

Figure 1 illustrates the overall workflow, from the generation of simulation data to
the validation and calibration of AI-driven traffic.

The remainder of this paper is structured as follows. Section 2 reviews the relevant
literature and theoretical foundations. Section 3 details the design and integration of
the AI engine within the simulation framework. Section 4 describes the experimental
setup and data analysis, while Section 5 discusses the findings and their implications
for urban traffic management. Finally, Section 6 presents the conclusions and outlines
the potential future research directions.
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2. Related Works

The calibration of traffic models in large urban environments is a fundamental research
problem, enabling applications ranging from real-time traffic management to long-term
transportation planning. Urban traffic flow calibration in large-scale environments is
a computationally demanding and data-intensive problem. Over the past decades,
various methods have been developed to estimate traffic demand and calibrate sim-
ulation models, broadly categorized into analytical methods, simulation-based meth-
ods, dimensionality reduction techniques, hybrid approaches leveraging problem struc-
ture, machine learning techniques, and more recently deep-learning based methods for
spatio-temporal analysis. The effectiveness of these methods depends on factors such
as scalability, computational efficiency, and data availability. Dimensionality reduction
and hybrid problem-structured algorithms have improved scalability, but challenges re-
main in achieving efficient and accurate calibration for large-scale transportation net-
works.

Analytical methods, commonly referred to as demand estimation, rely on mathe-
matical formulations to infer travel demand based on observed traffic counts and his-
torical data. They provide rapid estimation but struggle with complex traffic dynamics.
Foundational work in this field includes [1], [2], [3]. These methods are computationally
efficient and provide optimal solutions under specific assumptions about network equi-
librium and route choice behavior. Other analytical methods include temporal series
modeling with ARIMA [4], However, their applicability to large-scale networks is lim-
ited due to the need for simplified traffic flow models, which may not capture complex
congestion dynamics and non-recurrent traffic conditions accurately.

Simulation-based methods represent a more flexible alternative, where stochastic
traffic simulation models are iteratively adjusted until they match observed data. They
offer greater flexibility at the cost of high computational costs. These approaches gen-
erally employ stochastic optimization (SO) algorithms such as Simultaneous Perturba-
tion Stochastic Approximation (SPSA) [5], [6], [7], [8] and genetic algorithms (GA) [9],
[10], [11]. however, they are computationally expensive for large-scale traffic networks.
GA and other derivative-free algorithms [12] have been widely used in traffic calibration
due to their ability to explore complex search spaces. However, GA is computationally
intensive, especially for high-dimensional problems, as it requires extensive function
evaluations to achieve convergence.

Given the challenges associated with high-dimensional calibration problems, re-
searchers have explored dimensionality reduction techniques to improve scalability.
Methods such as sensitivity analysis [13], [14] and Principal Component Analysis
(PCA) [15], [16] help reduce the number of calibration parameters by identifying critical
variables that influence traffic dynamics. These methods improve computational effi-
ciency by limiting the search space of the optimization process. However, they rely on
assumptions about correlations among variables, which may lead to information loss
or suboptimal solutions in complex urban scenarios with highly nonlinear dynamics.
Exploiting the underlying structure of traffic calibration problems enhances computa-
tional efficiency. These approaches integrate analytical approximations of system be-
havior into the calibration algorithm. First-order derivative approximations within the
calibration process significantly reduce computational requirements[17]. While these
approaches improve both efficiency and scalability, their success depends on the avail-
ability of accurate analytical formulations of traffic dynamics, which may not always be
feasible for highly congested and heterogeneous urban networks.
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Machine learning models have been widely used in traffic prediction due to their
ability to handle stochastic processes and non-linear traffic patterns. The K-Nearest
Neighbors (KNN) method [18] identifies similar historical traffic conditions to predict
short-term travel times, offering simplicity but struggling with sparse datasets. Support
Vector Machines (SVMs) map non-linear traffic data into high-dimensional spaces for
classification, providing robust performance with limited data, but requiring extensive
parameter tuning and computational resources.

Probabilistic models such as Bayesian Networks [19] and Hidden Markov Models
(HMMs) [20] have been applied to capture uncertainty in OD demand and short-term
traffic variations. While Bayesian methods excel in managing missing data, they rely on
strong prior knowledge, which may not always be available. Similarly, HMMs effectively
model sequential dependencies but face scalability challenges when applied to large
transportation networks. The primary limitation of machine learning approaches is their
dependency on large labeled datasets, which are often difficult to obtain.

Deep learning has emerged as a powerful alternative, capable of capturing com-
plex spatiotemporal dependencies in traffic data. Long Short-Term Memory (LSTM)
networks [21] improve urban travel time prediction by modeling long-range dependen-
cies in sequential data. However, they fail to capture spatial correlations between dif-
ferent traffic zones. To address this, hybrid CNN-LSTM models [22], [23] integrate
convolutional neural networks (CNNs) to extract spatial patterns before passing the
data to LSTMs for temporal forecasting. This method achieves higher accuracy than
standalone CNN or RNN models but remains limited to grid-based spatial data, making
it unsuitable for road networks with irregular structures.

To overcome grid limitations, researchers have applied Graph Convolutional Net-
works (GCNs), which process traffic networks as graph-structured data rather than reg-
ular grids. Spectral-based GCNs [24] effectively model global dependencies in trans-
portation networks but require high computational resources. Spatial-based GCNs
[25] reduce computational complexity by aggregating local node information, improv-
ing scalability. However, GCN-based models still suffer from decreasing accuracy in
multi-step forecasting, limiting their reliability for long-term predictions.

Attention mechanisms have been used recently since they enhance prediction
models by dynamically selecting relevant information. Self-attention layers [26] have
shown success in node classification for graph structures, while multi-level attention
networks [27] improve correlation analysis in sensor data. Despite their potential,
attention-based models increase computational costs due to the need to train sep-
arate models for each time series, making them impractical for real-time applications.
Multi-step traffic flow prediction is improved by integrating graph convolutional networks
(GCN) for spatial modeling and Attention Encoder Networks (AEN) for temporal corre-
lation considering external factors such as daytime, weekdays, or accidents [28], [29].

Graph Convolutional Networks (GCN) and Gated Recurrent Units (GRU) have
been used to used to extract spatio-temporal correlations in urban road networks [30]
using traffic checkpoint data for broader coverage and higher reliability. Unlike GPS-
based methods, a GCN-GRU model first predicts vehicle trajectories by learning spatial
dependencies, then forecasts checkpoint-level traffic flow, achieving higher accuracy
than conventional methods.

Dynamic spatio-temporal graph attention networks (DSTGAT) leverage GAT and
GRU to capture spatial and temporal dependencies for traffic flow prediction [31]. DST-
GAT integrates periodic patterns (adjacent, daily, weekly) and enhances non-adjacent
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correlations using Pearson coefficients, while applying as well the attention mecha-
nisms.

3. Design of the Dynamic Urban Traffic Calibration Framework

This section presents a dynamic urban traffic calibration framework that integrates
three key components: a robust traffic pipeline for preprocessing and simulating traffic
data, a demand generation module that creates realistic traffic scenarios, and an AI
calibration engine that continuously optimizes control parameters based on live condi-
tions.

3.1 Traffic Pipeline

The Traffic Pipeline is the backbone of our simulation framework, orchestrating the en-
tire process from the initialization of the SUMO simulator to the real-time collection and
storage of traffic data (see Figure 2). The pipeline begins by launching SUMO with
a comprehensive set of customizable options—including configuration for GUI mode,
mesoscopic simulation, and selective recording of emissions and vehicle statistics.
During this initialization phase, essential configuration files and scripts are verified,
the appropriate command-line arguments are constructed, and the traci API is used to
start the simulation. Once SUMO is running, the system caches the network’s edge
information (excluding internal edges) to enable efficient subscription to critical traffic
variables, such as vehicle counts, speeds, and emissions.

Figure 2. Traffic pipeline.

In parallel, the pipeline sets up a SQLite database, which can operate in-memory
or on-disk based on user specifications, and executes a predefined SQL script to cre-
ate the necessary schema for storing various metrics, including edge values, vehicle
details, and aggregated flows. Thread locks and an asynchronous writing mechanism
ensure thread-safe interactions with the database, allowing the simulation loop to pro-
ceed without I/O bottlenecks. Concurrently, the pipeline subscribes to a suite of traffic
parameters via traci, with configurable flags controlling the collection of data for edges,
vehicles, and detectors. This setup captures a wide range of metrics at each simulation
time step, from basic counts and speeds to detailed emission profiles and travel times.
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This modular approach enables us to simulate a medium-sized city like Guadala-
jara with 40,000 vehicles over a 24-hour period and efficiently collect camera snapshots
and edge information in just four minutes on a regular desktop PC.

3.2 Demand Generation

Traffic simulation input begins with an Origin-Destination (OD) matrix that represents
baseline travel demand. This matrix is enriched with additional inputs—such as Traffic
Analysis Zone (TAZ) definitions, detector placements, and vehicle heterogeneity—to
more accurately reflect real-world conditions.

Table 1. Fleet Distribution.

Fleet Type Distribution
Bus 0.018
Electric 0.029
Emergency 0.008
Motorcycle 0.112
Passenger 0.707
Truck 0.126

Based on Spain’s official dataset [32], the fleet demand was calibrated to reflect
typical urban traffic. Table 1 presents the distribution across vehicle types, ensuring
the simulation captures a realistic mix of traffic behaviors.

Figure 3. Demand generation diagram.

Figure 3 provides an overview of the demand generation process for the traffic
simulation. The workflow begins by reading the OD matrix from an input file and parsing
its data. This matrix is then perturbed by applying random multipliers to each OD trip,
introducing realistic demand variability. In parallel, TAZ data is processed to extract
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sources and sinks, leading to the formulation of TAZ edges, which define the spatial
structure of the simulation network.

Subsequently, the perturbed OD matrix is segmented into specific time intervals.
These intervals are used to distribute vehicles according to the calibrated fleet distribu-
tion and assign random departure times. The combined spatial and temporal informa-
tion results in subhourly demand profiles. Finally, the processed data is mapped onto
the TAZ edges and formatted into an XML file, which serves as the input for the SUMO
simulation environment.

Figure 4. Historical demand.

Figure 4 illustrates the sub-hourly traffic demand profiles produced by the work-
flow described above. Each line represents a distinct demand scenario, reflecting the
variability introduced by random perturbations to the baseline OD matrix and diverse
demand configurations. These demand profiles serve as the training input for the DST-
GAT model, enabling it to learn the spatial and temporal patterns underlying urban
travel behavior.

3.3 AI-Based Traffic Calibration Engine

At the core of the framework is the DSTGAT model, which fuses spatial and temporal
learning to estimate time-varying origin–destination (OD) flows that can later inform
traffic-control decisions.

The model processes traffic data represented as a sequence of graph snapshots.
Each snapshot encodes the urban network at a specific time step with nodes repre-
senting traffic zones and edges carrying traffic flow values. Node features are one-hot
encoded, ensuring that each zone is uniquely identified. Spatial dependencies are
modeled via multiple layers of a modified graph attention mechanism. In each snap-
shot, the ResidualGATv2Conv layer applies a GATv2 operation with a residual con-
nection and batch normalization, allowing the model to capture intricate relationships
between zones while stabilizing the learning process.

To predict traffic flow between zones, the model combines the embeddings of node
pairs connected by an edge. A dedicated multi-layer perceptron (MLP) processes the
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concatenated embeddings of each node pair to output a continuous prediction of traffic
intensity for that edge. This design allows the DSTGAT to focus specifically on edge-
level dynamics, crucial for calibrating traffic control parameters.

The engine utilizes a custom TrafficWindowDataset that constructs training snap-
shots by extracting sliding windows of graph snapshots with a configurable window size
and a prediction horizon. Historical data, preprocessed from raw simulation outputs, is
used to pretrain the model, capturing long-term traffic patterns. In parallel, a real-time
online prediction module ingests current snapshots, and if available, loads updated
online weights. Otherwise, it defaults to the pretrained model. Fine-tuning occurs peri-
odically, whereby recent data is used to adapt the model continuously to evolving traffic
conditions.

The model is trained using a Mean Squared Error (MSE) loss, enhanced with
optional L1 and L2 regularization to prevent overfitting. The training process lever-
ages modern optimization techniques, including adaptive learning rates and mixed-
precision training, to ensure efficient convergence. Predictions are validated against
live data, with metrics such as Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) guiding iterative model refinement.

Figure 5. Workflow diagram.
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Figure 5 outlines the end-to-end workflow of the calibration engine. The process
begins with SUMO as a microscopic traffic simulator that generates raw traffic data.
This raw data is preprocessed and converted into one-hot encoded graph snapshots,
representing the spatial configuration of the urban network at specific time intervals.

These snapshots are employed in two complementary pathways. First, a subset
is used for historical pretraining of the DSTGAT model, generating robust parameters
that capture long-term traffic patterns. Simultaneously, current snapshots are input for
real-time traffic flow prediction. In this case, if updated online weights from previous
iterations are available, the model loads these; otherwise, it defaults to the pretrained
parameters. The resulting predictions are then validated against live data, forming the
basis for iterative fine-tuning.

Validation feedback is integral to this process. The predicted traffic flows are com-
pared to observed values, and discrepancies are used to iteratively fine-tune the model
parameters. The updated weights are saved and subsequently integrated into the next
prediction cycle, forming a closed-loop system that continually adapts to dynamic urban
traffic conditions.

This integrated approach—leveraging spatial attention to capture inter-zone de-
pendencies and LSTM based temporal aggregation enables DSTGAT to learn complex
spatio-temporal relationships, providing a robust and adaptive calibration mechanism
that enhances urban traffic management.

4. Case Study

Guadalajara has been studied in previous research[33], particularly in the context of
urban mobility and Low Emission Zones. Given its well-documented road network,
diverse traffic flow patterns, and the availability of detailed mobility data, we have se-
lected Guadalajara once again as the testbed for our AI-based traffic calibration frame-
work. This section details the TAZs within the city and their unique characteristics,
forming the foundation for our simulation experiments.

4.1 Guadalajara Road Network

Guadalajara’s urban area is divided into multiple zones, each with distinct mobility pat-
terns and functional roles, as illustrated in Figure 6. This specific grouping is purely
illustrative and does not affect the DSTGAT’s graph construction or performance, which
we categorize as follows:

• Low Emission Zone (LEZ) (Green Area): A central district with stricter envi-
ronmental regulations that limit high-emission vehicles. Traffic dynamics here are
influenced by emission control measures and pedestrian-friendly policies.

• Residential Zones (Blue Areas): High-density neighborhoods with typical com-
muting patterns, dominated by local trips, school runs, and connections to com-
mercial or industrial areas.

• Industrial Zones (Gray Areas): Characterized by heavier freight traffic and peak-
hour congestion tied to industrial shift schedules.

• Major Entry/Exit Points (Red Nodes): Highway interchanges and key junctions
that regulate traffic flow into and out of the city, serving as boundary conditions in
our simulation.
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Figure 6. Guadalajara TAZ configuration.

Each TAZ serves as a node in our AI-based calibration framework, where traffic
flows are continuously adjusted using the DSTGAT model. By including a variety of
zone types—ranging from residential to industrial corridors—we capture the diverse
traffic behaviors that emerge under different urban functions.

Figure 7. Network detectors.

Figure 7 shows the distribution of traffic detectors across highways, major arteri-
als, minor arterials, collector roads, and local streets. These detectors provide real-time
flow, speed, and occupancy data, forming the backbone of the model’s online calibra-
tion. Their strategic placement ensures robust coverage of key network segments and
allows the DSTGAT to adapt dynamically to changing traffic conditions.
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5. Experimental Results

This section evaluates the performance of the proposed AI-based calibration framework
on a full-day traffic simulation of Guadalajara. The analysis focuses on comparing
predicted and observed traffic flows, quantifying errors at both global and zone-specific
levels, and illustrating the model’s capacity to capture temporal patterns.

Figure 8. Predicted traffic flow comparison.

Figure 8 shows the aggregated comparison between real and predicted traffic flow
across the entire urban network. Overall, the model tracks the diurnal traffic pattern
closely, accurately capturing both morning and evening peaks. The small discrepancies
at certain peak hours highlight the complexity of urban dynamics but remain within
acceptable bounds for real-time traffic calibration. The framework achieves a mean
absolute error (MAE) of 5.27, showing an error of 5.27 vehicles every 15 minutes, and
an R2 of 0.69, indicating strong predictive capability for most time intervals.

Figure 9 zooms in on a single TAZ aguasvivas and compares inbound and out-
bound flows. The model aligns closely with observed values, capturing both the morn-
ing and afternoon surges. Minor deviations occur at the highest peak, reflecting lo-
calized fluctuations in demand. These results confirm that the DSTGAT architecture,
with its combined spatio-temporal attention and online fine-tuning, adapts well to both
network-wide and zone-level variations.

Lastly, Figure 10 offers a more granular view, displaying the relative error (%) for
each origin–destination TAZ pair. Cooler shades (blue) represent underestimating traf-
fic flows, whereas warmer shades (red) indicate overestimating flows deviations. In
general, most cells remain in the low-error range, demonstrating consistent perfor-
mance across the network. A few TAZ pairs show moderate error spikes, often corre-
lated with complex routes or sudden changes in demand.

In summary, the proposed framework demonstrates robust predictive accuracy for
a medium-sized urban environment. By maintaining low errors across diverse TAZ
pairs and time periods, the system proves suitable for real-time traffic calibration and
management tasks. The detailed error analyses also highlight opportunities for further
refinement, such as enhanced detector coverage or tailored modeling of high-variance
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Figure 9. TAZ traffic flow.

Figure 10. Relative error matrix.

routes. Overall, these results underscore the efficacy of integrating advanced AI meth-
ods with microscopic simulation for dynamic and data-driven urban traffic calibration.

5.1 Data Points and Scalability of the Approach

This section quantifies two key aspects of our method:

• The total number of training snapshots (data points) generated from our synthetic
scenarios, to ensure sufficiency of data for model learning.
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• The computational complexity of training and inference, expressed via a density-
adjusted graph size and overall processing cost, to assess scalability to larger
urban networks.

5.1.1 Training Snapshots and Data Points

To compute the total number of data points used for training, we apply a sliding time-
window of length over each full-day simulation of snapshots, with a prediction horizon
of snapshots.

M = S
(
T −W −H + 1

)
(ec 1.1)

M Total number of data points (snapshots) generated.
S Number of synthetic demand scenarios.
T Number of time steps per day.
W Sliding window size.
H Prediction horizon.
+1 Inclusive count to ensure both the very first and very last valid window start are

counted.

5.1.2 Computational Complexity and Density Factor

Each traffic snapshot is a graph with NTAZ nodes.

Emax = NTAZ (NTAZ − 1) (ec 1.2)

Emax Maximum possible edges in a fully connected graph.
NTAZ Total number of Traffic Analysis Zones.

To model realistic network sparsity, we introduce a density factor θ (0 < θ ≤ 1):

E = θ
[
NTAZ (NTAZ − 1)

]
(ec 1.3)

E Actual number of edges (observed zone-to-zone connections).
θ Density factor: fraction of possible edges present.

Equivalently, the density factor can be computed as:

θ =
E

Emax

(ec 1.4)

θ Density factor (0–1).
E Actual edges counted.

Emax Maximum possible edges.

5.1.3 Processing Cost Estimation

The total processing cost scales with the number of scenarios, time steps, and edges:
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C ∝ S × T × E = S × T × θ ×NTAZ (NTAZ − 1) (ec 1.5)

C Relative processing cost metric.
S Number of scenarios.
T Time steps per scenario.
E Number of edges per snapshot.
θ Density factor.

NTAZ Number of zones.

5.1.4 Example: Guadalajara Scenario

First, we compute the number of training snapshots:

M = 12×
(
1440− 10− 5 + 1

)
= 12× 1426 = 17 112 snapshots.

Next, the graph-edge counts:

Emax = 17× (17− 1) = 17× 16 = 272,

E = θ × Emax = 0.0846× 272 ≈ 23 edges.

Finally, the relative processing cost:

C ∝ S × T × E = 12× 1440× 23 = 397 440 (edge-evaluations per day).

Generating 17,112 training snapshots from just 12 daily simulations already yields
a substantial dataset for DSTGAT training. The graph size, 17 nodes and only 23
edges on average, keeps per-snapshot computations light. Over one full day (1,440
snapshots), the model performs roughly 397,440 edge operations. This demonstrates
that for a medium-sized city like Guadalajara, both data volume and computational
load are easily handled by standard hardware, validating the practical scalability of our
approach.

6. Results and Contributions

This research presents a methodology that couples microscopic simulation with spatio
temporal deep learning to accelerate the calibration of OD demand for medium-sized
cities. Our framework integrates a traffic-simulation pipeline, realistic demand genera-
tion, and the DSTGAT model to predict dynamic OD flows in real-time. Experimental
results show that our model achieves a MAE of 5.27 vehicles per 15 minutes and an R2

value of 0.69, demonstrating both accuracy and consistency in traffic flow predictions.
Considering that the simulation involves 40,000 vehicles, this error represents a very
small percentage, underscoring the model’s precision.

A key contribution of this study is the capability to simulate medium-sized urban
areas such as Guadalajara with 40,000 vehicles over a 24-hour period in just a few
minutes. This accelerated simulation process generates high-fidelity synthetic datasets
that are essential for training spatio-temporal models tailored to the dynamic nature of
urban traffic. In parallel, our advanced AI calibration engine, powered by DSTGAT, ef-
fectively fuses spatial and temporal information by combining GATv2 and LSTM layers,
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capturing complex inter-zone dependencies and adapting to evolving traffic conditions
via online fine-tuning. The framework’s modular and scalable design further allows for
the flexible incorporation of diverse urban scenarios and additional data sources, en-
suring its adaptability to various urban environments. Real-time predictive capabilities,
achieved through integrated data processing, asynchronous database management,
and API connectivity, ensure continuous monitoring and calibration—a critical require-
ment for dynamic urban mobility management.

The broader implications of our findings extend beyond improved traffic flow and
congestion reduction. By enabling rapid and scalable simulation of large urban envi-
ronments, our framework lays a robust foundation for future urban planning initiatives
and policy-making aimed at enhancing mobility, reducing travel times, and lowering
vehicular emissions.

6.1 Future Research Lines

In future research, we aim to develop an AI system capable of automatically identifying
critical zones within urban networks to optimize the placement of camera detectors.
Strategic positioning of these sensors is essential for calibration systems, as it pro-
vides the model with comprehensive insights and representative patterns, ultimately
enhancing its predictive accuracy.

Furthermore, we will scale the framework to truly metropolitan networks by parti-
tioning the city into hierarchical subgraphs, each running its own DSTGAT instance and
exchanging boundary-condition summaries via a lightweight edge-computing layer.
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