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Simulation-based origin-destination matrix  
reduction: a case study of Helsinki city area 
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1 University of Helsinki, Finland 

Abstract. Estimation of a travel demand in a form of origin-destination (OD) matrix is a 
necessary step in a city-scale simulation of the vehicular mobility. However, an input data on 
travel demand in OD matrix may be available only for a specific set of traffic assignment zones 
(TAZs). Thus, there appears a need to infer OD matrix for a region of interest (we call it ‘core’ 
area) given OD matrix for a larger region (we call it ‘extended’ area), which is challenging as 
trip counts are only given for zones of the initial region. To perform a reduction, we explicitly 
simulate vehicle trajectories for the extended area and supplement trip values in ‘core’ TAZs 
based on the recorded trajectories on the border of core and extended areas. To keep valida-
tion results consistent between extended and core simulations, we introduce edge-based 
origin-destination assignment algorithm which preserves properties of traffic flows on the bor-
der of the core area but also keeps randomness in instantiating simulation for the core area.  

The experimental study is performed for Helsinki city area using Simulation of Urban MO-
bility (SUMO) tool. The validation was performed using DigiTraffic data from traffic counting 
stations within the city area for workdays of autumn 2018. Validation results show that the 
reduced OD matrix combined with edge-based OD assignment algorithm keeps the simulated 
traffic counts in good agreement with results from the extended area simulation with average 
MAPE between observed and simulated traffic counts equal to 34%. Simulation time after re-
duction is equal to 20 minutes compared to 6 hours for the extended OD.  
Keywords: Origin-destination matrix estimation, Traffic demand model, Urban mobility, Data-
driven traffic simulation, SUMO  

1. Introduction 

Data-driven models of vehicular urban mobility are widely used to develop and to test strate-
gies of future transportation, to estimate the economical, societal and environmental effects of 
traffic planning decisions and to develop novel algorithms for controlling vehicles and city in-
frastructure. The applicability of the model for these purposes is significantly determined by 
the extent to which it resembles existing patterns of traffic flows within the city. Thus, develop-
ment of realistic simulation of urban vehicular mobility requires collecting, preprocessing and 
fusion of heterogeneous data sources including data about road network layout, traffic signal 
controls, speed limits, types and amounts of vehicles, and travel demand during different times 
of a day and different seasons. 

The situation is complicated by the fact that the initial data which are required for creation 
and validation of a model may be not available directly for a certain area of interest. For exam-
ple, data on travel demand may be delivered from another model and may be available not for 
the city itself but for the larger region. This poses a problem for a developer of how to extract 
and to compose data for training and validation of the model in a reproducible and time-efficient 
way. 
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In this study, we focus on the problem of estimating origins and destinations of the vehicles 
for the case when simulated area (we call it ‘core’ area) is located within larger (‘extended’) 
area, and data on travel demand are available only for this larger area. This is a typical case 
when travel demand is produced by an external four-step mobility model (see e.g. [1]). Given 
origin-destination (OD) matrix for an extended area, we aim to solve the following two prob-
lems: 

 to infer origin-destination matrix for a core area; 
 to estimate origins and destinations of vehicles (starting and ending edges) for a core 

area.  

For the first problem, naïve approach is to use a submatrix of OD matrix for extended area, 
corresponding to traffic assignment zones which also belong to the core area. However, this 
underestimates travel demand as trips which start or end outside the core area are not ac-
counted. For the second problem, a basic approach is to use random assignment for core OD 
matrix. The disadvantage of this approach is that traffic flows on the border of the core area 
become less accurate.  

To tackle these problems, we use vehicle trajectories from the extended simulation to infer 
origins and destinations for the core simulation. Data on trajectories are used in our novel 
edge-wise OD assignment algorithm. This algorithm may be used to get arbitrary number of 
instances of core simulation with sufficient level of variability after a single run of extended 
simulation. As simulation of an extended area may be much more time-consuming than simu-
lation of a core area, proposed approach can reduce overall time of modelling workflow. 

The experimental study of the method is performed using case study of Helsinki city area 
using Simulation of Urban MObility (SUMO) tool [2]. The extended area comprises of 1972 
traffic assignment zones while the core area (Helsinki municipalities) has 381 zones. In this 
case, a single run of extended simulation takes more than 6 hours. For the purposes of vali-
dation, we use the data from traffic counting stations located within the city. In the experimental 
study, we show that: (i) the core simulation reproduces traffic flows of the extended simulation, 
(ii) edge-wise assignment provides sufficient variability of simulation instances and at the same 
time does not significantly influence model quality. The code implementing proposed approach 
is available on GitHub [3]. 

The paper is organized as follows. Section 2 gives an overview of the related work. Section 
3 contains formal problem statement. Section 4 describes the proposed method and its SUMO 
implementation. Section 5 describes the data for the experimental study, and the results are 
discussed in Section 6. 

2. Related work 

The problem of reduction of OD data has often been considered in the studies aiming at crea-
tion of validated models of vehicular traffic in particular urban areas. In the recent study [1], 
authors propose large-scale agent-based traffic microsimulation for Barcelona city. As in our 
study, extended area (577 traffic assignment zones) is simulated to get input data for core area 
(296 zones). However, instantiating of core simulation is performed by cropping the paths for 
extended simulation, which requires launching extended simulation each time when one needs 
to get new instance of core simulation. In our study, we propose edge-wise assignment to 
avoid multiple launches of time-consuming extended simulation. The case study of Nanjing, 
China, is considered in [4]. Initial values of OD matrix are supposed to be given, but they are 
improved by Adaptive Fine-Tuning algorithm to minimize the error between simulated SUMO 
results and real-world Radio Frequency Identification Data. This is an example of OD matrix 
calibration problem when an initial matrix is tuned to increase its correspondence to the ob-
served urban data. In [5], the source of origin-destination matrix for traffic modelling of Köln, 

2

https://github.com/helsinki-sda-group/sumo-hki-cm


Bochenina et al. | SUMO Conf Proc 4 (2023) 

Germany, is Travel and Activity Patterns Simulation (TAPAS) framework which uses popula-
tion information, data on points of interests within the city as well as the time use patterns. 
Authors report that the resulting demand still needed to be improved: TAPAS model provides 
demand not limited to vehicular traffic, and variability of traffic over short time scales is not 
realistic. To cope with that, initial OD matrix is adjusted (only trips corresponding to vehicular 
traffic were considered) and smoothed (random offsets were added to departure times). 

Another strand of research is related to estimation of origin-destination matrix using vari-
ous types of available data. When estimates of a number of travellers in different areas are 
provided, a gravity model [6] is commonly used. For instance, in [7], the gravity model is applied 
to infer OD matrix for Bogor city. For the case when data from urban sensors are available 
(such as link counts, flows and travel times), more sophisticated methods of data fusion are 
usually applied. In [8], time-dependent demand is estimated via Bayesian approach when the 
posterior distribution of OD matrices is updated based on traffic counts data. Traffic counts are 
also used for OD matrix estimation in [9], when an iterative bilevel framework is proposed to 
minimize the deviation between estimated and real-time link counts. [10] presents combination 
of approaches: initial OD matrix is estimated by gravity model, and after that the process of 
dynamic OD matrices’ estimation is performed. The latter includes using a macroscopic traffic 
simulator to model the traffic flows and an optimization algorithm which aims to minimize the 
normalized variation between the historical and the simulated link flows. These studies assume 
that the input data are available for the whole area for which OD matrix is estimated. In con-
trast, in the current study, we focus on the case of OD reduction, that is, estimation of demand 
for a subarea of the initial area, which is rarely considered in the field of OD estimation. 

In [11], authors consider the problem of origin-destination trip demand estimation for sub-
area analysis. They propose two-step procedure: (i) generation of induced OD demand for a 
subarea network, (ii) OD updating based on the induced demand and archived traffic meas-
urements. Generation of induced demand is performed based on the path-based traffic as-
signment results as in our study; however, in [11] the focus is mostly on demand calibration 
while we consider algorithmic and computational aspects of demand estimation. 

Beyond the estimation of origin-destination matrix, there are algorithms and tools for trips 
assignment available at urban mobility simulation frameworks. In [12], authors perform exper-
imental comparison of different demand generation tools available in SUMO. They divide all 
tools in two groups: (i) countless, which do not require any extra data – named randomTrips, 
SAGA and randomActivityGen, (ii) tools which are using traffic counts – named dfrouter, flow-
router, cadyts and routesampler. For the considered use case (Wildau, Germany) 
routesampler showed the best results in terms of root mean squared error of vehicle count and 
network coverage. 

3. Problem statement 

Let’s assume that we have an initial origin-destination (OD) matrix 𝐴𝑚×𝑚, where 𝑚 is a number 
of traffic assignment zones (TAZs). Each element of the matrix 𝑎𝑖𝑗 , 𝑖, 𝑗 ∈ 1, … ,𝑚 represents the 
number of trips between TAZ 𝑖 and TAZ 𝑗 during a certain time period (e.g. one hour). The set 
of TAZs for matrix 𝐴 is denoted as 𝑃. We will call matrix 𝐴 an extended OD matrix, area covered 
by TAZs from 𝑃 – an extended area, and simulation of vehicle movement according to origins 
and destinations in matrix 𝐴 – an extended simulation. 

Let’s also assume that we have another set of TAZs, denoted as 𝑄, which is a subset of 
the extended area: 𝑄 ⊂ 𝑃. We will call 𝑄 a core area. The problem is to obtain an instance of 
core simulation for area 𝑄 given 𝐴, 𝑃, 𝑄 as inputs, that is, to induce core simulation from ex-
tended one.  
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Extended and core areas are depicted in Figure 1a. TAZs in Figure 1a are shown sche-
matically as squares for a simplicity, but they may have any shape which is usually represented 
in polygon format. Depending on if origin/destination zones belong to 𝑄, or to 𝑃 − 𝑄, all trips 
may be categorized into four groups: 

1. in-in, including trips starting and ending in 𝑄. 
2. in-out, including trips starting in 𝑄 and ending in 𝑃 − 𝑄. 
3. out-in, including trips starting in 𝑃 − 𝑄 and ending in 𝑄. 
4. out-out, including trips starting in 𝑃 − 𝑄 and ending in 𝑃 − 𝑄. 

a) out-out trips where all trajectory belongs to 𝑃 − 𝑄. 
b) out-out trips where part of the trajectory belongs to 𝑄, and part of the trajectory 

belongs to 𝑃 − 𝑄. 

(a) (b) 

  

Figure 1. (a) Extended (𝑃) and core (𝑄) simulation areas. By arrows, different types of trips 
in extended simulation are presented. “in” denotes trips which start/end in 𝑄, “out” denotes 

trips which start/end in 𝑃.  Core area 𝑄 is depicted in blue, yellow color depicts TAZs belong-
ing to 𝑃 − 𝑄.  Numbers represent indices of traffic assignment zones in 𝑄.  

(b) Edge assignment problem for a fixed TAZ. 

If a trip does not pass through core area 𝑄, it is not needed to be reproduced in a core simu-
lation. Therefore, for the core simulation, all trips should be accounted except of type 4a. More-
over, only in-in trips (type 1) would have the same origins and destinations for extended and 
core simulations. For in-out, out-in, and out-out (passing both 𝑃 − 𝑄 and 𝑄) trips only part of 
the trajectory passes through 𝑄. This means that for these types of trips we need to find new 
starting/ending points of trips which are inside 𝑄. We call this problem an origin-destination 
reduction problem and address it in this study. 

The origin-destination reduction may imply two steps: 

1. Estimation of a core origin-destination matrix 𝐵𝑛×𝑛, where 𝑛 is a number of traffic as-
signment zones in 𝑄, 𝑛 < 𝑚. Rows and columns of matrix 𝐵 correspond to TAZs for 
the core area. It should include all the trips from matrix 𝐴 which have at least part of 
the path inside core area 𝑄. For example, if we assume that we have 5 trips in Figure 
1a represented with arrows, non-zero elements of matrix 𝐵 will be 𝐵2,6 = 1, 𝐵4,4 = 1, 
𝐵5,3 = 1 and 𝐵7,6 = 1. 

2. Trip origin/destination edge assignment, executed for each trip in the core OD matrix 
𝐵. Each traffic assignment zone (Figure 1b) has a correspondent road network which 
may be represented as a set of edges which are inside this TAZ. To perform simula-
tion, for each trip one needs to specify starting and ending edges. The most common 
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way to assign the edges is a random selection from the set of edges for the origin/des-
tination TAZ. 

It is worth to mention that in general step 2 (origin/destination edge assignment) does not 
require stating core OD explicitly (step 1), but not vice versa (after having an OD matrix, one 
still needs to specify starting and ending points of the trajectories). 

4. Method 

As it was described in Section 3, a problem of reduction of extended simulation to core simu-
lation consists of two steps: (i) origin-destination matrix reduction, (ii) edge assignment. Both 
steps are presented in Figure 2. 

Origin-destination matrix reduction is presented by steps 1, 2, 3, 4a, 5, 6a, 6c in Figure 2. 
The input for the algorithm is the OD matrix for an extended area, denoted as 𝐴 in Section 3. 
For each pair 𝑃𝑖 and 𝑃𝑗 from traffic assignment zones for a core area (which correspond to 
rows and columns of matrix 𝐴) and for each trip the random assignment of origin and destina-
tion edges is performed (step 1). After that, SUMO simulation for extended area is launched 
(step 2). The result of the simulation are vehicle trajectories (step 3). Given the vehicle trajec-
tories, one may determine for in-out, out-in and out-out trips the TAZs from 𝑄 which serve as 
origin and destination areas for a core simulation (step 4a). Then, the resulting OD matrix for 
a core area is composed (steps 6a, 6b) from a submatrix of OD matrix 𝐴 for in-in trips (step 5), 
and OD matrices for other types of trips created at step 4a. The pseudocode for OD matrix 
reduction is presented in Table 3. 

 

Figure 2. Simulation-based OD reduction: a main scheme. 

The second output from parsing vehicle trajectories depicted in Figure 2 (step 4b) are indices 
of edges when a vehicle enters or exits the core area. These edges are also used to determine 
new origin and destination traffic assignment zones for a core simulation (Table 3). 
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The second stage of a simulation-based OD reduction is an edge assignment after which one 
can start simulation for a core area (step 8). The simplest strategy of the edge assignment is 
a random assignment (step 6c). With random assignment, for each pair of origin and destina-
tion TAZs for core OD matrix 𝑄 we select a trip and assign a starting and an ending edge of 
the trip by random selection of an edge from corresponding TAZs. The drawback of this ap-
proach is that we do not account pre-calculated flow directions from an extended simulation. 
However, traffic flows coming to the core area mostly use major roads which serve as main 
entrances to the city. Random assignment strategy does not account for the size of the roads, 
and then leads to unrealistic flows on the border of a core area. 

Regarding that fact, we propose another assignment strategy that we call edge-wise as-
signment (steps 7a and 7b in Figure 2). The idea of the edge-wise assignment is to keep edges 
which were used by vehicles to enter and to exit the core simulation area. From the other side, 
if one just keeps all the trajectories from the extended simulation, one will get only one fixed 
instance of a core simulation. As our goal here is to provide input data for multiple instances 
of core simulation, we need to keep some randomness in the assignment process. Thus, the 
proposed algorithm for edge-wise assignment is summarized in Table 2. 

For trips which start and end inside the core area, we apply random assignment. For trips 
which start and/or end in the extended area, we fix those edges from extended simulation 
which correspond to entry and/or exit edges which vehicles use to enter/exit the core area. 

 

Table 2. Edge-wise assignment algorithm. RA denotes random selection of edge within cor-
responding TAZ, / denotes selection of entry/exit edge from the extended simulation. 

Case (type of trip) Assignment strategy 
in-in  Random assignment (RA) 

out-in  / (originTAZ), RA (destTAZ) 
in-out RA (originTAZ), / (destTAZ) 

out-out / (originTAZ), / (destTAZ) 
 

Table 1. Pseudocode for origin-destination matrix reduction step. 

Functions: originExtTAZ(t) – get origin TAZ from matrix 𝐴 for a trip 𝑡,  
destExtTAZ(t) – get destination TAZ from matrix 𝐴 for a trip 𝑡,  

coreEntryEdge(t) – get first edge of a trip 𝑡 belonging to core area 𝑄,  
coreExitEdge(t) – get last edge of a trip t belonging to core area 𝑄, 

getTAZ(edge) – get TAZ index by an edge index 
Q ← 0 // initialize reduced OD matrix Q with zeroes 
for each trip in the extended simulation: 

 if trip is of type “in-in”: // copy origin and destination TAZ from matrix A 
  originTAZ = originExtTAZ(trip); destTAZ = destExtTAZ(trip); 
// for out-in/out trips, find TAZ to which an entry edge in core simulation belongs 
 if trip is of type “out-in” or trip is of type “out-out”: 
  originTAZ = getTAZ(coreEntryEdge(trip)); 
// for in-out and out-out trips, the same for destination edge 
 if trip is of type “in-out” or trip is of type “out-out”: 
  destTAZ = getTAZ(coreExitEdge(trip)); 
// increment number of trips for the pair of origin and destination zones 

Q[originTAZ, destTAZ] += 1  
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The final scheme of the implementation of simulation-based OD reduction in SUMO is pre-
sented in Figure 3. It shows programming routines and data files which are used during simu-
lation and validation processes. For routing, SUMO’s default routing procedure is used. To find 
positions of vehicles on the border of the core area, we use SUMO FCD device because we 
need to check all border edges (the other option was to use induction loops, but their manual 
placement is too time-consuming and also needs to be redone for each new core area).For 
out-in and out-out trips we also record departure times of the vehicles from extended simulation 
to make starting time of vehicles in a core simulation more realistic. To validate the results of 
the core simulation, we use data on traffic counts from traffic counting stations (TCS), so we 
record simulated traffic counts for the same positions where real traffic counting stations are 
located. 

Figure 3. SUMO implementation of simulation-based OD reduction. 

7
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4. Data 

In this study, we test the proposed approach of OD reduction using Helsinki city area as an 
example. Initial traffic assignment zones and origin-destination matrices were obtained from 
Helmet [13], transport demand model system developed by HSL (the Helsinki Regional 
Transport Authority).  

Extended and core simulation areas are shown in Figure 4. Extended area includes 1972 
TAZs, which are the same as the zones used in the Helmet model. The core simulation area 
includes 381 TAZs which cover municipalities included in a Helsinki city area. One may ob-
serve that traffic assignment zones have different sizes being fine-grained for dense urban 
areas. 

(a) (b) 

  

Figure 4. Traffic assignment zones: (a) for the extended area, (b) for the core area. 

Origin-destination data include matrices for different transportation means (e.g. private car, 
bicycle, truck, van) and different times of the day (morning rush hour, day hour, evening rush 
hour). To get OD matrix for passenger transportation, we summed up matrices for private cars 
and vans. Each element of a matrix is a number of trips between two traffic assignment zones 
during a selected time of a day. In this study, we created a model for morning rush hour (07:20-
08:19).  

Demand matrices in Helmet are calculated using a set of models and data including land 
use data, growth factors of external traffic, car ownership data, models of destination and mode 
choice, applied for a particular time period. In this study, demand matrices were generated 
based on the data from workdays, Autumn 2018. Available demand matrices represent aver-
age demand for e.g. morning rush hour over this period. We used the same time period while 
collecting validation data from traffic counting stations. 

For validation purposes, we used a Digitraffic dataset [14] containing hourly traffic counts 
for a set of 15 traffic counting stations (TCSs) located within a core simulation area. All stations 
may be divided into two types: 

 border TCSs, which are located at the edge of a core simulation area and mostly 
measure flows of traffic coming from / to an extended simulation area; 

 inner TCSs, which are located within a core simulation area. 

From all available TCSs, 7 are border TCSs and 8 are inner TCSs.  
Data for morning rush hour for separate days were averaged to get mean traffic counts 

comparable with Helmet demand matrices. 
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Traffic assignment zones were uploaded to SUMO together with Helsinki city infrastructure 
network obtained from OpenStreetMap. The traffic assignment zones were originally in shape-
file format (.shp) and had to be converted into SUMO’s TAZ format (.taz). This was done by 
first converting the original file into OpenStreetMap format (.osm) using Java OpenStreetMap 
Editor and from OpenStreetMap format to SUMO’s polygon format (.poly) using a selfmade 
Python script. After that the tool edgeInDistricts.py that comes with SUMO was used to create 
a TAZ file from the polygons. Traffic counting stations were simulated as induction loops placed 
on all lanes in both directions at the same locations as real TCSs. Counts from the same 
direction were saved to the same file.  

In the experimental study, default SUMO parameters were used. 
Python implementation of the algorithms proposed in the study is available on GitHub [2]. 

5. Experimental study 

Table 3 shows the results of the comparison of validation metrics for two instances of SUMO 
simulation: simulation of the extended area for initial Helmet OD matrix and simulation of the 
reduced area with origins and destinations assigned by a proposed algorithm. Metrics are cal-
culated for all 15 traffic counting stations (TCSs), as well as separately for border and inner 
TCSs.  

We may observe that average mean absolute percentage error (MAPE) is between 34% 
and 45%. Traffic flows at border stations are reproduced significantly better (by 10%) than for 
inner stations. This may be explained by the fact that border stations are located at main entries 
/ exits to the city area (Figure 5) and measure in/out and out/in traffic flows. These flows are 
generally less dependent on routing procedure than flows simulated within the city. Second 
observation is that there is no difference of MAPE between initial and reduced simulations 
which shows that our algorithm performs reduction correctly. 

Generally, there is more traffic counting events in Digitraffic data than in SUMO model. 
For example, for extended area simulation we have sum of traffic counts for all stations equal 
to 51,3K in real data, and to 42,2K in the model (16% difference). Here we also see that border 
stations are reproduced better than inner stations (7-10% difference for border stations and 
22-23% for inner stations). This, again, supports our conclusion about larger influence of rout-
ing results for internal city area than for entries and exits to and from the city. Reduction pro-
cess results in slightly (2%) less amount of traffic counts. This may be related to the cases 

when routing procedure cannot find the path from an origin edge to a destination edge (these 
trips are eliminated from simulation), because the amount of these cases tend to be larger for 
smaller areas. Summarizing, there is not significant difference with basic model after reduction 
considering both metrics, that is, the reduction algorithm provides consistent results. 

Figure 5 shows MAPE for distinct traffic counting stations. Here we show absolute ob-
served traffic volumes and MAPE, averaged for both road directions. Stations marked with 

Table 3. Comparison of traffic flow metrics for initial and reduced areas. EA – extended 
area, RA – reduced area, B/I/A – border/inner/all traffic counting stations.  

For example, EA-I denotes inner stations for an extended area. 

Metric EA-B EA-I EA-A RA-B RA-I RA-A 
MAPE of traffic counts, 
averaged by TSC, % 

35 45 40 34 45 40 

Difference of sums of 
traffic counts, % 

7 22 16 10 23 18 
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green label have MAPE less than average MAPE for border or inner stations. Red labels de-
note MAPE larger than average. We may see that stations located in the northern part of Hel-
sinki are reproduced better than in the southern and eastern parts. In the extension of this 
study, flows crossing ‘red’ stations need to be considered manually in more details. 

Figure 5. Absolute traffic volumes and MAPEs for different TCS. Border TCS have magenta 
color, inner TCS have green color. Labels of TCS are of the following format: observed vehi-

cle count (MAPE), green / red labels denote MAPE smaller / larger than average. 

Validation results show moderate correspondence of SUMO model to the observed traffic 
counts which may be explained by peculiarities of the initial data. Firstly, Helmet OD matrices 
are produced based on basic 4-step traffic simulation model [15] using census and land usage 
data, and then, are not well tailored to actual traffic count measurements. Secondly, initial OD 
matrices cover more than 100x larger area than Helsinki city area (a square of the extended 
area is equal to 24500 km2 while reduced area is only 210 km2), that is, they were aimed to 
reproduce coarse-grained patterns of vehicular mobility rather than city-scale behaviour. The 
overall quantity of simulated traffic resembles observed data with error equal to 16% but the 
distribution of cars between the roads is still not reproduced sufficiently good (MAPE is 40%). 
To give an idea about the typical values of reported metrics, in [1] it is stated that “according 
to the established literature, any value of [%RMSE] below 30% can be considered good”. The 
current validation quality of our Helsinki model may be further improved using several ap-
proaches including OD calibration based on traffic measurements, tuning hyperparameters of 
models and using SUMO calibrator objects for removing or inserting vehicles according to the 
desired flows on the inspected edges. We consider this as an extension of the current study 
as the main goal of this paper was to investigate the quality of reduction process itself. 
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To check that a proposed algorithm of edge assignment allows for getting different in-
stances of core simulation while keeping correspondence of simulated traffic counts to the 
observed ones, we analysed the results of 10 different runs of core simulation with edge-wise 
origin/destination assignment algorithm. To measure the level of randomness between differ-
ent runs, we calculate coefficient of variation 𝑐𝑣 (1) of simulated counts for different traffic 
counting stations: 

𝑐𝑣
𝑖 =

𝜎𝑖
𝜇𝑖
. (1) 

Here 𝜎𝑖 is a standard deviation of simulated traffic counts for 𝑖-th traffic counting station, 
𝜇𝑖 is a mean of simulated traffic counts for 𝑖-th TCS. 

(a) (b) 

  

Figure 6. Coefficient of variation for simulated traffic counts: (a) border TCS, (b) inner TCS.  

Figure 6 shows distributions of coefficients of variation for border (a) and inner (b) traffic count-
ing stations. Here we present a separate value for each direction (14 values for 7 border sta-
tions, 16 values for 8 inner stations). The mean value of 𝑐𝑣 for border stations is equal to 1.3%, 
for inner stations is equal to 3.5%. Variation of traffic counts for border stations is in the range 
0.05%-5%, and for inner stations is in the range 0.4%-10%. Thus, we see that in both cases 
edge-wise assignment allows for getting random instances of a core simulation. At the same 
time, the level of randomness is lower for border stations than for inner ones. It is explained by 
the essence of the proposed algorithm because for border areas larger number of edges are 
fixed and do not change between runs as they are inherited from extended simulation to keep 
validation metrics sufficiently high. The latter is confirmed by the average value of coefficient 
of variation for MAPE which is equal to 6% for these 10 runs. Thus, proposed algorithm allows 
for generation of random instances of core simulation with sufficiently stable values of valida-
tion metrics.  

6. Conclusions and discussion 

In this study, we consider the problem of subarea demand estimation. Given origin-destination 
matrix for a larger area, we aim to infer origin-destination matrix and perform trips assignment 
for the reduced area. Proposed approach is simulation-based which means that we use traffic 
modelling tool to get the results for the extended area, and then post-process these results to 
get input data for the simulation of the core (reduced) area. As simulation of the extended area 
may be time-consuming, to avoid multiple runs of extended simulation in case when one wants 
to test different simulation instances for a core area, we proposed edge-wise origin/destination 
assignment heuristic. The experimental study for Helsinki city area has showed the applicabil-
ity of our approach for the problem of OD reduction. 
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Proposed method is mainly purposed for reconstructing external traffic flows coming from 
an extended area to a core simulation area (and vice versa), that is, reproducing the observed 
values of traffic counts for border traffic counting stations. To reduce MAPE for inner traffic 
counting stations, methods of data-driven OD calibration may be applied. For example, in [11] 
authors propose dynamic OD estimation method for sub-area analysis which includes iterative 
OD updating procedure based on induced OD demand (similar to our reduced OD) and ar-
chived traffic measurements. Then, a two-step procedure for minimizing the errors may be 
proposed as an extension of current study: 

 calibrating SUMO parameters (e.g. device.rerouting.probability and weights.priority-
factor using grid search as in [1]) using traffic counts from edge TCS;

 calibrating reduced OD matrix using traffic counts from inner TCS.
Proposed procedure of OD reduction may be applied for any case study. The only as-

sumptions here are that a core area is a subset of an extended area, and that borders of traffic 
assignment zones within core area are the same as corresponding zones in extended area. 
To support a decision of this typical task for a modeler, we share a code repository [2] with 
implementation of OD reduction procedure which may be reused during creation of large-scale 
traffic models for different cities. 
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Abstract. Development of large-scale traffic simulation models have always been challenging 
for transportation researchers. One of the essential steps in developing traffic simulation mod-
els, which needs lots of resources, is travel demand modeling. Therefore, proposing travel 
demand models that require less data than classical travel demand models is highly important, 
especially in large-scale networks. This paper first presents a travel demand model named as 
probabilistic travel demand model, then it reports the process of development, calibration and 
validation of Belgium traffic simulation model. The probabilistic travel demand model takes 
cities' population, distances between the cities, yearly vehicle-kilometer traveled, and yearly 
truck trips as inputs. The extracted origin-destination matrices are imported into the SUMO 
traffic simulator. Mesoscopic traffic simulation and the dynamic user equilibrium traffic assign-
ment are used to build the base case model. This base case model is calibrated using the 
traffic count data. Also, the validation of the model is performed by comparing the real (ex-
tracted from Google Map API) and simulated travel times between the cities. The validation 
results ensure that the model is a superior representation of reality with a high level of accu-
racy. The model will be helpful for road authorities, planners, and decision-makers to test dif-
ferent scenarios, such as the impact of abnormal conditions or the impact of connected and 
autonomous vehicles on the Belgium road network. 

Keywords: Travel demand modelling, Belgium road network, Mesoscopic traffic simulation, 
SUMO 

1. Introduction

Several transportation researchers use traffic simulation models to test different scenarios in 
different network scales. The inputs of traffic simulation models are usually supply and demand 
data. Supply data includes all the information related to the transportation network and ser-
vices, such as the geometric and functional specification of the road network, traffic control; 
public transport services; and other data, such as fleet vehicles. Also, the travel demand data 
are typically extracted from travel demand models. The travel demand model is a set of math-
ematical relationships which describes when, why, and how people and goods move within a 
particular geographic area. These models estimate travel behavior and demand for a specific 
(future) time frame, based on several assumptions about the population, land use, household, 
etc. Travel demand models incorporate economic aspects, technical aspects, lifestyle aspects 
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of society, a specific individual, psychological elements, and factor of time to provide the most 
accurate representation of a specific travel demand problem (e.g., number of passengers trav-
eling between Brussels to Antwerp by car at P.M. peak hour). Demand data contain the mobility 
needs of people and goods, which questionnaires, mobile data, etc., can collect.  

Several travel demand models have been developed, like 1- Classical four-step model, 2- 
Tour-based model, 3- Activity-scheduling model, etc. [1]. The most well-known travel demand 
model is the classical four-step model: 1. Trip generation: determines the number of passen-
gers traveling from a specific city or region. 2. Trip distribution: estimates the number of trips 
between particular cities or regions. The output of this step is an Origin-Destination (O-D) ma-
trix. The O-D matrix determines the number of trips between each origin and destination. 3. 
Modal split: determines which transportation mode passengers will use when traveling from 
their origin to their destination. 4. Traffic assignment: determines the routes passengers 
choose to reach their destination. For a classical transportation model, the output of the first 
three steps, an O-D matrix for each transport mode, is fed into a traffic assignment model 
(either simulation-based or analytical traffic assignment models) to calculate links loads. The 
final outputs are used to describe, explain, correlate, and forecast transport demand. The four-
step travel demand model has been used by many researchers and showed its excellent per-
formance. However, the most critical disadvantage of this model is that it relies heavily upon 
household surveys and census data that are very costly and time-consuming to collect. Thus, 
the availability of household data is very challenging in implementing a four-step model, espe-
cially for large-scale road networks (e.g., Belgium). In this study, an alternative approach to 
four-step modeling is proposed to develop a traffic simulation model for Belgium road network. 
First, a travel demand model named as probabilistic travel demand model is proposed. This 
travel demand model only considers the population, distances, passenger-kilometer traveled, 
and the number of yearly truck trips as the input data to provide hourly O-D matrices on a 
country level (Belgium). The reason for developing such a travel demand model is that it needs 
less data than classical four-step modeling. Then, the extracted O-D matrices are inputted into 
the traffic simulation model. This traffic simulation model is calibrated and validated by traffic 
count and travel time data.  

The following section (section 2) gives information about the case study (available supply 
and demand data). Section 3 explains the methodology, including the development of the prob-
abilistic travel demand model and building the base case model. Then, the process of calibra-
tion and validation of the model is provided in section 4. Finally, sections 5 and 6 describe the 
results and the paper's conclusion. 

2. Case Study 

Belgium is a European country with a land area of 30,688 km² and a population of 11.5 million 
[2]. Belgium is divided into three regions: the Flanders in the north, the Wallonia in the south, 
and the Brussels-Capital Region. The transport network in Belgium, including road, rail, sea, 
and air, is well-developed and well-connected to other parts of Europe. This transport network 
includes 13.2 thousand kilometers of main/national roads; 5 international airports; 3,602 kilo-
meters of usable rail network; and five seaports [3], [4]. Belgium plays a crucial role in road 
travel in Europe and ranks 7 in terms of passenger-kilometer among European Union coun-
tries. Also, Belgium's motorway network is the third dense after the Netherlands and Luxem-
bourg in Europe [5]. There are more than eight international E-roads in Belgium which connect 
the east of Europe to the west and south of Europe to the north. In Belgium, three mobility 
surveys have been carried out by SPF Mobilité et Transports to examine mobility and road 
safety patterns in detail, using both household and individual data. These surveys, named 
MOBEL (1999), BELDAM (2012), and MONITOR (2018), provide a comprehensive under-
standing of the subject [6]. As far as the authors are aware, the origin-destination matrix from 
these studies is not accessible to the public 
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2.1 Supply Data: Belgium Road Network 

The Open Street Map (OSM) file was extracted to build the network. The OSM is a free editable 
map of the whole world that users make. The road network file is directly imported into traffic 
simulation software (SUMO). The OSM file contains all categories of roads (named Motorway, 
Trunk, and Primary roads in OSM). Roads in Belgium are categorized into three types, which 
are 1- Highways ("Autoroute") (e.g., A2 (E314)); 2- Provincial and regional roads ("Routes 
provinciales et régionales") (e.g., A501); 3- Municipal roads ("Routes communales").    Since 
this study provides a travel demand model for outer-city trips, only highways and provincial 
and regional roads (classified as Motorway, Trunk, and Primary roads on OSM) are modeled, 
and inner-city traffic roads are not modeled. The network is checked and fixed manually for 
any error in the SUMO environment (using the SUMO network warning and error tool). Cities 
are considered as centroids that can generate and attract trips. In total, 60 cities are modeled. 
The criteria for selecting cities are described in the next section. The OSM file already included 
road network features like speed and capacity. However, they were double-checked with 
Google Maps data to ensure accuracy. Figure 1 shows the inserted network into SUMO.  

 

Figure 1. Belgium road network in SUMO 

Also, to ensure that the network's geometry and the highways' length are imported to SUMO 
correctly, the shortest distance between the cities in the simulation is compared with reality. 
The accurate shortest distances are taken from Google API. A comparison between the short-
est distances in reality and the simulated network is given in Figure 2. The shortest distances 
between 3600 O-D pairs in reality and simulation are compared. This figure shows that the 
length of highways and the geometry of the network is simulated with a high accuracy. 

 

 

 

 

 

 

 

Figure 2. Comparison of distances between cities in simulation and reality   
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2.2 Demand Data 

The data considered as inputs to the probabilistic travel demand model for passenger car trips 
include the population of each city, the distance between cities, and the passenger-kilometer 
traveled by the Belgium population each year. Population data for all Belgian municipalities 
are extracted from STATBEL [7]. STATBEl is the Belgian statistical office that collects, pro-
duces, and disseminates reliable and relevant figures on the Belgian economy, society, and 
territory. Belgium has three regions and 11 provinces. The provinces are subdivided into 43 
administrative arrondissements and 581 municipalities, 83 of which have a population of more 
than 30,000. A list of Belgium's arrondissements with their municipalities was provided. Then, 
60 municipalities (cities) were chosen as centroids in the travel demand model based on the 
following criteria: 

A. All municipalities with over 30,000 population were first selected as centroid (to address 
the effects of most populated cities). Then, if the distance between two municipalities 
(within the same arrondissement) is less than 15 km, two municipalities are combined 
and considered one centroid. 

B. If an arrondissement consists of less than four municipalities, the first populous munic-
ipality is selected (even if the population is less than 30,000).  

C. If the arrondissement consists of more than five cities, at least three are included.  

The geographic distance between cities is also calculated based on the longitude and 
latitude of cities. The passenger-kilometer travel data for passenger cars is extracted from 
Federal Planning Bureau (FPB) website [8]. This independent public agency draws up studies 
and projections on economic, social, and environmental policy issues. According to Table 1, 
the total passenger-kilometer traveled per year for all three regions of  Belgium in highways, 
provincial and regional roads are equal to 85.762 × 109.  

Table 1: Passenger kilometers traveled per year in Belgium (million passenger-kilometer)  

 Wallonia Flanders Brussels-Capital 
Highways 16373.6 23676.5 520.7 

Provincial and regional roads 18286.0 25058.0 1848.1 
Municipal roads 9456.2 10662.2 1059.1 

Also, for modeling the freight transport trips (trucks), the number of yearly trips by Belgian 
trucks (by country of loading and unloading) is extracted from STATBEL [9]. The number of 
truck trips loaded in Belgium and unloaded in Belgium is given in Table 2.  

Table 2: Number of yearly Trucks trips in Belgium    

 Loaded in Belgium Unloaded in Belgium Total 
Number of Yearly trucks trips 16173401 15829069 32002470 

3. Methodology 

The overall process of the traffic simulation modeling for the Belgium road network is illustrated 
in Figure 3. Each step is described in as follow.  

3.1 Probabilistic Travel Demand Model 

The probabilistic travel demand model first determines the total number of daily trips based on 
the passenger-kilometer traveled data. Then, it indicates the origin and destination of each trip 
by applying a random selection on the weighted distribution function of population and dis-
tances between the cities [10], [11]. The core assumption behind the model is that the larger a 
city's population, the greater its likelihood of being chosen as the origin city of a trip. Also, more 
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population of a city and lower distance between cities increase its likelihood of being selected 
as the city of destination. This model's principles are similar to the gravity model [12]. The steps 
of the probabilistic travel demand model are described in the following subsections.   

 

Figure 3: Overall process of the traffic simulation modeling  for Belgium 

3.1 Probabilistic Travel Demand Model 

The probabilistic travel demand model first determines the total number of daily trips based on 
the passenger-kilometer traveled data. Then, it indicates the origin and destination of each trip 
by applying a random selection on the weighted distribution function of population and dis-
tances between the cities [10], [11]. The core assumption behind the model is that the larger a 
city's population, the greater its likelihood of being chosen as the origin city of a trip. Also, more 
population of a city and lower distance between cities increase its likelihood of being selected 
as the city of destination. This model's principles are similar to the gravity model [12]. The steps 
of the probabilistic travel demand model are described in the following sections.   

3.1.1 Determination of the total number of passenger cars daily trips 

As shown in Table 1, the total number of passenger-kilometer traveled on highways, and the 
provincial and regional road is equal to 85.762 × 109. Assuming that each passenger travels 
85 kilometers per trip and the weekend traffic is considered to be half as high, this gives ap-
proximately 3.2 million trips per day in the Belgium road network. The equation for calculating 
the total number of passenger cars daily trips (𝑇𝑃𝐶) is as follows:   

𝑇𝑃𝐶 =
𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 (𝑦𝑒𝑎𝑟𝑙𝑦)

𝑑𝑎𝑦𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑦𝑒𝑎𝑟 × 𝑑𝑎𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠
(1) 

3.1.2 Determination of the total number of trucks daily trips 

Table 2 shows the total number of Belgian trucks' yearly trips. To calculate the number of daily 
truck trips, equation 2 is used. Similar to passenger car trips, it is assumed that the number of 
weekend trips is half the weekday trips.  Equation 2 gives 102572 trucks' trips per day.   
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𝑇𝑇𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘𝑠′ 𝑡𝑟𝑖𝑝𝑠 (𝑦𝑒𝑎𝑟𝑙𝑦)

𝑑𝑎𝑦𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑦𝑒𝑎𝑟 × 𝑑𝑎𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
(2) 

By summing up the passenger car trips and truck trips, the total number of all trips can be 
calculated. 

𝑇𝑇  (𝑡 ∈ 𝑇𝑇) = 3.2 + 0.1 = 3.3 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑡𝑟𝑖𝑝𝑠 (3) 

3.1.3 Determination of trips Origins 

After determining the total number of daily trips in Belgium (both passenger cars and trucks) 
(𝑇𝑇 = 3.3), the origin for each trip (𝑡) should be specified. It is assumed that the probability of 
selecting a city as the origin city is proportional to its population. A random selection is applied 
to the weighted probability distribution of cities' populations. The weighted probability distribu-
tion function is given in equation 4. The logic behind this selection is that a city with a larger 
population is more likely to be chosen as the origin city.  

𝑓𝑃𝑂(𝑥𝑖) = 𝑝𝑖(𝑋 = 𝑥𝑖) =
𝑃𝑜𝑖

∑ 𝑃𝑜𝑖
60
𝑖=1

 (4) 

0 < 𝑓𝑃𝑂(𝑥𝑖) < 1; ∑ 𝑓𝑃(𝑥𝑖) = 1

60

𝑖=1

 

Where 𝑓𝑃𝑂(𝑥𝑖) is the weighted population probability distribution function; 𝑝𝑖(𝑋 = 𝑥𝑖) is the 
probability of city 𝑖 to be chosen as the origin city for trip 𝑡; and 𝑃𝑜𝑖 is the population of city 𝑖. 

3.1.4. Determination of trips Destinations 

In this step, the destination for each trip is determined. The decision for selecting the city of 
destination is based on the assumption that the larger the population of a city and the closer it 
is to the city of origin, the higher the likelihood of it being chosen as the destination city. To put 
this assumption into mathematical form, the weighted distance distribution function is defined 
for each origin city 𝑖 as follows: 

𝑓𝐷(𝑥𝑖𝑗) = 𝑝(𝑋 = 𝑥𝑗|𝑥𝑖) =

1
(𝐷𝑖𝑠𝑖𝑗)3

∑
1

(𝐷𝑖𝑠𝑖𝑗)3
𝑗=60
𝑗=1

 (5) 

0 < 𝑓𝐷(𝑥𝑖𝑗) < 1; ∑ 𝑓𝐷(𝑥𝑖𝑗) = 1

60

𝑗=1

 

Where 𝑓𝐷(𝑥𝑖𝑗) is the weighted distance distribution function; 𝑝(𝑋 = 𝑥𝑗|𝑥𝑖) is the probability 
of selecting city 𝑗 as the destination if city 𝑖 is chosen as origin city; and 𝐷𝑖𝑠𝑖𝑗 is the distance 
between cities 𝑖 and 𝑗. Then, the population distribution and the distance distribution are mixed 
to generate the new distribution. The mixed population-distance probability distribution function 
is defined as:  

𝑓𝑀(𝑥𝑖𝑗) = 𝑝(𝑋 = 𝑥𝑗|𝑥𝑖) = 𝜆 × 𝑓𝑃𝑂(𝑥𝑖) + (1 − 𝜆) × 𝑓𝐷(𝑥𝑖𝑗)  (6) 

Where 𝑓𝑀(𝑥𝑖𝑗) is the mixed population-distance distribution function; 𝑝𝑖𝑗(𝑋𝑖𝑗 = 𝑥𝑖𝑗|𝑥𝑖) is 
the probability of selecting city 𝑗 as destination if city 𝑖 was selected as origin; 𝑓𝑃𝑂(𝑥𝑖) is the 
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weighted population probability distribution function; 𝑓𝐷(𝑥𝑖𝑗) is the weighted distance probabil-
ity distribution function; 𝜆 is a calibration parameter that indicates the importance of considering 
the population or distance between the cities in the probability of being selected as the desti-
nation city. The destination city of trip 𝑡 is determined by applying a random selection on the 
mixed population-distance distribution function mentioned above.  

It's worth noting that in this study, the behavior of both passenger cars and trucks trips are 
assumed to be the same in terms of origin and destination. However, the nature of truck trips 
may vary based on the locations of terminals, distribution centers, and companies within dif-
ferent sectors, and further research is necessary to investigate these differences. 

3.1.5 Determination of departure times 

Each trip 𝑡 is assigned to each hour of the day by the typical hourly distribution of travel (based 
on the type of vehicles: passenger car or truck), which is presented by NCHRP (2004) (Figure 
4). 

 

 

 

 
 
 
 
 

 

Figure 4: Typical hourly Distribution of Traffic Demand [13] 

At the end of step 5 of this probabilistic travel demand model, the hourly O-D matrix for each 
hour of the day is available. The Pseudocode of the model is given in Table 3.  

Table 3: Pseudocode code of probabilistic travel demand model  

Probabilistic Travel Demand Model  
Input: road network, yearly passenger-kilometer traveled, yearly trucks trips  
Output: hourly O-D matrix  
Initialization: set the total number of daily trips 𝑇𝑇 = 3.3 × 106 and trip index 𝑡 = 1 
Main loop:  
For trip 𝑡 in the range [1, 𝑇𝑇]:  

i. Form the weighted population probability distribution function (𝑓𝑃𝑂(𝑥𝑖)) 
ii. Apply a random selection on 𝑓𝑃𝑂(𝑥𝑖) to determine the city of origin for trip 𝑡.  
iii. Form the weighted distance function (𝑓𝐷(𝑥𝑖𝑗)) for the origin city. 
iv. Form the mixed population-distance function (𝑓𝑀(𝑥𝑖𝑗)) for the origin city. 
v. Apply a random selection on 𝑓𝑀(𝑥𝑖𝑗) to determine the city of destination for the trip 

𝑡. 
vi. Apply a random selection on the typical hourly traffic demand distribution (based on 

the type of vehicle) to determine the departure time of trip 𝑡.  
vii. 𝑡 = 𝑡 + 1 

End of loop 
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3.2 Base Case Model  

After obtaining the hourly O-D matrix, a base model was simulated. Dynamic User Equilibrium 
(DUE) traffic assignment was used to assign travel demand to the network. The traffic assign-
ment tool in SUMO, duaIterate.py, is used to perform DUE. Please refer to [14], [15] for more 
information on dynamic traffic assignment in SUMO. Dijkstra's algorithm is used to find the 
shortest path. The Logit model is used as the route choice model. The simulation is performed 
at the mesoscopic level, distinguishing between passenger cars and trucks. 

It should be noted that in this basic model, all of the traffic flow model's parameters and 
the traffic assignment model's parameters are considered the default values of SUMO. Then, 
they are modified based on the calibration process explained in the next section. The simula-
tion period was 24 hours; however, this paper reports on calibration and validation for the 
morning peak. 

4. Calibration and Validation of the Model  

Model calibration is the process of variating model parameters in a way that the system per-
formance of the model meets real data output. This is the most critical and complex step of 
traffic simulation. Previous studies have suggested that two types of parameters should be 
calibrated in traffic simulation [16]–[18]:  

1. Calibration of traffic flow model parameters (capacity calibration): This type of calibra-
tion consists of local and global parameter modifications and tries to reproduce ob-
served traffic capacities in the field by modifying traffic flow model parameters (reaction 
time, headway, etc.). 

2. Calibration of dynamic traffic assignment (global or local parameters) model parameter: 
This calibration is intended to make the path selection of vehicles in simulation close 
to reality. Usually, it is done by comparing the real and simulated traffic counts on spe-
cific links. To make the simulated traffic count closer to reality, either the inserted O-D 
matrix is modified, or the traffic assignment model is modified (by changing the assign-
ment method, route choice model parameters, number of iterations, etc.).  

4.1 Calibration of traffic flow model parameters  

The traffic flow modeling is performed on the mesoscopic scale in SUMO. The mesoscopic 
model of SUMO is based on the work of Eissfeldt [19]. This model is a queue base model 
which computes the time at which a vehicle travels from a queue based on the traffic state in 
the current and subsequent queue, the minimum travel time, and the stage of intersection (e.g., 
red, green, yellow). Some examples of mesoscopic parameters are minimum headway, queue 
length, junction control, edge length, etc. This model's parameters are calibrated for large-
scale networks in the work of Presinger [20]. This study uses the same parameters of the 
queuing model as the work of Presinger. Please refer to (DLR, 2021; Presinger, 2021) for more 
information about queuing model parameters.   

4.2 Calibration of dynamic traffic assignment model parameters 

The dynamic traffic assignment model was calibrated based on a comparison of real count 
data and the model-assigned count data for 50 detectors on the network. The segments are 
selected in a way that covers the entire Belgian network. The traffic count data was extracted 
from the website of the Flanders government [21]. This calibration consists of two parts. First, 
the O-D matrix is adjusted by testing the different values of  𝜆. As mentioned in previous sec-
tions, 𝜆 is a calibration parameter in the travel demand model. It determines the importance of 
a city's population and its distance from the city of origin in determining each trip's destination. 
After testing several values of 𝜆, it was finally concluded that 𝜆 = 0.25 leads to an O-D matrix 
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with the closest simulated traffic count to the real traffic count. The second part is to modify 
parameters of DUE. The models and parameters considered in the calibration process are 
warm-up time, routing algorithm, route choice model (e.g., deterministic or stochastic), route 
choice model parameters, number of available alternatives, swapping algorithm, and number 
of iterations. By altering these parameters, it was found that the Dijkstra routing algorithm with 
the Logit route choice model and ten iterations gives the best results.  

Figure 5 shows the hourly simulation results versus the observed flows. In addition to the 
scatter plot, the GEH criterion is calculated to compare the simulated and real traffic volumes. 
GEH determines the tolerance of relative and absolute errors on the network's traffic count. 
GEH formula is as follows: 

𝐺𝐸𝐻 = √
2(𝑀 − 𝐶)2

𝑀 + 𝐶
 (7) 

𝑀 is the simulation's hourly traffic volume, and 𝐶 is the real-world hourly traffic count. The 
average GEH is equal to 4.9.  In this study, 78% of observations have GEH criteria less than 
7.5, which is in the acceptable threshold [16].  

4.3 Validation  

Various methods exist to validate traffic simulation models, including traffic count and travel 
time comparison between reality and simulation. One of the new methods of large-scale traffic 
simulation models' validation, which has been used in previous studies [22], is the comparison 
of real and simulated travel times at the origin-destination pair level. This method extracts the 
simulated travel time between each origin and destination (cities) from DUE (for a specific time 
interval). The real travel times are exported from Google Maps' Distance Matrix API. The Dis-
tance Matrix API provides travel distance and time for a matrix of origins and destinations [23]. 
In this study, this method is implemented for validation.  

 

Figure 5: Observed and simulated hourly traffic volumes 

To validate the traffic simulation model, the O-D pairs' travel times are compared in reality and 
simulation in A.M. peak hour conditions. Figure 6 compares simulated and real travel times in 
A.M. peak hours. Figures 6 consists of 3600 (60 × 60) O-D pair travel times throughout the 
network and shows that the simulation model is a good representation of reality with a high 
level of accuracy (𝑅2 = 0.93) in congested conditions. The closeness of the travel times in 
reality and the simulation in a congested state can indicate that the traffic counts in the simu-
lation are near the real traffic count. Since the travel time between O-D pairs depends on the 
number of vehicles on the path. 
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Figure 6: Observed path travel times obtained from Google vs. simulated path travel times 
extracted from DUE  

5. Calibrated and Validated Model Results  

The findings of the calibrated and validated traffic simulation model for Belgium during a A.M. 
peak hour are displayed in Table 4. This table reveals that the overall travel time was 338896 
hours and the average speed for all vehicles was 61 km/hr. Additionally, Figure 7 presents a 
comparison between the simulated and actual speeds on the roads in Belgium. As demon-
strated in the figure, the model correctly identifies the locations of traffic congestion. 

Table 4: Calibrated and Validated traffic simulation model results 

Traffic assign-
ment 

Total travel time 
(hr) 

Average speed 
(km/hr) 

Average travel time 
(min) 

DUE 338896 61 79.2 

6. Conclusion   

This study reports the development, calibration, and validation of the traffic simulation model 
of Belgium. First, a probabilistic travel demand model is developed using population, distances 
between the cities, yearly vehicle-kilometer travelled by passenger cars, and annual truck trips. 
The probabilistic travel demand model calculates the number of all trips based on the yearly 
vehicle-kilometer travelled and the trucks' trips. The origin and destination of each trip are 
determined by applying random selection on the population distribution and the mixed distri-
bution of population and the distance between the cities, respectively. The departure time of 
each trip is based on the typical distribution of travel demand. Then the probabilistic travel 
demand model's outputs (hourly O-D matrices) are imported to SUMO's traffic simulation soft-
ware. After that, a base model is simulated using the mesoscopic feature of the SUMO traffic 
simulator and the DUE traffic assignment to assign travel demand to the network. This basic 
model is calibrated by real traffic count data. The calibration process includes the calibration 
of traffic flow model parameters (queuing model) and the parameters of dynamic traffic assign-
ment. Finally, the model is validated using real travel times between cities in congested condi-
tions. The real travel times are extracted from Google map Distance Matrix API. The results of 
the validation prove the accurate performance of the traffic simulation model. 

The proposed traffic simulation model of Belgium can help researchers, decision-makers, 
and policy-makers, to test different transportation planning scenarios at the country level. For 
future studies, developing the proposed probabilistic travel demand model for other case stud-
ies is recommended to check the model's performance. Also, in this study, for modeling the 
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freight demand, only trucks with Belgian license plates were taken into consideration. How-
ever, for achieving highly precise outcomes, it's imperative to factor in the transit traffic of cargo 
vehicles from other nations as well. This task, though, requires access to cargo data from those 
other countries. 

 

Figure 7: Simulated and real links speed of the Belgium road network 

Data availability statement 

The data that support the findings of this study are not publicly available. Access to the data 
may be granted upon request to the corresponding author (behzad.bamdad@uclouvain.be).  

Author contributions 

Behzad Bamdad Mehrabani contributed to the conceptualization of the study, developed the 
methodology, conducted the investigation, curated the data, wrote the original draft, and cre-
ated the visualizations. Luca Sgambi contributed to the conceptualization of the study, vali-
dated the results, reviewed and edited the writing, provided supervision, managed the project 
administration, and acquired the funding. Sven Maerivoet assisted with the methodology, val-
idated the results, and reviewed and edited the writing. Maaike Snelder contributed to the con-
ceptualization of the study, developed the methodology, validated the results, analyzed and 
interpreted the data, and reviewed and edited the writing. All authors reviewed the results and 
approved the final version of the manuscript.  

Competing interests 

 The authors declare that they have no competing interests. 

Funding 

The Université Catholique de Louvain supported the corresponding author under the "Fonds 
Speciaux de Recherche" and the "Erasmus +" programs. 

Acknowledgement 

The corresponding author would like to express his gratitude to UC Louvain for providing the 
funding which made this research project possible.  

25

mailto:behzad.bamdad@uclouvain.be


Bamdad Mehrabani et al. | SUMO Conf Proc 4 (2023) 

References 

[1] E. J. Miller, “Travel demand models, the next generation: Boldly going where no-one 
has gone before,” in Mapping the Travel Behavior Genome, Elsevier, 2020, pp. 29–46. 

[2] OECD, “Population (indicator),” 2022. . 

[3] Statista, “Total length of the road network in Belgium,” 2009. 
https://www.statista.com/statistics/449794/belgium-length-of-road-network-by-road-
type/ (accessed Nov. 21, 2022). 

[4] Statista, “Total length of the railway lines in Italy from 2011 to 2018.,” 2020. 
https://www.statista.com/statistics/450034/length-of-railway-lines-in-use-in-belgium/ 
(accessed Nov. 21, 2022). 

[5] W. Decoster, L. Van Elsen, P. De Splenter, and A. Van Snick, “BELGIAN TRANSPORT 
& LOGISTICS,” 2020. 

[6] SPF Mobilité et Transport, “Premiers résultats de l’enquête Monitor sur la mobilité des 
Belges,” 2019. Bruxelles, pp. 1–6, 2018. 

[7] STATBEL, “Structure of the Population | Statbel,” Structure of the Population - Statbel - 
Belgium in figures, 2022. https://statbel.fgov.be/en/themes/population/structure-
population#panel-14 (accessed Nov. 21, 2022). 

[8] FPB, “Base de données transport,” 2017. 
https://www.plan.be/databases/PVarModal.php?VC=TTBE_PX_RD_PKM&D1[]=EU15
_BE1&D1[]=EU15_BE2&D1[]=EU15_BE3&D2[]=W50PRIVATE&D3[]=WW10SNEL&D
3[]=WW20GEN&D3[]=WW30GEM&lang=fr&DB=TRANSP (accessed Dec. 20, 2022). 

[9] STATBEL, “Road freight transport,” Road freight transport, 2022. 
https://statbel.fgov.be/en/themes/mobility/transport/road-freight-transport#figures 
(accessed Nov. 26, 2022). 

[10] L. Sgambi, T. Jacquin, N. Basso, and E. Garavaglia, “The robustness of infrastructure 
network assessed through a probabilistic flow model and a static traffic assignment 
algorithm–the case of the Belgian road network,” in IABMAS2020 10th Int. Conf. on 
Bridge Maintenance, Safety and Management, 2021, pp. 1–6. 

[11] T. Jacquin, “Modélisation temporelle du trafic pour des études de résilience sur le 
réseau routier belge,” Université catholique de Louvain, 2019. 

[12] J. de D. Ortúzar and L. G. Willumsen, Modelling Transport. John wiley & sons, 2011. 

[13] NCHRP, Traffic Data Collection, Analysis, and Forecasting for Mechanistic Pavement 
Design, vol. 538. Transportation Research Board, 2004. 

[14] B. Bamdad Mehrabani, J. Erdmann, L. Sgambi, and M. Snelder, “Proposing a 
Simulation-Based Dynamic System Optimal Traffic Assignment Algorithm for SUMO: 
An Approximation of Marginal Travel Time,” in SUMO Conference Proceedings, 2022, 
vol. 3, pp. 121–143, doi: 10.52825/scp.v3i.119. 

[15] DLR, “SUMO User Documentation,” 2021. https://sumo.dlr.de/docs/index.html. 

[16] M. Aghababaei, S. Costello, and P. Ranjitkar, South Island Model: development and 
calibration. 2019. 

26



Bamdad Mehrabani et al. | SUMO Conf Proc 4 (2023) 

[17] J. Barceló, Fundamentals of traffic simulation, vol. 145. Springer, 2010. 

[18] J. Casas, J. L. Ferrer, D. Garcia, J. Perarnau, and A. Torday, “Traffic simulation with 
aimsun,” in Fundamentals of traffic simulation, Springer, 2010, pp. 173–232. 

[19] N. G. Eissfeldt, “Vehicle-based modelling of traffic. Theory and application to 
environmental impact modelling,” University of Cologne. Universität zu Köln, p. 199, 
2004, [Online]. Available: https://kups.ub.uni-koeln.de/1274/. 

[20] D.-I. C. Presinger, “Calibration and Validation of Mesoscopic Traffic Flow Simulation.” 
Graz University of Technology, 2021. 

[21] Vlaanderen, “Verkeersindicatoren,” 2022. 
http://indicatoren.verkeerscentrum.be/vc.indicators.web.gui/indicator/index. 

[22] S. Shafiei, Z. Gu, and M. Saberi, “Calibration and validation of a simulation-based 
dynamic traffic assignment model for a large-scale congested network,” Simul. Model. 
Pract. Theory, vol. 86, pp. 169–186, 2018, doi: 10.1016/j.simpat.2018.04.006. 

[23] Google LLC, “Distance Matrix API: Developer Guide,” Google Maps Platform, 2017. 
https://developers.google.com/maps/documentation/distance-matrix. 

 

27



SUMO User Conference 2023

Conference paper

https://doi.org/10.52825/scp.v4i.211

© Authors. This work is licensed under a Creative Commons Attribution 3.0 DE

Published: 29 June 2023

SUMO Roundabout Simulation with Human in the Loop

Giorgio Previati1[https://orcid.org/0000-0001-6450-1566], and Gianpiero
Mastinu1[https://orcid.org/0000-0001-5601-9059]

1Politecnico di Milano, Milan, IT

Abstract: Traffic simulators rely on calibrated driver models in order to reproduce hu-
man behavior in different traffic scenarios. Even if quite accurate results can be ob-
tained, the actual interaction between human being and traffic cannot be completely
reproduced. In particular, as automated vehicles are being developed, the human in
the loop is required to understand whether drivers feel comfortable and safe in mixed
traffic conditions. In recent years, dynamic driving simulators have been developed to
test vehicles in complex or dangerous situations in safe and controlled environments.
However, driving simulators are mostly devoted to the study of vehicle dynamics more
than traffic situations.

This paper presents an integration of SUMO with a high end dynamic driving sim-
ulator with the aim to study human reactions while negotiating a roundabout in mixed
traffic conditions. SUMO is in charge of traffic simulation, while a full vehicle model is
employed for the simulation of the dynamic of the human driven car. To allow a hu-
man to effectively drive the car, both simulation environments have to run in real time
while exchanging the required information. Also, scenario graphics, sound and driv-
ing simulator feedback motion have to be accurately realized and synchronized with
the simulations. A real-time server is employed for the synchronization of the differ-
ent environments. As SUMO does not consider vehicle dynamics, particular attention
is devoted to the a realistic reconstruction of trajectories and vehicle dynamics to be
represented in the scenario.

Some preliminary tests are shown where a panel of testers has been asked to ne-
gotiate the roundabout with different percentages of automated vehicles. The results
of the tests show that drivers were able to perceive differences in the behavior of other
vehicles and that the proposed approach is effective for understanding the feeling of
comfort and safety of the human driver.

Keywords: SUMO cosimulation, Human in the loop, Driving simulator, Autonomous
and connected vehicles

1 Introduction

Microscopic traffic simulators (MTS) are a powerful tool for the study of traffic and
infrastructures. Each vehicle in a given road network is simulated individually allowing,
among other things, for a detailed analysis of infrastructure design and modification,
traffic control, behavioral studies and testing of connected and automated vehicles
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(CAV) [1]. CAVs are expected to provide a huge opportunity for increasing traffic flow,
increase transport safety and reduce fuel consumption and emissions [2], [3]. However,
the introduction of CAVs requires a huge amount of tests and data collection both
by real world tests and by simulations [4]. CAVs and human driven vehicles will be
required to share the same traffic environment during the transition period [5]. Reliable
simulations in mixed traffic conditions require a realistic model of the human driver. To
this respect, even if MTS provide several models describing driver behavior, due to
human complexity and variability, such models are not able to fully catch human effects
in traffic simulations [1]. Also, human acceptance and preferences when driving in a
mixed traffic condition is still being researched [6].

Driving simulators, on the other hand, are developed with the aim to introduce the
human driver into the simulation and study its interaction with the simulated vehicle
and environment. In general, driving simulators are more focused on the simulation of
the driven vehicle and the surrounding traffic simulation can be not fully accurate [5].
Those simulators employ sophisticated 3D visualization creating realistic and immer-
sive scenarios. In cases, driving simulators can be coupled with actuated platforms
and give also motion feedback to the driver. Such dynamic driving simulators often fea-
ture full scale vehicle cockpit and audio surrounding to create a completely immersive
experience in order to get a more natural response of the human driver.

Several papers can be found in the literature describing the integration of MTS and
driving simulators. Even if such integration is not a novelty [7], [8], only in recent years
graphical and computational performances have allowed the realization of realistic sce-
narios [1], [4]–[6], [9]–[14]. From these papers, the principal technical challenges re-
lated to the co-simulation between MTS and driving simulators can be summarized in
the following aspects.

• Network correspondence. To obtain a proper co-simulation, the same road net-
work must be reproduced both in the MTS and in the driving simulator. This
problem is discussed in the great majority of the cited papers. Depending on
the chosen software for the simulations, different approaches, mostly manual, are
described.

• Trajectories. MTS do not consider a realistic vehicle dynamics, but the simulation
is focused only on traffic flow. As a result, the trajectories of the vehicles are not
realistic, but unrealistic effects such us sharp turning angles or instantaneous line
changes are usually present. In [1] interpolation schemes are proposed in order
to obtain smooth bending trajectories.

• Synchronization and real time simulation. In order to include a human in the loop,
the simulation must run in (or close to) real time. Also, the simulation time of the
two software must be synchronized and frequent exchange of information has to
take place. Different strategies are presented. In [1] the built-in real time function
of the employed MTS has been exploited to trigger the simulations. Alternatively,
when a different MTS without such function has been used, the integration param-
eters have been set to obtain a similar effect. In [13], a dynamic driving simulator
has been employed and used to synchronize the simulations.

• Delay. Delay between the two simulations is very important to provide a realistic
and consistent experience to the human driver. Especially in urban scenarios,
delay is very important to allow a correct perception of the positions of the other
vehicles. Delay depends on the rate of data transfer between the two simulators.
Usually, driver simulators run with very short simulation steps (from a maximum
of 33 ms [11] up to 1 ms [15]). Smaller time steps have to be preferred to enhance
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the experience felt by the driver. MTS have larger integration steps, with common
values between 0.1 to 1s, with the lower value typically used for these applications.
This causes large delays (of the order of 0.1-0.2 s [1], [11], [13]) between the two
simulations which may alter the driver perception.

In this paper, a co-simulation between SUMO [16] and a high end dynamic driv-
ing simulator is developed for the simulation of mixed traffic conditions with CAVs and
human driven vehicles in a roundabout scenario. With respect to the considered pa-
pers, the described application employs a real time scheduler to have a very accurate
synchronization between the two simulations and the real-time. Also, by setting up a
communication frequency of 200Hz between the simulation, a very short delay of 5 ms
is obtained. The employment of a high end dynamic simulator allows the driver to have
a fully immersive experience, including the motion feedback. Additionally, a model of
reinforcement learning artificial intelligence is run in parallel to the SUMO simulation by
using the Flow library [17] to drive the CAVs. Preliminary tests with a restricted panel
of drivers show the potentialities of the application.

2 Driving simulator and VI-Worldsim environment

The dynamic driving simulator utilized is the cable-driven DiM400 Dynamic Driving Sim-
ulator of the DRISMI laboratory [18] of Politecnico di Milano. The simulator is produced
by VI-grade [19] and shown in Figure 1. The driving simulator features a full size vehicle
cockpit (Figure 1 right)

Figure 1. Driving simulator DIM400 at Politecnico di Milano inside the DRISMI lab
(www.drismi.polimi.it). On the right, detail of the cockpit interior.

The cockpit motion is obtained by a redundant system of actuators, conceived to de-
couple the low-frequency and high-frequency motions. A lower stage of actuation com-
posed by a cable driven platform with in-plane degrees of freedom (longitudinal, lateral
and yaw) is coupled by a higher stage realized by a Stewart platform providing all six
degrees of freedom. The first stages is capable of large motion at relative low frequency
(up to 3 HZ), while the second stage realized smaller motions at higher frequencies (up
to 30 Hz). By combining the two stages, both low and high vehicle frequencies can
be reproduced. To reproduce the higher frequencies related to NVH (noise and vibra-
tion harshness), eight shakers, able to provide vibrations up to 200 HZ, are located in
engine and suspension connecting points. Table 1 reports the driving simulator perfor-
mances, further details on the driving simulator can be found in [20]. Haptic seat belts,
air cushions, interactive steering wheel and active brake complete the cockpit equip-
ment. A 270°-wide 120 Hz screen surrounds the cockpit. Five speakers reproduce the
sources of noise in and out of the vehicle while driving.
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The motion of the dynamic driving simulator is controlled by a cueing algorithm based
on a Model Predictive Control and able to provide linear and rotational acceleration
consistent with the expected acceleration in the considered situation [21]. The motion
of the human driven vehicle in the simulation is computed by a 14-degrees of freedom
model implemented in VI-CarRealTime [19].

Table 1. Driving simulator DIM400 specifications.

Physical quantity Values
Platform size 6m x 6m

Visual system (H) 270o

Visual system (V) 45o

Degrees of freedom 9
Longitudinal acceleration 1.5g

Vertical acceleration 2.5g
Lateral acceleration 1.5g

Lateral travel 4.2m
Longitudinal travel 4.2m

Vertical travel ± 298mm
Yaw angle ± 62o

Pitch angle ± 15o

Roll angle ± 15o

The graphical environment and the other vehicles are reproduced by VI-WorldSim [19].
VI-WorlSim (Figure 2) provides a full 3D traffic visualization realized by Unreal Engine.
It is a commercial software, ready to use, and it also includes a basic traffic generator.
Optionally, the traffic generator can be disabled and the vehicles can be controlled by
external signals. VI-WorldSim is installed on a Intel i7-9700K@3.60 GHz workstation
with 32 GB and Windows 10 pro.

The driving simulator is controlled by a 2 x Intel Xeon Gold 6144@3.50 GHz with
48 GB and Linux RedHawk 7.3 real time server ([22]). The server is in charge of syn-
chronizing all process, run the VI-CarRealTime simulation of the human driven vehicle,
run the cueing algorithm for the control of the simulator and manage all network con-
nections, sensors and cockpit actuators. Graphic and sound are managed by six Intel
i7-9700K@3.60 Ghz with 32 GB and Windows 10 pro workstations equipped with a
GeForce RTX 2080 Ti. A real time database is updated at each simulation step on the
real time server and is shared with all other workstations. The simulation step is set at
1 ms. The real-time server constraints each simulation step to be performed in a time
interval of 1 ms, assuring a real-time simulation. All models involved must be optimized
to have computational times less than the allotted time interval.

3 Reference scenario

The reference scenario for this application is a three-leg single-line roundabout with
mixed traffic conditions. Connected and automated vehicles share the roundabout with
human driven vehicles. The human driven vehicles are driven by a IDM (intelligent
driver model) algorithm [23] implemented in SUMO. One of the human driven vehicles
is actually driven by the human in the loop in the driving simulator. All the vehicles are
considered to be connected and exchange data related to their trajectories, velocities
and accelerations. CAVs are controlled by artificial intelligence defined by a reinforce-
ment learning approach designed for realizing a policy able both to drive safely CAVs

32



Previati and Mastinu | SUMO Conf Proc 4 (2023)

Figure 2. VI-Worldsim virtual environment, adapted from [19].

into the roundabout and to optimize the traffic flow. The communication protocol based
on an innovative V2N2V (Vehicle to NEtwork to Vehicle) approach with 5G commu-
nication and edge node computing has been specifically developed in the AI@EDGE
project [24]. This reference scenario is part of the AI@EDGE project and represent a
use-case for the validation of the project 5G and edge computing technologies. The
roundabout scenario has been chosen as roundabouts are currently one of the most
critical scenarios for automated driving [25] providing a challenging real world problem
to test the technologies developed in the AI@Edge project. For interested readers,
more details on the project and on the AI can be found in [24]. In this paper, only the
part of the project related to the integration between the two simulators is discussed.

The roundabout network has been realized in SUMO. The network has then been
exported to Mathworks Roadrunner and translated by the Unreal engine to be imported
in VI-WorldSim. This procedure guarantees the correspondence between the road
network in SUMO and in VI-WorldSim. In Figure 3 the road network in SUMO and in
Mathworks Roadrunner are depicted.

Figure 3. Different models of the road network used for the conversion from SUMO to VI-
WorldSim. From top left clockwise: SUMO, Mathworks/Roadrunner, Unreal, VI-
WorldSim.

4 SUMO - VI-Worldsim integration

The scheme for the integration of SUMO with the driving simulator is depicted in Fig-
ure 4. The core of the connection is the real-time database located on the real-time
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server. The database is accessible by all the workstations of the network. The real-time
server provides the base real-time clock of 1 ms to synchronize all connected worksta-
tions. In particular, by considering Figure 4, the following processes are considered.

• Human in the loop vehicle. The vehicle driven by the human in the loop is simu-
lated by a fourteen degree of freedom model implemented in VI-CarRealTime [19]
and running on a dedicated core of the real-time server. The vehicle is simulated
with a simulation step of 1 ms. Each simulation step is performed within the al-
lotted real-time clock of 1 ms. The driving commands for the vehicle are given by
the human in the loop through the steering wheel and pedals of the cockpit of the
simulator. The commands are stored in the real-time database and read by the
simulation in VI-CarRealTime. In turns, VI-CarRealTime writes on the real-time
database the state of the human driven vehicle. Such states are fed to the con-
troller of the dynamic driving simulator for the motion feedback and to the graphic
servers via VI-WorldSim for the visual and audio feedback.

• SUMO connection. SUMO runs on a Intel i7-11700F@2.50 GHz with 32Gb and
Linux Ubuntu 18.04.6 LTS workstation. The workstation is connected to the real-
time server by a UDP connection via a python script. The python script is also in
charge of communicating with SUMO by using the TraCI library. The UDP con-
nection is used to synchronize the simulations. The real-time server sends the
state of the human driven vehicle every 5 base real-time clocks of 1 ms, i.e at
constant time intervals of 5 ms. The python interface waits until the vehicle state
is available. When available, it reads the state, updates the vehicle position in the
SUMO simulation and then launches a simulation step of 5 ms. When the simu-
lation step is done, the python interface retrieves the states of all other vehicles
and sends the information via UDP to the real-time database. It is important to
notice that if the computation time required for the SUMO simulation is less than 5
ms, real-time simulation and synchronization are guaranteed. In this way, a delay
of only 5 ms is present between the states of the human driven vehicle and the
states of the other vehicles. The number of the vehicles that can be simulated
in the network without violating the real time constraint depends on the available
computational power and the network complexity. With the employed hardware
configuration, the scenario considered in this paper can be simulated in real-time
with up to 60 vehicles in the network.

• Artificial intelligence for CAVs control. A second python instance runs on the same
Linux workstation with a second instance of TraCI connected to the same SUMO
simulation and to the Flow library. This interface is in charge of communicating
with SUMO, retrieve the state of the simulation and provide the commands for
controlling the CAVs according to the AI trained by the reinforced learning.

• VI-WorldSim connection. VI-WorldSim is connected directly to the real-time data-
base for the standard interactions with VI-CarRealTime to get the motion of the
ego vehicle and set the graphical environment accordingly. A second custom con-
nection to the real-time database is established via a Matlab/Simulink interface to
provide the motion of the vehicles controlled by SUMO (either driven by a human
IDM model or controlled by the IA via TraCI).

The described communication method is designed for the particular configuration of
the employed driving simulator. However, the method can be applied to any generic
driving simulator program. In fact, the real-time server can be configured to run with
most of the most diffused driving simulator programs and graphical environment. There-
fore, the general scheme of synchronization and real-time application can be adapted
to any software configuration. The advantages of the proposed scheme are a rigorous
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real-time simulation and a delay between the different simulations of the order of the
larger simulation step used (in the described case, 5 ms). Also, as the real-time sched-
uler can share the real-time database with any number of workstations, more driving
simulators can be added to the network allowing for the inclusion of more than one hu-
man in the loop. The additional driving simulators can be of any kind (laptop or desktop
workstation, static simulators, dynamic simulators) and, in principle, can run different
simulation software. Some integration tests have already been run by adding a second
driver by connecting a desktop driving simulator.

Figure 4. Connections scheme.

4.1 Trajectories

Even if SUMO integration step is very short, the trajectories in SUMO do not account
for vehicle dynamics and do not appear natural when used to move vehicles in the VI-
WorldSim virtual environment. However, the small integration step, corresponding to a
200 HZ sampling of the motion of the vehicles is higher than the frequency of the screen
(120 HZ), thus an interpolation between steps is not necessary to obtain a fluid motion
of the vehicles. Therefore, the only operation on the trajectories extracted from SUMO
is a simple transformation. For each trajectory in the road network loaded in SUMO, a
corresponding trajectory is modeled in an auxiliary network. The corresponding trajec-
tory connects the same nodes of the SUMO trajectory, but with a smooth and ”natural”
path. At each time instant, the position of each vehicle is red in SUMO. Before sending
the position to VI-WorldSim, the position is slightly modified to be consistent with the
auxiliary and more natural corresponding trajectory. This operation is computationally
very fast as it is just a modification of the coordinates according to a correspondence
table and allows a much more realistic movements of the vehicles.

Alternatively, in some papers [1] large time increments of the order of 0.2 s are used
for traffic simulation. In this case, the trajectories of the vehicles simulated by the
MTS have to be interpolated to compensate for the very low update frequency of their
position and orientation that prevent a fluid motion. By this approach, larger time incre-
ments of the MTS simulation allow for the simulation of larger networks, however larger
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position delays between the two simulation environments have to be expect. In the
present paper, a smaller integration step for the MTS has been preferred to minimize
the position delay.

5 Preliminary tests

The integrated system with SUMO and the dynamic driving simulator has been used
to perform some preliminary experimental test with a relatively small panel of twelve
drivers. The aim of the tests is to understand if the set up is able to let the testers
appreciate different behaviors of the other vehicles. In particular, the target is if by
changing the percentage of CAVs in the scenario, the participants could perceive a
different traffic flow and if they feel comfortable and safe while driving.

As discussed in Sect. 3, the selected scenario is a three-legged single-lane round-
about. As the scenario is quite small and the maneuver is very quick, participants have
been asked to enter the roundabout from all legs and always exit at the second exit. In
this way, the driver, while on the circulatory roadway, has to cross one entry and can
observe the behavior of the other vehicles when approaching the roundabout. A small
queue of about three to five vehicles is present at each leg and the tester has to wait
her/his turn to enter the roundabout. For each leg, the drivers repeat the maneuver two
times, once with 20% and once with 80% of CAVs. Participants are not informed on
the presence of automated cars. The scenario comprises forty vehicles, including the
human driven one. After the test, a brief questionnaire is proposed to the participants.
The aim of the questionnaire is to understand if the designed scenario permits to the
participant to feel some differences in the two traffic situations. The participants are
asked to indicate which of the two traffic situations, if any, has a more smooth traffic,
feels more safe while driving and which they prefer.

Table 2. Summary of the results of the preliminary tests.

Preferred scenario Traffic smoothness Safety feeling Overall preference
20% CAVs scenario 4 3 3
80% CAVs scenario 6 3 6

No difference 2 6 3

The feedback collected from the drivers involved in the test is reported in Table 2.
The results show that most of the driver were able to observe differences in the two
situations. Speaking with them after the tests, they also reported that the simulation
was quite realistic, the traffic was smooth and the other vehicles interacted correctly
with their vehicle. Referring to the answers to the questionnaire, there is a slight trend
to prefer the scenario where 80% of traffic actors were automated cars. However, the
panel is too small to be able to derive conclusions and more tests will be performed.
The main point, however, is that the proposed integration between SUMO and a high
end dynamic driving simulator can be effectively employed for the analysis of different
traffic scenarios and for the study of the interactions between human drivers and CAVs.

6 Conclusion

In the present paper a integration between SUMO and a high end dynamic driving
simulator has been presented. The proposed scheme of integration relays on a real-
time scheduler in order to guarantee a very accurate synchronization between the two
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simulations and the real-time. By setting an exchanging data frequency of 200 Hz
between the SUMO simulation and the driver simulation, a very small delay of 5 ms
is present between the two simulations. Vehicle trajectories computed by SUMO are
transformed in more natural trajectories by slightly modifying the computed position of
the vehicles before sending the data to the driving simulator. The high refreshment
frequency of vehicle positions and the correction of the trajectories has allowed for a
very smooth and realistic co-simulation.

The proposed integration scheme, even if derived for the actual software configura-
tion used in the paper, is actually general as real-time scheduler can be easily used
to interface the most diffused driving simulator software and microscopic traffic simula-
tors. Given the utilization of the real-time scheduler and a shared real-time database,
any number of driving simulators (laptop or desktop workstations, static simulators or
dynamic simulators), even running different simulation software, can be added to the
network.

Preliminary tests, performed on a relatively small panel of twelve drivers, have shown
that the proposed approach can be effectively employed for experimentation with mi-
croscopic traffic simulators and human in the loop. The participants have been asked
to navigate a roundabout in a mixed traffic condition with different percentage of con-
nected automated vehicles. The participants were able to observe differences in the
traffic flow for different percentages of connected and automated vehicles. The par-
ticipants also reported that the simulation was realistic and the vehicles simulated by
SUMO interacted with their vehicle as one might expect.
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Abstract: In this study, the physical principles governing car-bfollowing (CF) behav-
ior and their impact on traffic flow at signalized intersections are investigated. High
temporal-resolution radar data is used to provide valuable insights into actual CF be-
havior, including acceleration, deceleration, and time headway distribution. Demand-
calibrated SUMO simulations are run using empirical CF parameter distributions, and
three CF models are evaluated: IDM, EIDM, and Krauss. By emulating radar data
in SUMO and processing simulated vehicle traces, discrepancies between empirical
and simulated parameter distributions are identified. Further analysis includes com-
parisons with default SUMO CF model parameters. The findings reveal that measured
accelerations differ from CF model parameter accelerations and using the empirical
value (µ = 0.89m/s2) leads to unrealistic simulations that fail volume-based calibra-
tion. Default parameters for all three models reasonably approximate the mean and
median of measured parameters, but fail to capture the true distribution shape, partly
due to homogeneity when using default parameters. The results show that it is more
effective to simulate with the default parameters provided by SUMO rather than using
measurements of real-world distributions without additional calibration. Future work
will investigate closing the loop between the measured real-world and SUMO distribu-
tions using traditional calibration tactics, as well as assess the impact of calibrated vs.
default CF parameters on simulation outputs like fuel consumption.

Keywords: traffic micro-simulation, car-following models, car-following calibration, in-
telligent driver model, roadside radar data

1 Introduction

The modeling of car-following behavior is a crucial component of traffic micro-simulation,
as it captures the longitudinal interactions between drivers and their preceding vehi-
cles. Car-following (CF) models have been studied extensively by researchers since
the 1950s, with early models proposed by Reuschel [1] and Pipes [2]. Over the years,
the CF model space has evolved into several subcategories, including mathematical
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or engineering models, data-driven models, and hybrid models [3]. While the latter
two modeling techniques have gained significant research attention, the use of math-
ematical models such as the intelligent driver model (IDM)[4] is still prevalent in traffic
micro-simulation software such as SUMO [5]. Traffic micro-simulation has many use
cases, but regardless, the reliability of the insights gained from simulation depends
entirely on the model’s ability to represent the underlying real-world traffic network[6].

To gain confidence in model outputs, a process of calibration and validation is re-
quired [6], [7], where each of traffic micro-simulation’s sub-models, including the CF
model, are optimized. There are several types of calibration referenced in literature, but
they can generally be summarized in three categories: capacity calibration, route/de-
mand calibration, and individual trajectory-based calibration [6], [8]. The first two cali-
bration categories typically rely on aggregate measures, such as loop detector counts,
travel times, and saturation flow rates. Although widely used, these measures may not
always accurately reflect real-world vehicle behavior [8], [9]. Moreover, studies have
shown that different CF model behaviors can lead to similar travel times, saturation flow,
delays, and queues [10]. This lack of uniqueness in the CF model parameters that best
fit the observed traffic measures has been previously studied [11] and can be prob-
lematic in estimating the emission and energy consumption of a traffic network using
microsimulation. This is because factors such as acceleration, deceleration, jerk, and
speed are highly influential in vehicle-level emissions and fuel consumption, which are
difficult to estimate accurately without considering individual vehicle trajectories [10],
[12].

Fuel consumption estimation is given as an example to emphasize the importance
of the CF model parameters themselves. They are a central part of traffic simulation,
yet its difficult to find consensus on the correct parameter settings and/or range of set-
tings. The default values in SUMO can differ substantially from calibration literature (i.e.
SUMO default acceleration1 is 2.6m/s2, whereas commonly cited calibration literature
ranges from 1.00 to 1.58m/s2 [13]). Further, the vast majority of calibration literature re-
lies on NGSIM dataset, which was collected in 2005 [14], even though it is known that
CF parameters evolve over time or change depending on geography and locality [15].

The solution would seem to require that practitioners calibrate their own CF models,
however the complexity of performing trajectory-based calibration in practice cannot be
understated. It is not as simple as measuring accelerations or velocity in the field, as
many CF model parameters cannot be derived from macroscopic measurement or do
not have physical equivalents [16]. Instead, the practitioner must collect high resolution
trajectory data, clean and process the data, extract leader-follower pairs, and then
use computationally expensive optimization methods, such as genetic algorithms, to
find the correct CF parameter settings. Recent studies have shown that state-of-the-
art CF model calibration still results in significant error [17] and according to Ossen
and Hoogendoorn ”calibration based on real trajectory data turns out to be far from
trivial” [18]. On the topic of fuel consumption, sensitivity analyses show that CF model
parameters are important in individual trajectory estimation and subsequent fuel and
emissions estimation, but their importance diminishes as more vehicles are considered
in aggregate and average parameters may be sufficient [8].

The review of literature leads practitioners to the following conundrum: it is under-
stood that CF model parameters are important tuning knobs for calibrated outputs,
but without high-resolution and complete trajectory information for the network, what
should the parameter settings be? This study aims to provide additional context to this

1https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html
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problem using data from a real-world network outfitted with radars that record vehicle
positions and speeds, which (along with cameras) is becoming more popular with the
rise of intelligent traffic systems (ITS). While literature has shown that these partial tra-
jectories may be insufficient for traditional CF model calibration [17], it is still possible
to extract distributions of observed parameters such as vehicle acceleration, headway
and the free-flow speed. The efficacy of using these measured distributions as the CF
model parameters is explored, in addition to the ability of the SUMO CF models with
their default parameters to recreate the measured distributions.

2 Car Following Models

Intelligent Driver Model: The IDM CF model was first proposed by Treiber, Hennecke
and Helbing in 2000 [4]. The IDM model determines the acceleration of the follower
vehicle, v̇f , as a function of current velocity, vf , the distance to the leading vehicle, s,
and the difference in velocity between the leader and follower, ∆v. The acceleration,
v̇f , at any time t is written as

v̇f (vf , s,∆v) = a

1 −
(
vf
v0

)β

−
(
s∗(vf ,∆v)

s

)2
 (1)

where s∗ is the desired minimum following gap, v0 is the free-flow speed on the road,
β is a tuning acceleration exponent, and a is the maximum follower acceleration. The
target simulation network described in Section 3.2 has varied speed limits, thus a static
v0 is not applicable. SUMO instead models the desired velocity as a speed factor, SFv,
which is a multiplier on the speed limit, making the equation for v0

v0 = SFv · speed limitf (2)

where speed limitf is the follower vehicle’s applicable speed limit. The following gap is
formulated as a function of current velocity and the difference in leader and followers
velocity and given as

s∗(vf ,∆v) = s0 + τ +
vf∆v

2
√
ab

(3)

where a is again the follower’s maximum acceleration, b is the follower’s maximum de-
celeration, τ is the minimum time headway, and s0 is the minimum space between the
follower and lead vehicle. In total, the IDM model has 6 tuning parameters { a, b, τ , s0,
SFv, β } with [13] fixing β = 4, reducing the dimensionality to 5.

Krauss Model: The default CF model in SUMO is Krauss’s [19], [20]. It is a collision
free model, with each follower vehicle having a safe following speed, vsafe, computed at
every simulation step from the velocity, vf , using the following equation:

vsafe(t) = vl +
g(t)− vl(t) · τ

vf
b·vf

+ τ
(4)

where t is the simulation time, vl(t) is the velocity of the lead vehicle at time t, g(t) is the
gap between the vehicles, τ is the reaction time of the driver, and b is the deceleration
function [21]. Because the acceleration should be bounded by the physical limitations
of the vehicle, the actual desired speed, vdes(t), is calculated as:
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vdes(t) = min [vsafe(t), vf (t) + a, v0] (5)

where a is the maximum acceleration capability of the vehicle and v0 is the maximum
speed that the driver would drive on the road according to Equation 2. The maximum
acceleration parameter does not represent the physical limit of the vehicle, but rather
the maximum acceleration that a driver would choose2 [21]. Like the IDM model, a, b,
and τ are available as tuning parameters.

Extended Intelligent Driver Model: The extended intelligent driver model was pro-
posed by Salles, Kaufmann, and Reuss in 2020 to more accurately model human driv-
ing behavior, especially the drive-off trajectories [22]. The model is based on IDM but
includes many improvements from both Treiber ([23], [24]) and the authors themselves.
For brevity, the equations for the EIDM are not listed in this work, rather the reader is
redirected to the referenced work. Along with IDM and the Krauss model, it also con-
tains tuneable acceleration, deceleration and headway parameters.

3 Data and Models

3.1 Radar Processing

The trajectory data was collected using radars from InnoSenT GmbH 3. The radar used
for trajectory processing is located on the north side of the west-most traffic signal
(TL1) in Figure 1 and captures the west-bound approach, as well as the east-bound
departure. The radars can report vehicle position, velocity, and vehicle length every
50ms, however, due to internet network speed restrictions, data for individual trajec-
tories is actually recorded with a period of 100-200ms. Vehicle positions are reported
in the radar’s coordinate system and must be transformed to match the positions to
the underlying road network. Vehicles that enter the radar’s field of view are assigned
a unique identifier, making it easy to extract the complete trajectory of a vehicle as it
passes through the radar. However, filtering the trajectories is necessary as trajec-
tories can have discontinuities, the radar can identify non-vehicle objects as vehicles
(data points in the grass in Figure 1), and the object id for a vehicle can switch while
the vehicle is still in the sensing range.

The radars are used for two tasks in this work: extraction of CF behavior from the
velocity profiles and volume calculation. To deal with radar data issues in the context of
velocity profile processing, a polygon is placed around the west-bound approach to TL1
in Figure 1. This region has high data integrity and low probability of interference. The
trajectory data is filtered so that only vehicles which pass completely through the box
are considered. Their trajectories are truncated to only include the intra-box data and
then processed according to the methodology in Section 3.3. The other tasks is volume
calculation, which uses the radars’ positional information to count vehicles that cross
the stop bar at all of TL1’s approaches. Filtering the radar with the aforementioned
strategy could introduce bias into the dataset as it only keeps vehicles for which the
radar is able to maintain a steady track, however these cases typically result when
vehicles become obstructed from the radar.

2https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#vehicle_

types
3https://www.innosent.de/
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3.2 SUMO Simulation

The simulated SUMO network represents a two intersection corridor of Tuscaloosa,
Alabama primarily consisting of US-82McFarland Blvd between Airport and Harper
Roads. Figure 1 shows the SUMO model of the target network overlaid on geo-located
satellite images. The call out displays the location of the radar, as well as a sample
of its geo-located data and the box used to filter trajectories. Both intersections in the
network are signalized (marked as TL1 and TL2 in Fig. 1), and the field controllers were
emulated using NEMA controllers in SUMO with matching configurations [25]. They all
operated in coordinated mode during the simulated period of time, with actuation on
the non-coordinated phases.

The polygon used to filter the real-world data was also integrated into the geo-located
SUMO simulation. By combining the floating car data output of SUMO with polygon-
based filtering, a data set was obtained that closely resembles the data described in
Section 3.1. The floating car output was processed using the same methodology that
was applied to the radar data.

Figure 1. SUMO model of the simulated network including two intersections, overlaid with a
close up of the radar location, sample data points, and the box used for filtering.

Simulation demand is generated using both the radar displayed in Figure 1 as well as
a radar on the other side of the intersection that captures the east bound approaches.
Data was collected from the radars on January 13th, 2023 and the simulation time
spans from 5:00AM to 11:00PM on the target day, covering periods of low volume as
well as the morning rush around 8AM, which is apparent in Figure 2. The box used for
radar filtering corresponds to the West bound straight volume.

To turn the radar data into traffic counts, the number of tracked objects that cross the
intersection stop bar for each approach are aggregated into five-minute intervals. Ad-
ditionally, turn count restrictions are put in place at TL2 so that the majority of traffic
traverses the entire network on US-82 (the major east/west road). The volumes and
turn counts are passed as an input to routeSampler [26] with the Poisson flow option,
which is chosen to increase the randomness of the simulation. The calibrated simula-
tion is evaluated against the GEH metric [27], which compares simulated volumes to
observed volumes using the following equation:
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Figure 2. Time plots of (top) SUMO simulation vs. measured volume passing through TL1 and
(bottom) corresponding GEH results.

GEHi =

√√√√2 (M i
t − C i

t)
2

M i
t + C i

t

(6)

where M i
t is the simulated hourly volume at location i and aggregation period t. Cor-

respondingly, C i
t is the corresponding measured hourly volume. Applying Equation 6

to the simulation output results in a 10 minute GEH < 5 at 94% of time window - loca-
tion pairs when simulating with SUMO default CF model parameters, which passes the
common GEH target of < 5 at 85% of locations [6], is visually represented in Figure 2.

3.3 Trajectory Processing

3.3.1 Acceleration & Deceleration

A sample of the raw and processed radar trajectories is shown in Figure 3. The left
figure is a time-space diagram of west-bound vehicles as they traverse the network.
The right plot shows a piece-wise linear fit overlaid on the raw velocity data of the red
vehicle in the time-space diagram. From each segment a fit quality, R2, slope, and
duration are obtained for further processing. The vehicle trajectory shown in Figure 3
captures sample of an accelerating and decelerating vehicle.

A graphical representation of the impact of minimum time and fit quality thresholds on
the distribution of measured parameters is depicted in Figure 4. The top row shows
contour of median acceleration and the number of unique vehicles as a function of
minimum time and R2 threshold. The bottom row shows the measured distributions for
acceleration and deceleration, with the label and color corresponding to the annotated
positions on the top row. Based on the figure, location 5 was chosen as the final ag-
gregation settings, with a minimum time of 1 second and R2 > 0.95, due to the high
confidence in the linear fit of trajectory while still containing enough samples to be rep-
resentative of the population. The resulting distributions are presented quantitatively
later in Table 1. The shapes of the distributions of acceleration and deceleration de-
termined in Figure 4 are right-skewed due to the low mean acceleration values and
because each parameter has a lower bound of 0. Consequently, median acceleration
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Figure 3. Examples of (left) raw data over a short time period capturing many vehicles and
(right) an example of piece-wise linear fit applied to velocity profile of a sample vehicle
trace.
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Figure 4. Highlights the sensitivity of the median (P50%) acceleration and number of vehicles
to the R2 and minimum time headway filter. The bottom row shows the measured
acceleration and deceleration kernel density estimations for the 5 called out R2 and
minimum time pairs.

47



Schrader et al. | SUMO Conf Proc 4 (2023)

was considered as primary metric for evaluating threshold selection as it best repre-
sents central tendency of the acceleration’s and deceleration’s R2 values.

3.3.2 Headway & Free-Flow Speed

To determine the headway of vehicles in the radar data, a mapping process was per-
formed to assign each vehicle to its respective lane. This was achieved by dividing the
box illustrated in Figure 1 into two separate segments, thereby enabling lane identifica-
tion. The arrival time of each vehicle at distances of 100m, 60m, and 40m from the stop
bar was then calculated using linear interpolation. Vehicles that switched lanes during
the data collection period were filtered out. The remaining vehicles were sorted by time
and leader-follower pairs were identified for each lane. The headway was calculated as
the average time difference between the leader and follower at each of the three afore-
mentioned distances. Headway times of longer than 5 seconds were deemed outside
of the CF regime, inline with prior literature [10], [28], [29].

The derived acceleration and headway data was utilized to determine the free-flow
speed of the network. However, it was noted that the measured range was signalized
and a simple average would be significantly impacted by stopped vehicles. To address
this issue, filtering was employed in a manner similar to prior literature [10]. The method
considered only vehicles with time headway greater than 5 seconds and excluded ve-
hicles with acceleration or deceleration greater than 1 m/s2. As can be inferred from
the sample of raw data in Fig. 3 in just a few minutes of data there are large numbers
of free-flowing and leader/follower pairs from which to extract the desired behavioral
distributions.

3.4 Vehicle Distribution Creation

In the context of SUMO simulation, vehicle CF attributes are defined by the vehicle
type attribute, which can be assigned to each individual vehicle entering the network, or
specified in a vehicle type distribution file4 from which SUMO samples when generating
routes. The presence of individual vehicle data in the radar representation provides the
opportunity to construct a heterogeneous vehicle distribution through sampling, either
correlated or uncorrelated.

The correlation of parameters in the simulation of traffic flow has garnered attention
in the literature, as it has been shown to impact the realism of simulation results [30],
[31]. To create a correlated distribution from the radar data, only vehicles with deceler-
ation, acceleration, and headway less than 5 seconds are considered. These vehicles
are used to create synthetic vehicles by combining the acceleration and deceleration
events, resulting in a set of acceleration, deceleration, and headway values that all
derive from a single vehicle, in addition to corresponding vehicle length, which is mea-
sured by the radar. However, since the vehicle is in the CF regime, its matching speed
factor is not available. In this scenario, the speed factor is sampled from the overall dis-
tribution. There are 1135 vehicles in that radar dataset that makes 1290 accelerations
(refer to Section 3.3.1 for further details). Similarly, 682 vehicles decelerate, result-
ing in a total of 1193 recorded decelerations. Additionally, there were 1831 vehicles
with headways less than 5 seconds, out of which 48 vehicles were present in both the
acceleration and deceleration datasets. Because of the difference, due largely to the
dramatically reduced sample size, the correlated model parameters were not used fur-

4https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#route_and_

vehicle_type_distributions
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ther in this work. Future work will expand raw data recording period and perhaps result
in large enough size to apply correlated sampling for comparison. In this study how-
ever, only the uncorrelated case was considered in Section 4. In the uncorrelated case,
the acceleration, tau, deceleration, speed factor, and length columns are independently
sampled from the distributions of measured parameters.

The study also investigated the use of acceleration and deceleration measures that
occur outside the CF regime. This is because both the Krauss and IDM model’s repre-
sentation of CF acceleration is intended to reflect the maximum follower acceleration,
which could emerge in the absence of a leader vehicle. However, the measured dis-
tributions of parameters outside of the CF regime were found to not significantly differ
from those within the CF regime according to the Mann-Whitney test (U = 4.21e5,
p = 0.43), and thus were not included in the evaluation.

4 Results

The constructed distributions of CF parameters were simulated in SUMO Version

1.16.0 with a simulation step size of 0.1s. Two experiments were conducted, one with
the default CF model parameters and one with parameters sampled from the measured
distributions. In each experiment, the models had an actionStepLength of 0.2s5. All
vehicles were simulated as passenger cars with the emissions and fuel consumption
model PHEMlight/PC G EU4 [32].

To ensure the robustness of the findings, each CF model discussed in Section 2
(IDM, EIDM, and Krauss) was simulated 30 times, only varying the random seed. Sub-
sequently, the output of all 180 simulations was processed according to the methods
described in Section 3.3.

4.1 Simulation Comparison

In Figure 5, the empirical cumulative distribution functions (eCDF’s) obtained by sim-
ulating with both the default parameters of a CF model and the results obtained from
sampled parameters are presented. The colors in the figure are paired such that the
darker shade represents the sampled parameters and the lighter shade represents the
default parameters. However, it is immediately apparent that neither the sampled nor
default parameters accurately reproduce the empirical distributions of acceleration and
deceleration. Nonetheless, the default models do perform reasonably well at modeling
headway and free-flow speed, although they still under-predict the speed and fail to
capture lower headway vehicles.

The results are summarized in Table 1, with the mean (µ) and 50th percentiles (P50%).
The standard deviation of the distributions are not presented, as the majority cannot be
approximated by a Gaussian distribution. Also included in Table 1 is the resulting fuel
consumption per vehicle. In each row the bolded numbers represent the closest to the
real world. The default parameters perform best for all mean and median cases, with
the mean acceleration of Krauss being 0.05m/s2 away from the measured acceleration
mean. Krauss also approximates the free-flow speed the best. For deceleration, the
default IDM model has the closest mean and median (0.14m/s2 and 0.03m/s2 respec-
tively). The default IDM also performs the best at headway estimation. However, the
default parameters fail to capture the tails of the distributions well, which is understand-
able given that default parameters are a homogeneous fleet, as every car that enters

5https://sumo.dlr.de/docs/Car-Following-Models.html#actionsteplength
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Figure 5. Empirical cumulative distribution functions for acceleration, deceleration, headway
and free-flow speed. The colors are paired such that the darker shade represents
the sampled parameters and the lighter represents the default. The thin individual
lines represent the CDF from one simulation.

the network has the same set of parameters in the default case.

The explanation for the poor performance of the sampled parameters is two fold. For
one, the fact that CF model parameters are not physical or cannot simply be found via
macroscopic measurements has been discussed in literature [8], [11], [16]. Secondly
and perhaps more importantly in the context of SUMO, the low acceleration measured
in the real-world data (P50% = 0.77m/s2) does not result in realistic traffic flows when
applied to simulation. Long queues develop in turn lanes, gridlock ensues, and GEH
calibration fails in the west bound straight approach. This disruption of regular traffic
flow causes elevated fuel consumption per vehicle in the sampled simulations. Due
to the complexity of isolating the specific contributions of the parameters from the fuel
consumption resulting from congestion, the findings of the fuel consumption analysis
are not presented in this study. Future work must address this issue as the use of
microsimulation tools such as SUMO to study traffic control optimization for energy
reductions will rely on accurate predictions of driver behavior and driving trajectories
beyond typical measures of vehicles per hour or average speed.

5 Summary, Conclusions & Future Work

This work presented the efficacy of using measured distributions of acceleration, de-
celeration, time headway and free-flow speed as their corresponding parameters in
SUMO CF models. The distributions were acquired via processing of data from sig-
nal pole mounted radar units, which return both the position and velocity of individual
vehicles as they approach a signalized intersection. The acceleration, deceleration
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Table 1. Summarizes the eCDF’s presented in Figure 5. The simulated value nearest the mea-
sured is presented in bold. The columns “Samp.” and “Def.” correspond to Sampled
and Default parameters.

EIDM IDM Krauss Measured
Stat. Samp. Def. Samp. Def. Samp. Def.

Freeflow
Speed [km/h]

µ 76.8 77.8 73.9 76.3 74.9 78.1 80.6
P50% 76.3 77.9 73.0 76.1 74.0 78.1 81.3

Accel.
[
m/s2

] µ 0.4 0.8 0.3 0.6 0.4 0.8 0.9
P50% 0.3 0.5 0.3 0.3 0.3 0.6 0.8

Decel.
[
m/s2

] µ 0.7 1.8 0.6 1.5 0.8 1.9 1.4
P50% 0.6 1.6 0.5 1.4 0.5 1.9 1.3

Headway [s]
µ 3.3 2.5 3.4 2.8 3.5 2.5 2.7
P50% 3.4 2.1 3.5 2.6 3.6 2.1 2.7

and free-flow speed were found using piece-wise linear fit, and headway via linear
interpolation. After aggregating the data into corresponding distributions, they were
sampled and simulated in SUMO via vehicle distribution files. The SUMO demand
was calibrated with the radar data, ensuring that simulation matched the volume of the
measured day. Once simulated, the SUMO floating car data output was processed
in an identical manner to the radar data, and the resulting SUMO distributions were
compared to the empirical. In addition to the empirical distributions, the CF models
in SUMO were also simulated using their default parameters to assess how well the
defaults re-created the real distributions.

Based on the study’s results, it can be concluded that using only measured acceler-
ations and decelerations, independent of a leader-follower relationship, as a basis for
CF model parameters is insufficient. While these measurements can replicate the het-
erogeneity of traffic, conducting SUMO simulations with a range of low accelerations
(P50% = 0.77m/s2) leads to congested simulations that do not meet basic calibration
standards. Due to the ensuing congestion and calibration failure, it becomes infeasi-
ble to compare the fuel consumption of simulations with sampled parameters to those
with default settings. Consequently, initiating simulations with the default parameters
provided by SUMO may prove more advantageous than using the presented measure-
ments without further calibration of the car-following model.

However, there is a still a significant gap in distributions of primarily acceleration
behavior which should be investigated. Moving forward, the next step is to close the
loop between simulation distributions and their real-world counterparts by calibrating
the CF model. This can be done through either fitting the simulation distributions to
the measured data or analyzing the trajectories themselves. Both methods should be
examined and evaluated for their impact particularly on fuel consumption. Additionally,
it may be beneficial to assess how parameters change based on the time of day, volume
of traffic, and at different locations in the network, as well as the impact of correlated
versus uncorrelated behaviors on CF model parameters and compare their influence
on simulation outputs.
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Abstract. Microscopic traffic simulation tools provide ever-increasing value in the design and 
implementation of motor vehicle transport systems. Research and development of automated 
and intelligent technologies have highlighted the usefulness of simulation tools and develop-
ment efforts have accelerated in recent years. However, the majority of traffic simulation soft-
ware is developed with a focus on motor vehicle traffic and has limited capabilities in the sim-
ulation of bicycles and other micro-mobility modes. Bicycles, e-bikes and cargo bikes represent 
a non-negligible modal share in many urban areas and their impact on the operation, efficiency 
and safety of traffic systems must be considered in any comprehensive study. The Differenti-
ation between different types of micro-mobility modes, including microcars, e-kick scooters, 
different types of bicycles and other personal mobility devices, has not yet attracted enough 
attention in the development of simulation software which creates difficulties in including these 
modes in simulation-based studies. On November 25th, 2022, members of the SUMO team at 
DLR organized a workshop to assess the state of bicycle simulation in SUMO, identify short-
comings and missing capabilities and prioritize the order in which bicycle traffic related features 
should be modified or implemented in the future. In this paper, different aspects of simulating 
bicycle traffic in SUMO are examined and an overview of the results of the workshop discus-
sions is given. Some suggestions for the future development of SUMO emerging from this 
workshop, are presented as a conclusion. 

Keywords: Microscopic Traffic Simulation, Bicycles, SUMO 

1. Introduction

Bicycle traffic is distinct from car traffic in terms of the movement and interactions of individual 
road users and the aggregated traffic flow, which requires special consideration in microscopic 
traffic simulation. As of January 2023, the official documentation of SUMO suggests two meth-
ods for simulating bicycle traffic: modeling bicycles as “slow vehicles” or as “fast pedestrians”. 
The former option, simulating bicycles as slow vehicles, is the method that is widely used. With 
some modifications to the simulation environment, the same models that describe car traffic in 
SUMO are calibrated to simulate bicycle traffic. A desired speed and acceleration model cap-
tures the dynamics in free flow and a car-following model is used to simulate interactions with 
other road users on one-dimensional lanes. Lateral movement is simulated by dividing a single 
driving lane into multiple narrower sub-lanes in the longitudinal direction. The width of the road 
user and the sub-lanes dictates the number of sub-lanes that are “blocked” by a road user. 
Lane selection and lane change models are employed to determine the lateral position of the 
road user within one driving lane, making it possible to simulate passing within this lane. The 
addition of sub-lanes allows for much more realism in the simulation of bicycle and mixed traffic 
flows.  

55

https://doi.org/10.52825/scp.v4i.215
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://creativecommons.org/licenses/by/3.0/de/deed.en


Roosta et al. | SUMO Conf Proc 4 (2023) 

Although sub-lanes have vastly improved the simulation of bicycle traffic, it is still difficult 
to completely capture the unique dynamics [1], flexible movement [2], and less rule-based 
interactions of cyclists [3]. At the same time, in light of its low cost, low environmental impact, 
minimal space requirement and negligible noise production as well as increased public health 
through daily movement, the bicycle is emerging as a key to the “Verkehrswende” (English: 
transportation revolution). The modal split in many large German cities is already reaching 
20% of the total number of trips [4] and there is a national goal of doubling the number of 
kilometers travelled by bicycle by 2030 in comparison to 2017 [5].  

Given the increased need to simulate bicycle traffic, the SUMO development team recog-
nized the need to address these shortcomings and identify opportunities to improve the simu-
lation of bicycle traffic. To this end, an online workshop was held on November 25th, 2022 and 
past and current members of the SUMO development team, researchers, and SUMO users 
were invited to participate. The aim of the workshop was to analyze the status of bicycle mod-
eling and simulation in SUMO, identify aspects of bicycle behavior that require improvement, 
and prioritize the development of new features to improve the simulation of bicycle traffic. In 
this paper, we present the results of the workshop and discuss the identified areas for improve-
ment and proposed solutions. 

At the beginning of the workshop, the SUMO team made a clear distinction between “qual-
itative” and “quantitative” features in the context of bicycle traffic modeling. Qualitative features 
refer to the aspects of bicycle traffic that should be accurately reflected in SUMO's modeling 
approach, such as turning behavior, following behavior, lateral movements and routing. On the 
other hand, the term quantitative refers to numerical validation, which assesses how well sim-
ulated bicycle traffic metrics align with real-world scenarios. To date, the SUMO team has not 
conducted any quantitative validation of the implemented features. It is worth noting that while 
writing this paper, the SUMO documentation [6] was frequently utilized to obtain more data 
about the issues discussed in the workshop.  

In this paper, the terms “bicycle” and “cyclist” are used to refer to the simulated agent, 
depending on whether the emphasis is on the rider or the vehicle. Moreover, the term “car” is 
used to describe engine-powered vehicles, including cars, trucks, and buses. 

The topics covered in the workshop are divided into four sections in this paper.  In Section 
2, methods for routing bicycle traffic through the simulated network are discussed. Section 3 
examines the modeling and simulation of the longitudinal and lateral movements and interac-
tion of cyclists. In Section 4, the simulation of traffic at intersections is examined. Section 5 
focuses on the relevant topics in network design and road grade simulation. Finally, in Section 
6, we present our concluding remarks and discuss proposed ideas for future feature develop-
ment of SUMO, based on the outcomes of the workshop. Nevertheless, paragraphs following 
other text paragraphs are indented. 

2. Routing 

The SUMO package consists of several individual tools, each serving a specific purpose in the 
simulation. Among these tools are four routing algorithms: Dijkstra, A*, ALT and CH. Each of 
these algorithms is well-suited for certain scenarios. Routing for all road user types can be 
performed by travel time, effort, distance, or edge priority, offering flexible options to simulate 
the various factors that impact drivers' route choices. By default, routing in SUMO is done 
based on travel time minimization. “Effort” is a general term that refers to providing the routing 
algorithm with alternative weights or in other words optimization based on the alternative costs, 
such as pollutants (CO, CO2, PMX, HC and NOX), fuel or electricity required to travel a given 
route, or noise generated in the process. These weights can be either constant or time-de-
pendent. 
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In SUMO, bicycle routing uses the same routing algorithms and objectives as used for 
vehicle routing. However, there is an additional parameter called “--device.rerouting.bike-
speeds” that allows the routing module to compute separate average speeds for bicycles. This 
parameter is disabled by default as it adds extra computing cycles and slows down the simu-
lation. However, enabling it for scenarios where bicycle traffic is important is recommended as 
it results in more accurate routing of bicycle traffic. This feature can help account for the unique 
speed characteristics of bicycles, such as their lower speeds. 

In addition to routing preferences and behavior, modeling bicycle traffic in SUMO should 
also take into account the specific characteristics of bicycle movement. Cyclists should be able 
to exhibit a preference for using dedicated bicycle infrastructure. This preference usually stems 
from safety concerns or enforced traffic laws. Besides using individual weights for routing, the 
only other possibility to affect the routing of bicycles is specifying individual speeds for bicycle 
lanes. Another frequently observed behavior that should be added to SUMO is the ability for 
cyclists to use adjacent lanes or edges under special conditions. This makes for a more flexible 
and realistic cyclist behavior modeling. However, practical implementation could be difficult 
due to the need to identify and avoid collisions in the course of these short lane/edge changes.  

Other improvements could also be made to allow for the simulation of multimodal trips and 
more flexible bicyclist behavior. These include allowing for bicycle use in accessing public 
transport, to simulate pushing the bicycle across pedestrian crossings or carrying them on 
infrastructure where cycling is not allowed or possible, inventing new types of settings that 
allow for flexible switch between cycling and walking at any time during the trip and settings 
that allow for leaving a bicycle in some location and returning to pick it up at a later time. It 
should be noted that carrying certain bicycle categories like cargo bikes and bicycles with trail-
ers may not be feasible thus the option to switch between walking and cycling has to be more 
fine-grained. These simulation settings will be in more demand as usage of shared bicycles 
grows and implementing these features will also facilitate incorporation of other personal mo-
bility devices in SUMO in the future. 

3. Following behavior and lateral movements 

As discussed in the introduction, bicycle traffic is either modeled using adapted versions of car 
models for lateral and longitudinal movement and interactions (slow car option) or pedestrian 
models (fast pedestrian option). Because the former method is more frequently used by users 
of SUMO, the sub-lane modeling approach for following and lateral movement were focused 
on in the workshop. Although bicycle traffic tends to follow lanes in the intended direction of 
travel, cyclists are more flexible in this domain due to their smaller size and higher maneuver-
ability in comparison to motorists. It is acknowledged that car-following, (sub-)lane selection 
and (sub-)lane changing models may not be able to fully capture the complexity of bicycle 
traffic behavior.  

3.1 Car-following models 

Car-following models determine the longitudinal acceleration in each simulation step based on 
the location, speed and other characteristics of individual vehicles by taking into account the 
vehicle directly ahead in the same (sub-)lane. Numerous car-following models have been for-
mulated in the last 50 years and many of them are included in the SUMO package. The “car-
FollowModel” parameter specifies which car-following model is to be used in the simulation of 
the vehicle.    

By default, SUMO utilizes the Krauß car-following model [7], which relies on three primary 
variables to determine a driver's behavior: the vehicle's own speed, the speed difference with 
the leading vehicle, and the distance to the leading vehicle. The Krauß model is designed to 
maintain a safe speed that ensures a minimum distance to the leading vehicle and prevents 
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collisions. However, according to presentations from the SUMO team, this model produces 
noisy speed curves. To obtain smoother position and speed curves, it is recommended to use 
the Intelligent Driver Model (IDM) [8] instead of the Krauß model for bicycle traffic. In contrast 
to the Krauß model, the Intelligent Driver Model (IDM) takes into account the time headway, 
leading to smoother traffic flow curves. Furthermore, the extended IDM model (eIDM) [9] com-
bines features of both the Krauß and IDM models to offer benefits of both models. When mod-
eling bicycle traffic and car traffic in the same lanes, it is apparent that the two modes exhibit 
similar patterns, except that bicycle traffic densities are significantly higher (due to a lower 
minimum gap of 0.5 meters). Additionally, some lane-changing activities may alter the speed 
patterns of bicycles. 

After discussions about the behavior and properties of the Krauß and IDM models, the 
question was raised as to whether these models provide an accurate representation of bicycle 
traffic, or whether entirely new models are needed to address their inaccuracies. The consen-
sus was that these models are sufficient for the current stage of research, but modifications 
are necessary to account for distinct behaviors that are present in cycling but absent in motor 
vehicle traffic, such as side-by-side riding, which represents leisurely bicycle activities. It was 
suggested that quantitative efforts should be made to calibrate the Krauß and IDM models 
using real-world trajectory data and/or bicycle experiments. Currently, the following parameters 
are recommended in the SUMO User Documentation for modeling bicycle traffic. In order to 
provide a comparison, Table 1 displays a selection of significant default parameters for bicy-
cles and cars in SUMO. 

Table 1. Selected bicycle parameters defined in vClass=“bicycle” and “passenger”. 

Parameter vClass=“bicycle” vClass=“passenger” 
Minimum Gap 0.5 m 2.5 m 
Maximum Acceleration 1.2 m/s2 2.6 m/s2 
Maximum Deceleartion 3.0 m/s2 4.5 m/s2 
Emergency Deceleration 7.0 m/s2 9.0 m/s2 
Length 1.6 m 5.0 m 
Maximum Speed 20.0 km/h not limited (1000  km/h) 

Observational and experimental data is needed to examine the qualitative properties of various 
car-following models, and to calibrate and validate them. During the calibration process, spe-
cial attention should be given to reproducing exact macroscopic results to ensure better valid-
ity. Calibration and validation of the car-following models for bicycle traffic would be a first step 
in decoupling the models of car traffic and bicycle traffic. Ultimately, these models could be 
used to simulate other emerging micro-mobility modes, such as e-scooters. Although simula-
tion of these modes can also be achieved through the utilization of the “slow pedestrian” ap-
proach, further enhancements to this approach are required. In particular, the integration of 
proper visualization techniques, as well as the inclusion of new movement models, would be 
imperative to improve the accuracy and comprehensiveness of the simulation. 

3.2 (Sub-)Lane changing and lateral alignment 

The lateral behavior and alignment of bicycles is controlled by lane selection and lane chang-
ing, both in terms of regular driving lanes and sub-lanes. When considering the motor vehicle 
simulation, vehicles may need to change lanes for various reasons, such as navigation or 
route-following, speed gain, cooperation, and following the rules. The lane changing model in 
SUMO determines lane choice on multi-lane roads and speed adjustments related to lane 
changing [10], and now supports four motives for lane changing: strategic, cooperative, and 
tactical lane changes, as well as the obligation to clear the overtaking lane. Changing lanes 
could also be triggered remotely by the TraCI interface. 
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In order to simulate more flexible lateral movements and differences in lateral positioning 
within a lane (bicycle traffic keeping to the right), and enable passing in one traffic lane, it is 
possible to divide the lanes into multiple sub-lanes. The sub-lane model is used to govern 
movement between multiple sub-lanes. The introduction of this model has made it possible to 
simulate common scenarios, such as cars overtaking two-wheeled vehicles in a single lane 
and multiple two-wheeled vehicles driving in parallel. This is particularly useful in scenarios 
where a significant amount of urban traffic consists of scooters and/or bicycles. For a full list, 
refer to the SUMO documentation on sub-lanes [11]. To ensure accurate simulation of behavior 
when the sub-lane model is activated, certain parameters must be set properly. In the sub-lane 
model, the car-following algorithm is adjusted to consider all vehicles occupying at least one 
sub-lane of the lane in which the subject vehicle is located. Additionally, the lane-changing 
model accounts for lateral alignment and safe lateral gaps, in addition to the four motivations 
for lane changes mentioned previously. However, the activation of the sub-lane model can 
significantly increase computation costs, and is therefore disabled by default to prevent slowing 
down simulations in cases where high resolution of lateral movements is unnecessary. An 
example of a mixed traffic link simulated using the sub-lane model approach is shown in Figure 
1. 

 

Figure 1. Application of sublane model to mixed traffic simulation [12]. 

In addition to the lane-change and sub-lane models, there is also a continuous lane-changing 
model available, which allows for more realistic lane-changing behavior by specifying the time 
it takes to complete a lane-change action. Compared to the sub-lane model, the continuous 
lane-changing model has significantly lower computation times. By default, without the sub-
lane model, a single lane-change operation takes one simulation time step, which may not be 
entirely realistic depending on the vehicle's speed. The use of this model may be beneficial in 
simulating very narrow lanes where sub-lanes cannot be utilized. Incorporating a transition 
time during lane changes can make the maneuver more realistic.  

The current implementation of the sub-lane model in SUMO has a limitation in that it can-
not be enabled only for bicycle traffic while remaining disabled for car traffic. Having the sub-
lane model enabled for car traffic creates more computation cost and adds little to the realistic 
representation of cars in the achieved flexibility of movement, except that they can move lat-
erally to pass in the same driving lane. Nonetheless, the SUMO team has highlighted that the 
current implementation of the sub-lane model is beneficial for achieving smooth lane changes. 
Then, as for the car-following behavior, the adequacy of SUMO's lane change and sub-lane 
models for simulating bicycle traffic has been discussed. The consensus among the partici-
pants was that the simulated bicycle traffic in SUMO is too regular and lacks sufficient stochas-
ticity. During the discussions, one proposal to enhance the realism of bicycle traffic simulation 
in SUMO was to introduce variations into the parameters that model bicycle traffic, such as 
incorporating a variable minimum gap for bicycles. The idea was well received by the SUMO 
team, who suggested that incorporating realistic variation bounds into the parameters, based 
on studies or publicly available data, would be preferable. It was also suggested that the reg-
ularity in the simulated traffic may be due to the vehicles, including bicycles, all being modeled 
with rectangular boxes instead of diamond shapes which are used in other simulation tools 
[12]. While the discussion favored adding variations to the parameters, the SUMO team also 
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mentioned the possibility of adding a “diamond” shape to the bicycles’ parameters by a math-
ematical transformation. This transformation would be simple to implement and would not incur 
any additional computational costs. Diamond shape will lead to a more accurate simulation of 
more unconventional bicycle geometries of different types of cargo bikes and bicycles with a 
trailer. Another suggestion was to model the safety distance based on impatience or frustration 
of the cyclist which involves psychological factors and therefore requires more data. 

 

Figure 2. Demonstration of perceived conflict area by the red cyclists represented by SUMO 
team at the workshop. 

4. Intersections 

Intersections are crucial elements of the traffic network, connecting links and requiring conflict-
ing streams of vehicles, bicycles, and pedestrians to interact. As such, simulating the behavior 
of road users at intersections requires special attention. Traffic signals, right-of-way rules, and 
the need to consider multiple types of vehicles and road users make intersections more com-
plex than links and other segments of the road network. At intersections, the points/areas of 
conflict must be carefully simulated to accurately represent the behavior of all road users. This 
requires consideration of factors such as internal links that connect incoming and outgoing 
lanes, the speed at which vehicles approach and traverse the intersection, waiting times before 
entering and within the intersection, and outgoing flows that must be managed to avoid block-
ing the junction. Proper simulation of these factors can help ensure a more realistic and accu-
rate representation of intersection behavior for all road users. Issues like direct and indirect 
turns for cyclists [13], adherence of cyclists to the internal links, and behavior in conflicting 
areas are important. For example, cyclists may be more likely to make indirect turns to navigate 
through crosswalks, and they may have different preferences at the intersection depending on 
their position relative to other road users. 

The SUMO team emphasized the need for improved modeling of conflict areas, particu-
larly in regards to bicycles. Currently, if a cyclist with right of way enters an intersection, other 
cyclists intending to cross the internal link must wait until the cyclist with right of way has com-
pletely left the intersection, even if there is sufficient time and space to safely cross. Figure 2 
illustrates this issue, with the yellow cyclists representing the flow with right of way and red 
cyclists waiting due to the fact that all of the intersection is being considered a conflict area. It 
was suggested to alter conflict points to not be applicable to cyclists’ interactions with other 
cyclists, instead having cyclists slightly alter their speed and/or path to pass the conflict point 
without needing to wait. It was agreed that this phenomenon should be implemented as a 
qualitative feature. The quantitative aspect has to be further studied but there was an internal 
DLR study at Braunschweig which confirms that virtually no cyclist stops at a pedestrian cross-
ing. 
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An additional discrepancy between actual bicycle traffic behavior at intersections and the 
simulation outputs produced by SUMO has been observed. While in SUMO cyclists adhere to 
the internal links very accurately, in reality cyclists roam more freely at intersections. One of 
the participants presented their work about the result of data collections at intersections in 
Munich and a comparison with simulated bicycle traffic in SUMO. Figure 3 compares the 
heatmap of speed and occupancy of bicycle traffic at one of the measured intersections. 

 

Figure 3. Comparison of real-world bicycle traffic occupancy and speeds with SUMO simula-
tion [14]. 

The observed strict adherence to internal links in the simulated bicycle traffic may be partially 
attributed to the constant and unvarying nature of the bicycle traffic parameters, which was 
discussed in the previous section. Moreover, it is plausible that some cyclists may dismount 
from their bicycles while performing indirect left turns. Indirect left turns refer to the maneuver 
where cyclists continue straight at an intersection, subsequently making a 90-degree turn, be-
fore continuing in a straight direction again. Similar results have also been observed in other 
smaller intersections with one lane car traffic in this research. Various static and dynamic char-
acteristics of the intersection likely influence cyclists’ behavior. Traffic signals, car traffic vol-
ume and speed, physical separation between bicycle lanes and the roadway, whether islands 
are available at the intersection, and last but not least the geometry of the intersection are 
among these influencing factors. 

A number of other issues were discussed briefly. Distinct signalization for bicycles and 
cars on the same connection should be allowed. Implementation of bicycles waiting ahead of 
motorized traffic could be further enhanced by making bicycles and motorcycles ignore the 
minimum gap of stationary cars when changing lanes. In scenarios where there are cars as 
well as bicycles, bicycle boxes do not work reliably. Furthermore, it is beneficial that connec-
tions with more than two internal lanes be allowed to accommodate complex junctions with 
multiple islands or two indirect left turns.  

5. Network 

Over the past two years, the SUMO team has placed emphasis on the development of network-
related features, with significant advancements being made.  Much of SUMO's code base had 
been originally developed with car-only networks in mind. As a response to this limitation, the 
team has been actively working on the implementation of multimodal network import capabili-
ties, although there are challenges with regard to availability of openly available data.  
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The implementation of indirect left turns is now possible in SUMO. Indirect left turn is par-
ticularly favorable in larger intersections where the perceived risk associated with direct left 
turns for cyclists is higher. By default, direct turns are currently the default setting for bicycles. 
It was discussed whether indirect left turns should be the default action, and ultimately, it was 
decided to change the default to indirect left turns at intersections with bicycle lanes. This topic 
requires more observational research. A proposed idea is to enhance SUMO's network gen-
eration/import tools by advancing beyond the default option architecture and instead, making 
decisions based on the infrastructure's geometry and parameters. The rationale behind this 
suggestion is to address the limitations of open data, such as OpenStreetMap (OSM), which 
may contain incomplete infrastructure information. There was a discussion about the feasibility 
of predicting the existence of bicycle lanes based on available infrastructure data, like total 
road width and availability of parking lanes from OSM. However, implementing such an ap-
proach would require the development of models and studies on the correlation of different 
design parameters, in order to make more accurate estimations. It was decided that this fea-
ture is not a priority for development at this moment. 

SUMO enables the inclusion of elevation data in the network. Currently, this information 
is used natively for electric vehicles, calculating emissions and in the extended Krauss car-
following model. In the extended version of the Krauss car-following model, the maximum ac-
celeration in each time step is reduced, based on the gradient of the road.  

SUMO can import road network data from major data formats, some of which include ele-
vation data. However, creating networks based on OSM is usually preferred as it offers its data 
under a free license. One of the downsides of using OSM is that there are not enough elevation 
data points in OSM to allow for reliable simulation of networks with varying road grades. Net-
work grade and its variability has a considerable impact on mode choice and route choice, 
especially of active mobility road users [14]. 

SUMO includes a method for modeling and simulating electric powered vehicles, which 
includes additional variables that are not normally considered in a microscopic traffic simulation 
software such as the vehicle mass, the coefficient of drag, and the frontal surface area. This 
feature was developed in order to test different charging scenarios and technologies. As the 
physical relationships that describe the power required to move a bicycle are quite similar to 
those describing the power needed to move a car, this existing model will prove very valuable 
in developing an improved model for e-bikes in SUMO. The main difference lies in the combi-
nation of power supplied by the person and the electric motor. According to European law, an 
electric motor on a e-bikes can supply a maximum of 250W and can only provide power up to 
a speed to 25 km/h [15]. If a cyclist exceeds this speed or stops pedaling, the electric motor 
must immediately or gradually stop providing power to the bicycle.  

6. Conclusions and suggestions 

This workshop provided an opportunity for discussion on important aspects of bicycle traffic 
modeling and simulation in SUMO. During the workshop, researchers, users, and other inter-
ested parties contributed to discussions regarding the identification of critical features and pri-
orities for future development. As a result of these discussions, certain issues were identified 
as requiring less effort to be implemented, indicating the possibility for their prioritization in the 
development process. These include the addition of diamond shapes to bicycle models in order 
to enhance their realism and add more variety to bicycle traffic simulations. Additionally, the 
possibility of assigning weights to different types of infrastructure to enable infrastructure-
aware routing for bicycles was discussed. Such a system would give preference to certain 
infrastructure types, such as bicycle lanes, by assigning them lower weights in the routing 
process. Other low effort improvements include making indirect left turns the default behavior 
for cyclists, and enhancing bicycle boxes positioned in front of car traffic prior to intersections. 
In addition to the aforementioned topics, several other issues were identified as important and 
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requiring additional attention. These include the development of concepts such as conflict ar-
eas for bicycles and pedestrians, as well as improvement of shared space simulations capa-
bilities. There was also a recognition of the need to improve slope and elevation modeling and 
to enhance lateral movements in bicycle traffic simulations. Another general concern was iso-
lating the cyclist behavior characteristics from sufficiently large empirical datasets and acquir-
ing appropriate datasets needed for more accurate implementation of some proposed 
changes. 

This workshop highlighted the need for models that can simulate unique bicycle traffic flow 
behavior. More improvements on top of the issues discussed in the workshop can be envi-
sioned. It would be beneficial to researchers if SUMO allowed for easy implementation of force 
models and physics-based models. Software like NetLogo [16] provide this opportunity for sim-
ulating different models with subject agents. However, testing models in more realistic scenar-
ios in the context of urban traffic networks is also required to accelerate research and devel-
opment of these models. There is already a partnership with Jülich research center to integrate 
the JuPedSim pedestrian model [17] into SUMO and this suggestion could be considered dur-
ing this integration. Integrating such models in SUMO could be an opportunity to create flexible 
frameworks that can accommodate similar models.  

Much of the focus on modeling bicycle traffic has gone into the option “slow car”, meaning 
that modeling approaches for car traffic have been adapted, calibrated and applied to bicycle 
traffic. Far less attention has been placed on the option “fast pedestrian” and the use of social 
force like models in recreating bicycle traffic, both in this workshop and by researchers and 
developers. The formulation, calibration and validation of social force models for bicycle traffic 
could offer an important way forward in including the flexible behavior and the fluid interactions 
of cyclists in SUMO.  

One possible enhancement would be augmenting the intended implementation of a dia-
mond shape transformation for bicycle models with additional shapes that better reflect the 
wide range of cargo bicycles and bicycles with trailers that are currently available. As new 
types of micro-mobility vehicles continue to emerge, it is crucial to anticipate their use cases 
and adapt the SUMO software accordingly, in order to minimize the need for extensive rework-
ing of the codebase in the future. Another suggestion is the implementation of shared mobility 
in the form of stations for shared bicycle providers and bicycle parking with high capacity to 
improve simulation of seamless pedestrian-bicycle trips.  
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Abstract. Developing new solutions to complicated large-scale problems typically requires 
large-scale numerical simulation. Therefore, traffic simulations often run against randomized 
simulations instead of real-world traffic situations. This paper demonstrates a method to cal-
culate the statistical significance of numerical simulations and optimizations in the presence of 
numerous random variables in complex systems using one-sided paired t-tests. While the pa-
per covers a specific Fujitsu traffic-optimization project which uses SUMO for simulating the 
traffic situation, the method can be applied to many similar projects where a complete investi-
gation of the solution space is not feasible due to the size of the solution space. 
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1. Introduction 

In 2020 the Hamburg Port Authority (HPA) initiated a traffic innovation project called MOZART. 
Its goal was to improve the car and heavy goods vehicle (HGV) traffic flow throughout the 
30km road network of the port region by using an advanced digital twin, microscopic traffic 
simulations, and the Fujitsu Digital Annealer Unit (DAU) [1] to create a globally optimized signal 
plan for all 35 intersections once a minute. This signal plan will help the Port of Hamburg to 
achieve their part in the UN Sustainable Development Goals, specifically regarding the sub-
goals of “climate action by reducing pollution”, “responsible production and consumption by 
streamlining transport of goods”, “creating sustainable cities and communities by reducing traf-
fic induces stressors”. 

Fujitsu developed a solution concept that uses real time traffic simulation combined with 
multiple computationally generated alternative signal plans for each intersection. Using these 
the solution simulates the traffic between the intersections in parallel for all possible combina-
tions of signal plans between adjacent intersections to calculate the coefficients of a stress 
function. This function is then written as a polynomial of quadratic order in binary variables 
called a Quadratic Unconstrained Binary Optimization (QUBO) suitable as input for the Digital 
Annealer. The solution then uses the Digital Annealer to find a global optimum of this stress 
function. For more details on the approach, see Traffic management through traffic signal con-
trol by Quantum-Inspired optimization. [2] 

After validating the basic viability of the approach, this project was turned over to our team 
to develop a solution which can be run 24/7/365 in cities. 
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2. The TraFO System 

The production application we are developing is called TraFO (Traffic Flow Optimization) and 
consists of a scalable ensemble of containers:  

 The TraFO container sits at the center of the application. It performs the setup of the 
optimization, calculates the QUBO, calculates the KPIs, orchestrates the other contain-
ers, and provides the UI.  

 The digital twin represents the real-world traffic. The digital twin is constructed using 
Vissim or SUMO networks and run in an instance of Vissim and SUMO [3] using traffic 
flow data for different time slots. We are using the available interface of these applica-
tions to collect the needed data for evaluation. 

 Functions to do data ingestion and data cleaning for sensor data is also included into 
the digital twin to ensure a high data quality for the traffic simulations. 

 Multiple instances can be used to run alternative scenarios in individually configured 
digital twins. 

 The Signal Program Generator container calculates and preselects alternative traffic 
light programs to the TraFO for use by the short-term simulations. It also checks the 
compliance of the traffic light programs with legal and regulatory requirements. Cur-
rently, the Signal Program Generator implements the German regulatory requirements 
laid out in the Richtlinien für Lichtsignalanlagen (RiLSA), Edition 2015 [4]. This can be 
expanded by other regulatory requirements like MUTCD for the United States of Amer-
ica. 

 

Figure 1. Structure of TraFO Optimization Platform 

Figure 2. Visualization of Traffic Controller Programs 
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 To archive the required performance, the 125 short term simulations for each step are 
distributed across multiple instances, at least 10, running SUMO using libsumo in a 
containerized environment. The ideal number of instances depends on the available 
hardware, typically one per available core. 

 The Digital Annealer calculates the optimization result.  
 A standard UI is provided to consolidate the results and configure the different compo-

nents. Customer specific UI, for example to display customer specific KPIs or add ex-
ternal data, can be added 

 We are using a containerized MongoDB to store the road network and other input data 
as well as the simulation results, vehicle trajectories and KPIs. 

In each optimization cycle, the TraFO container: 

1. Collects the up-to-date traffic situation and signal program from the Digital Twin. 
2. Passes them to the short-term simulations together with the possible signal programs 

from the signal program generator and starts the short-term simulations. 
3. Builds the QUBO with the results of the short-term simulations. 
4. Passes the QUBO to the DAU. 
5. Collects the optimal signal programs for each signal head from the DAU. 
6. And passes them to the long-term simulation at the start of the next cycle. 

2.1 Randomness in TraFO 

Since we cannot develop an application in live traffic, we must rely on traffic simulation tools 
to create a digital twin. In our project we use two different simulation tools: SUMO and PTV 
Vissim. Both tools use random number generators (RNG) to place vehicles and simulate driver 
behavior in traffic. Both also let users specify random seeds to reproduce simulation runs.  

Additionally, in TraFO, the generation of signal program alternatives and the short-term 
simulation use multiple random number generator instances to decouple different simulation 
aspects, including 

 randomness when loading vehicles (vehicle type distributions, speed deviations, ...) 
 probabilistic flows 
 vehicle driving dynamics 

Figure 3. UI for Digital Twin Visualisation 
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and more.  

Changes to the random seeds can lead to widely varying traffic flows as shown below. 
Depending on the traffic flow, one and the same alternate signal plan can be highly effective, 
or highly detrimental to the flow of traffic. 

In our project, we came across the following types of random number generators: 

1. Pseudo Random Number Generators in SUMO 
Sumo uses the Mersenne Twister [5] is a general-purpose pseudorandom number gen-
erator developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 
拓士). This algorithm is widely used by commercial software like Microsoft Excel, SAS, 
SPSS, and Matlab as well as standard libraries like the standard C++ library, CUDA, 
and the NAG Numerical Library. 

2. Pseudo Random Number Generators in Vissim 
PTV Vissim is a proprietary commercial software, so while it uses multiple random 
number generators to vary the patterns of stochastic assignments and traffic signals, 
the exact type could not be determined from the technical documentation.   

3. How Big is the Influence of Random Numbers? 

The number of possible combinations of random seeds between the long-term simulation and 
optimization is so large (~ 3.4*1038), that exhaustive sampling is impossible (~1028 years at 
1000 simulations per second). Additionally, we are using about 10 parameters to tune the 
short-term simulation, which further inflates the search space.   

3.1 Measuring Traffic Quality 

To score the simulation runs we chose four key performance indications (KPI) for comparing 
the different runs: 

 Average Speed: at every simulation step, the average speed of all vehicles in the net-
work is calculated and then averaged again over the run time of the simulation. A higher 
value is considered better. 

 Number-Of-Vehicles: at every simulation step the number of vehicles in the network is 
counted. The KPI is the average of all these sums. A lower value is considered better, 
because when having the same number of vehicles getting into the network that means 
more vehicles already leaving the network earlier. 

 Deceleration: at every simulation step, the average deceleration of all vehicles in the 
network is calculated. Deceleration in this case means, that only negative acceleration 
values were considered, using 0 for positive accelerations. This is used, to get value 
more fluent traffic, as stop and go creates much more fuel consumption and CO2 pro-
duction than a slower but steady traffic. At the end the values were averaged again 
over the run time of the simulation. A lower value is considered better. 

 Traffic-Jam: at every simulation step, the vehicles which drive at less than 5 km/h are 
counted. The Traffic-Jam KPI is the average of all these sums. A lower value is con-
sidered better. 

All KPIs are only calculated after a 900-second start-up phase without optimizations which 
is needed to populate each part of the network with enough vehicles to generate valid data. 

To understand the impact the randomness in simulating traffic, we started with an analysis 
of baseline simulations of the same situation using different random seeds.  

Further KPIs can be added to the list as long as they are numerical and metric. 
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3.2 Baseline Comparisons 

To get an impression of the difference between simulations of the same initial situation using 
different random seeds, we have selected two simulations in our application, showing their 
KPIs and the values for average speed over simulation time: once initialized with 9299 as the 
random seed and once with 9340. 

 

The average speed of these two simulations has a ratio of almost 2:3 just because of the 
randomness of the input data for the simulation. Given that an average improvement of about 
10% would be considered a huge success in the real world, any optimization effect would be 
buried by the differences created by the choice of the random seed.  

Table 1. KPI of baseline 9299 and 9340. 

Simulation 
Seed 

Average Speed Number Of Ve-
hicles 

Deceleration Traffic Jam  

9299 29.36 203.2 -0.791 65.1 
9340 20.51 289.7 -0.680 143.5 

Figure 4. Comparison of average speed over simulation time of two simulations 
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To get a better impression, we created 50 baseline simulations and generated a boxplot (see 
Fig. 5) from the generated data. 

As one can see, the measured KPIs vary widely even though we haven’t used the digital an-
nealer and haven’t generated any optimization or changed any traffic light program. The big 
question is now: If we already have such big differences in the baseline simulations, how 
could we prove that our optimization creates better results? Just running some optimizations 
for some randomly picked random seeds wouldn’t prove anything, even though one might 
get a decent hunch from running a few thousand simulations. 

4. Are We Really Improving Traffic? 

It would already be a huge success if we could improve the traffic flow by about 10%. As shown 
above, two baseline simulation can already have a bigger difference using the same pool of 
traffic light programs, caused just by variations in simulating the behavior of drivers. As each 
round of optimization creates a change in the overall simulated system, the vehicle behavior 
will be different over time. For example, if without optimization a car would have been waiting 
at a crossing, it is possible that the optimization has it now already driving past the intersection. 
This will influence the later simulation of other vehicles as well. 

Therefor it is not sufficient to just pick a few simulations and compare the baseline with 
the optimized one, but instead use a more sophisticated approach. 

4.1 Medical Science to the Rescue 

Our solution for this dilemma was to look at other discipline in sciences. How do they handle 
such uncertainties? After reviewing some approaches, we selected methods used in medical 
sciences and pharmaceutical testing [6]. These seem suitable, because the traffic simulation 

Figure 6.  Raw statistical data generated by simulation 

Figure 5. Boxplot for baseline simulations 
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programs essentially model human behavior and must deal with large solution spaces and 
incomplete knowledge of the “participants” in large scale medical studies as well.  

When doing new drug development or studies for new therapies, biometric statistical meth-
ods are used. Similar statistics are also used in human studies in psychology, for example 
when evaluating therapies or clustering human behavior. So, we took a detailed look at how 
they solve the problem of distributed data in randomized testing. 

Any study normally consists of three steps: the design of the study, the execution, and the 
evaluation. We will use the same three steps for our problem. 

4.2 Design of the Study 

In the design phase, one answers the following questions: 

 Which hypothesis(es) do we want to prove? 

 Which type of study do we conduct? 

 What aspects will we measure during execution? 

 How will we evaluate the generated data? 

 How many “participants” do we need? 
The hypothesis we want to prove is that using the optimization with the QUBO and the digital 
annealer results in better traffic flow. In other words, we want to check whether the traffic in 
the optimized simulation is more fluid than the baseline simulation. In statistics, one uses an 
inverted null hypothesis, which is: The traffic flow after optimization is not more fluid than the 
traffic flow in the baseline simulation. 

For the other prescribed steps, we build an analogy to medical studies. When we look at 
our generated data, we see that we can run a baseline simulation and an optimization simula-
tion using the same random seeds. This is reminiscent of “twin studies” in medical sciences. 
So, we ran baseline simulations and optimization simulations using the same random seed for 
our testbed and a fixed set of parameters for our optimization and calculated the above men-
tioned KPIs. 

To test whether one set of results were better than the other, we chose a one-sided paired 
t-test [6], a popular method to compare data of twin studies in medical biometry.  

One initial step is to calculate how many “participants” are needed for a statistically signif-
icant result. Using standard online tools, a Cohens d of 0.2 (the minimal feasible value) re-
quired 156 “participants”[7], [8]. This tells us that we had to run at least 312 (156 * 2) simula-
tions to achieve a useful result. Due to the parallel execution of the simulations in TraFO, this 
could be done in an acceptable length of time. 

4.3 Execution of the Study 

For the execution we had to run a lot of simulations and collect the data (see Figure 6). We 
had previously implemented a batch mode TraFO, which allows us to run a defined number of 
pairs of simulations (baseline and optimization) for a specific situation using different randomly 
generated random seeds. All data is saved in a MongoDB database and can be processed 
later. 

Because running simulations in our optimized version of SUMO is much faster than in 
Vissim, we focused our first evaluation runs on SUMO simulations. Using SUMO, we can run 
a single simulation of a 45-minute traffic flow in about 5 minutes with 11 parallel simulation 
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threads on a Fujitsu CELSIUS J5010 (Intel Core i7-10700, 32GB RAM) so we would have 
needed about one day to run all the simulations we needed.  

To save time, we separated the simulation runs into subsets, so that we could start evaluating 
data even while additional simulations were still running. For our first run we chose a set of 
optimization parameters which caused some improvements in traffic flow in randomly selected 
trial runs. 

4.4 Statistical Evaluation of the Study 

For the first evaluation we use SPSS to calculate the statistical results.  

When running our first evaluation using SPSS, we were surprised to see that all averages were 
slightly better in the optimization simulations than in the baseline simulations already (see Fig-
ure 7). Furthermore, we already got statistically significant metrics (Sig < 0.05) for the Traffic-
Jam KPI and a statistical trend (Sig < 0.1) for the Number-of-Cars KPI (see Figure 8). The 
results can be reproduced using the Excel implementation for the t-Test [9]. 

This shows that even with the first selected optimization configuration and our simple KPIs, we 
can show that our algorithm improves the traffic flow. Calculating Cohens d we can even show 
that the results are not only significant but also show a statistical effect. We expect that we will 
find other optimizations with even larger effects in the future. 

Because we want to run these steps with more optimization configurations in future, we 
added an implementation of the one-sided pair-test to TraFO using the SciPy library for Python. 
This will allow us to run more tests faster and displaying the results inside TraFO.  

Figure 7:  Mean and standard derivation for each data set 

Figure 8. t-test results 
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5. Conclusion and Outlook 

Because of the strong dependency of complex systems on pseudo random number generator 
seeds and initial conditions, it is often hard to separate effects of deliberate optimizations in 
digital simulations from spurious changes due to varying initial conditions. This becomes a real 
issue if the simulation of the real-world system relies on multiple independent simulations using 
random number generators. Traffic flow simulations often shows this behavior. 

This paper shows that using biometric statistical evaluation of a large number of simula-
tions for a set of simulation parameters can help prove that a specific computational approach 
is working and can also eliminate unsuitable combinations of parameters. Compared to the 
common approach to verify the effectiveness of new computational approaches in traffic sim-
ulation by “running a few experiments” or “eyeballing it”, it increases the confidence in the 
accuracy of the simulations and optimizations and makes it easier to explain the approach and 
its benefits to future users with hard statistical evidence.  

Additionally, these measures - for example Cohens d - will help identify the best set of 
optimization parameters early in research and simulation projects, so researchers and traffic 
engineers can home in on strategies that provide the highest added value. 

We will use one-sided paired t-tests in more simulations for our scenario with different 
configurations to evaluate the effects of different tweaks to the optimization algorithm. Our 
experiments already showed that it is possible to get a statistically significant improvement in 
our scenario at the port of Hamburg using the digital annealer. We are already using this ap-
proach to find the best parameter sets for Hamburg as well as for other situations. 

For example, we have now a tool kit to check quickly, whether more complex scoring 
algorithms or new optimization algorithm leads to better solutions. We already have a set of 
different methods for generating QUBOs for the digital annealer which we now can compare 
to each other quantitatively. 

In the future we want to use this approach in other projects, which also simulate scenarios 
based on human behavior or pseudo random number generators, including large scale SUMO 
simulations. We also want to encourage other SUMO users to use it as well. 

We also will continue to explore additional statistical tests for more detailed analysis with 
the Wilcoxon signed-rank test as the next candidate. 
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Abstract: Routing algorithms typically suggest the fastest path or slight variation to
reach a user’s desired destination. Although this suggestion at the individual level is
undoubtedly advantageous for the user, from a collective point of view, the aggrega-
tion of all single suggested paths may result in an increasing impact (e.g., in terms of
emissions). In this study, we use SUMO to simulate the effects of incorporating ran-
domness into routing algorithms on emissions, their distribution, and travel time in the
urban area of Milan (Italy). Our results reveal that, given the common practice of rout-
ing towards the fastest path, a certain level of randomness in routes reduces emissions
and travel time. In other words, the stronger the random component in the routes, the
more pronounced the benefits upon a certain threshold. Our research provides insight
into the potential advantages of considering collective outcomes in routing decisions
and highlights the need to explore further the relationship between route randomiza-
tion and sustainability in urban transportation.

Keywords: Routing, Route Randomization, Traffic Simulation, Urban Emissions

1 Introduction

Vehicular mobility is pivotal in global greenhouse gas emissions and determining the
urban environment’s sustainability [1]. Emissions of CO2 from road vehicles were 1.57
billion metric tons in 2012, accounting for 28% of US fossil fuel CO2 emissions [2],
causing climate changes, heat islands [3] and health-related risks [4]. Traffic conges-
tion, a significant source of CO2 emissions in urban environments [5], may arise due
to (unintended) drivers’ miscoordination, which may be exacerbated nowadays by the
massive use of GPS navigation systems. Typically delivered as phone apps, these
systems suggest the fastest path to reach a user’s desired destination. Although this
suggestion is undoubtedly advantageous for the user, especially when exploring an un-
familiar city, the aggregation of all single suggested paths may result in an increasing
urban impact (e.g., in terms of emissions). Indeed, a recent work shows that the higher
the fraction of vehicles following these apps’ suggestion, the higher the urban emis-
sions [6]. Several alternative routing algorithms have been introduced, which typically
slightly randomize the fastest path to increase route diversity [7]–[11]. However, it still
needs to be determined to what extent route diversification can help reduce emissions
and traffic congestion in urban environments.
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This paper provides a method to assess the impact of route randomization on the
urban environment using the mobility simulator SUMO and duarouter. We investigate
the impact of randomized routes on CO2 emissions and travel time in Milan, Italy. By
changing the fraction of randomized vehicles for different degrees of randomization, we
examine how the distribution of emissions across the roads and the vehicles’ travel time
change. We find that an optimal randomization degree exists, leading to a 15% reduc-
tion in CO2 emissions and an 18% reduction in travel time, compared to the baseline
case in which there is no path randomization. In particular, the CO2 distribution en-
tropy increases with the degree of randomization, leading to a more evenly distributed
emission on the road network. Our study provides valuable insights into the potential
benefits of incorporating randomness into route recommendations as it may increase
sustainability in transportation networks. We provide the code and the link to the data
to reproduce our study at https://bit.ly/route_randomization_sumo.

2 Related Work

Computing the shortest (or fastest) path between two given locations in a road network
is a largely addressed problem in mobility research [12]. The fastest path is the one that
minimizes the travel time to reach a desired destination. Although this suggestion at
the individual level is undoubtedly advantageous for the user, from a collective point of
view, the aggregation of all single suggested paths may result in an increasing impact
(e.g., CO2 emissions) [6].

Different works have focused on alternative routing [7], typically formalized as the
k-shortest path problem [13], [14], which aims to find the k > 0 shortest paths between
an origin and a destination in a network. Cheng et al. [8] demonstrate how, in most
practical cases, path diversification is crucial to solving the k-shortest path problem
since the generated paths have 99% overlap in terms of road edges. Suurballe [15]
proposes another method to generate k-shortest disjointed paths, in which the route
appears considerably diverse from the optimal path and the travel time and path length
increase considerably. In between the k-shortest path and k-shortest disjoint paths lie
several approaches that are a good tradeoff between the two approaches.

Liu et al. [9] propose the k-Shortest Paths with Diversity (kSPD) problem, defined
as top-k shortest paths that are the most dissimilar with each other and minimize the
paths’ total length. Given the kSPD problem, Chondrogiannis et al. [10] propose an
implementation and a study of the k-Shortest Paths with Limited Overlap (kSPLO),
seeking to recommend k-alternative paths that are as short as possible and sufficiently
dissimilar based on a similarity threshold defined by the user.

Chondrogiannis et al. in [11] formalize the Dissimilar Paths with Minimum Collective
Length (kDPML) problem based on the definition proposed by Liu et al. in [9]. Given
two locations on a road network, they compute a set of k paths containing sufficiently
dissimilar routes and the lowest collective path length among all sets of k sufficiently
different paths.

Cheng et al. [8] generate alternative routes by considering the road network as a
weighted graph and distorting the edge weights. They iteratively compute the opti-
mal path, applying a penalty on each edge of the optimal path found in the previous
iteration.

Another technique used to generate alternative routes is the plateau method [16]:
it builds two shortest-path trees, one from the source and one from the target, and
then joins the two trees to obtain the branches in common. These common branches
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are termed plateaus. Top-k plateaus are selected based on their lengths, and each
plateau is used to generate an alternative path by appending the shortest paths from
the source to the first edge of the plateau and from the last edge of the plateau to the
target.

All existing works validate and evaluate the goodness of their proposals from a the-
oretical and algorithmic point of view. None of them investigates the impact of route
diversification on urban welfare, for example, traffic congestion and pollution. In this
paper, we fill this gap and assess the collective impact of alternative routing as ran-
domization of the fastest path on emissions using the mobility simulator SUMO.

3 Simulation Framework

Our simulation framework is based on SUMO (Simulation of Urban MObility), an agent-
based tool that allows for intermodal traffic simulation, including road vehicles, public
transport, and pedestrians [17]. SUMO models each vehicle’s physics and dynamics,
supporting various route choice methods and routing strategies [18].

SUMO requires two elements to simulate traffic: a road network and a traffic de-
mand. The road network describes the virtual road infrastructure where the simulated
vehicles move during the simulation. It is a directed graph G = (V,E) in which V repre-
sents intersections and E represents roads. The traffic demand describes the vehicles’
movement on the road network. A vehicle path may be either a trip or a route. The
origin edge, the destination edge, and the departure time define a trip. A route also
contains all edges the vehicle passes through.

We control our SUMO simulations through TraCI1 (Traffic Control Interface) [19], a
Python controller that allows retrieving simulated objects’ values that are useful for
analyzing the simulation, such as the vehicle’s trajectory, its speed and acceleration,
total CO2 emissions, and fuel consumption.

3.1 Mobility Demand

The mobility demand D = {T1, . . . , TN} is a collection of N trips (one per each vehicle)
within a city. A single trip Tv = (o, d) is defined by its origin location o and destination
location d. To compute D, we first divide the area of interest into a grid with squared
tiles of a given side. Then, we use real mobility data to compute the flows between the
tiles obtaining an origin-destination matrix M where an element mo,d ∈ M describes
the number of vehicles’ trips that start in tile o and end in tile d. Finally, we iterate
N times the following procedure: we choose a vehicle v’s trip Tv = (eo, ed) selecting
at random a matrix element mo,d ∈ M with a probability po,d ∝ mo,d and uniformly at
random two edges eo, ed ∈ E within tiles o and d.

3.2 Randomized Fastest Path

In graph theory, the shortest path between two nodes is the path that minimizes the
sum of the weights of the path’s edges. The fastest path is the shortest path consid-
ering travel time as the edge cost. We define a randomized fastest path as a non-
deterministic distortion of the fastest path. The resulting path should not deviate con-
siderably from the optimal path in terms of length and duration.

1https://sumo.dlr.de/docs/TraCI.html
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We compute the randomized fastest paths using the SUMO tool duarouter2, which
allows us to compute vehicle routes using different algorithms (e.g., CHWrapper, A*,
and Dijkstra) and specify the degree of path randomization w ∈ [1,+∞).

If w > 1, duarouter uses an edge weight randomization method [8] to dynamically
distorts edge weights (i.e., travel time) by a chosen random factor drawn uniformly
in [1, w). The edge cost distortion is performed every time duarouter computes the
fastest path for a vehicle; hence, two vehicles with the exact origin and destination may
be assigned to two different randomized fastest paths (see Figure 1). The edge weight
considered by duarouter is the expected travel time, estimated for each edge as its
length divided by the maximum speed allowed on that edge. Duarouter randomizes
the edge weight f(e) of an edge e using a function fdua(e) defined as:

fdua(e) = f(e) · U(1, w)

where w is the degree of randomization and U(1, w) is a random variable drawn uni-
formly in [1, w). Note that for w = 1 there is no randomization. Furthermore, the higher
w, the more randomness is introduced into calculating the fastest path, and the more
(on average) the path deviates from the fastest path (see Figure 2). Given an origin lo-
cation o, a destination location d, and random weight factor w, we define the sequence
of SUMO edges computed with duarouter as DR((o, d), w).

Figure 1. The non-deterministic nature of the fastest path randomization. The original fastest
path is the black dashed line. We visualize the routes for 1000 randomizations of
the fastest path, using w = 5, between the exact origin and destination edges. The
intensity of the colour on a road edge is proportional to its likelihood of being selected
as part of the randomized fastest path.

3.3 Non-randomized and Randomized Traffic Demands

We derive two types of traffic demands based on a given mobility demand D: the non-
randomized traffic demand and the randomized demand.

The non-randomized traffic demand, NR, is a collection of N routes that link the
origin to the destination of each trip in D using the fastest path (i.e., using duarouter
with w = 1):

2https://sumo.dlr.de/docs/duarouter.html
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(a) (b)

(c) (d)

Figure 2. Randomizations (red lines) of the fastest path (black dashed line) for w=5 (a), w=10
(b), w=15 (c), and w=20 (d). Increasing w produces routes that diverge more from
the fastest path.

NRD =
D⋃

Ti=(oi,di)

DR((oi, di), 1)

The randomized demand, R, is the collection of N routes connecting the origins to the
destinations of each trip in D using randomized fastest paths (i.e., using duarouter with
w > 1):

RD,w =
D⋃

Ti=(oi,di)

DR((oi, di), w)

Given a mobility demand D, we compute NRD and RD,w for each w ∈ W , where W is
the set of randomization factors to study.
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3.4 Traffic Simulation

We use TraCI to collect edge and vehicle-related measures such as total travel time,
emissions (CO2, PM, and NOx), and fuel consumption. We use the HBEFA3/PC G EU4
emission model [20], which estimates the vehicle’s instantaneous emissions at a tra-
jectory point j as [21]:

E(j) = c0 + c1sa+ c2sa
2 + c3s+ c4s

2 + c5s
3

where s and a are the vehicle’s speed, and acceleration in point j, respectively, and
c0, . . . , c5 are parameters changing per emission type and vehicle taken from the HBEFA
database.

We compute the total quantity for each pollutant on each edge e ∈ E by summing all
the emissions corresponding to any vehicle v’s trajectory point that fall on e. Finally, we
construct a weighted road network G = (V,E) where each edge e ∈ E is associated
with the amount of emissions on it.

4 Experimental Settings

We simulate the effect of route randomization into a 45 km2 area in the city center of
Milan, Italy, for which we have GPS data3 describing 17,000 private vehicles traveling
between April 2nd and 8th, 2007 (114k GPS points). Previous works demonstrate that
the portion of vehicles in the dataset is representative of the real fleet of vehicles [22].
We discretize the urban area of Milan by splitting it into a grid of squared tiles (side of 1
km), and we detect the origin and destination tile of each vehicle’s trip to compute the
origin-destination matrix M of vehicles’ flows [23], [24].

We obtain the road network G = (V,E) of Milan using OSMWebWizard4, included in
the SUMO suite. Before conducting the simulations, we perform a preprocessing step
on the road network to correct inaccuracies that may negatively affect the simulations.
This preprocessing phase includes correcting lane number inaccuracies, addressing
road continuity disruptions, and modifying turns to align with real-world conditions.
Since the pre-computed traffic lights’ programs often differ from those in reality, we
set the traffic lights’ program to actuated, as suggested in the SUMO documentation.
The preprocessing steps are based on the methodology outlined in [18]. We use the
following netconvert options (recommended in the netconvert documentation):

--no-turnarounds true --geometry.remove --roundabouts.guess --ramps.guess

--junctions.join --tls.guess-signals --tls.discard-simple --tls.join

--output.original-names --junctions.corner-detail 5 --output.street-names

After the preprocessing, the road network includes 5,551 intersections (nodes) and
36,945 road segments (edges).

Given the preprocessed road network G and the OD matrix M , we compute the
mobility demand D with N = 15, 000 trips. This value of N minimizes the difference
between the average travel time of actual trajectories and simulated ones, a standard
way to assess a realistic estimation of the number of vehicles to simulate [6], [18]. We
associate at each vehicle’s trip in D a departure time assigned uniformly at random
between 0 and 3600 seconds.

3https://ckan-sobigdata.d4science.org/dataset/gps track milan italy
4https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html
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First, we compute the non-randomized traffic demand NRD: we connect each vehi-
cle’s origin and destination through the fastest path (w = 1). Second, we build the ran-
domized traffic demands RD,w for several randomization values w ∈ {2.5, 5, 7.5, 10, 12.5,
15, 17.5, 20}. Third, we create a mixed demand MPp,w specifying the fraction p of the
randomized fastest paths. In each MPp,w, a fraction p of the N vehicles chosen uni-
formly at random are assigned to their randomized paths computed with the random-
ization value w. In contrast, the vehicles’ remaining fraction (1− p) is assigned to their
non-randomized paths. We consider p ∈ [0, 1] at step of 0.1. The mixed demand allows
us to study the impact of the percentage of vehicles that follow a randomized fastest
path on the urban environment.

To make simulations more robust, for each value of p and w, we generate MPp,w ten
times, each with a different choice of randomized vehicles that are chosen uniformly at
random. Finally, we simulate each MPp,w in SUMO, and through the Python controller
TraCI we collect the emissions on each edge and the vehicles’ total travel time.

Finally, to confirm that the randomization of a path from an origin to a destination
grows with w, we take 15,000 paths for each value of w ∈ W (generated starting from
the trips in D). We measure the randomization of a path as the normalized Jaccard
coefficient, defined between two sets A and B as:

J(A,B) =
|A ∩ B|
|A ∪ B|

between the edges of the randomized paths (w > 1) and edges of the fastest path
(w = 1) (Figure 3a), computed for the same origin and destination. We also measure,
for different values of w ∈ W , the average path length (Figure 3b) and the average
expected travel time (Figure 3c). Figure 3 shows how increasing the value of w results
in randomized paths with a lower average Jaccard coefficient, higher length, and higher
expected travel time than the fastest path. Therefore, path randomized grows with
increasing w.
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Figure 3. The average normalized Jaccard coefficient computed between the randomized
paths and the fastest path (a), the average path length (b) and the average travel
time (c) for different values of w.

5 Results

We study how the distribution of CO2 emissions and travel time across Milan’s roads
change by changing with the p of randomized vehicles for different values of w ∈ W ,
where W = {2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20}.
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We find that the fraction p of randomized paths does impact the total CO2: introducing
randomization in the fastest path reduces the total CO2 emissions. When p > 0.1, the
emissions are lower than the baseline case (w = 1) and decrease with p, assuming their
minimum value for p = 1 (Figure 4a). This relationship is consistent across different
values of w.
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Figure 4. Total CO2 emissions (a) and Shannon entropy (b) of the CO2 distribution varying the
fraction p of randomized vehicles for different values of w. Points indicate the average
of total CO2 emissions (a) and average Shannon entropy (b) over ten simulations with
different choices of randomized vehicles (chosen uniformly at random). Vertical bars
indicate the standard deviation, and the grey dashed line represents the baseline
case (no randomization, w=1).

As Figure 4a shows, the configuration p = 1 and w = 10 corresponds to the minimum
value of total CO2 emissions, with a total emissions savings with respect to the baseline
of 15.61% (Figure 6a). We also compute the Shannon entropy of the total CO2 distri-
bution to capture the inequality of the distribution on the road network’s edges, defined
as:

H(X) = −
∑
x∈X

p(x) log p(x)

where X is a random variable. We find that the higher w, the more evenly the emissions
are distributed on the road network (Figure 4b). In particular, the distribution is the most
equal when all the vehicles follow a randomized fastest path, ∀w ∈ W .

The results for the travel time are in agreement with those of CO2 emissions: the
higher p, the lower the vehicles’ travel times (Figure 5a). Travel times are minimized
when p = 1 and w = 10, with an improvement of 18.74% with respect to the baseline
scenario (Figure 6b). The entropy associated with the total travel time is more variable
than the entropy of the total CO2; this may arise from the stochastic nature of each
simulation.

6 Discussion and Future Works

Our study investigates the effects of route randomization on CO2 emissions and travel
time in an urban environment. We find that the injection of randomness into the fastest
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Figure 5. Total travel time (a) and Shannon entropy of the travel time distribution (b) varying
the fraction p of randomized vehicles, different values of w. Points indicate the aver-
age total travel time (a) and average Shannon entropy (b) over ten simulations with
different choices of randomized vehicles (chosen uniformly at random). Vertical bars
indicate the standard deviation, and the grey dashed line represents the baseline
case (no randomization, hence w=1).
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Figure 6. The percentage of savings to the baseline case (p = 0), in terms of total CO2 (a) and
total travel time (b) for p = 0.5 (blue) and p = 1 (orange) for different values of w.
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paths, which can be interpreted as an increasing “diversity” of paths on the road net-
work, is beneficial for reducing CO2 emissions and travel time. Presumably, path ran-
domization helps distribute the traffic more evenly among the different (non-fastest)
routes, preventing the emergence of detrimental and counterintuitive effects such as
the Braess paradox [25], [26].

Path randomization with w = 10 leads to the best improvement over the baseline, with
savings in CO2 emission and travel time of 15.61% and 18.74%, respectively. However,
increasing the random component in the randomization of the fastest path is beneficial
up to a certain threshold: when w > 10, CO2 emissions increase again. This result
suggests that more effort should be devoted on finding the dependence of the optimal
degree of randomization on the road network structure and the number of circulating
vehicles. In future works, we plan to explore the potential for scaling these results to
other cities and integrating them into real-world transportation planning and manage-
ment.

Our findings have practical implications for real-world transportation systems. Im-
plementing our approach could significantly reduce traffic congestion and pollution,
thus improving the overall efficiency of the transportation network. The approach is
also easy to implement and can be integrated into existing navigation systems with-
out significant modifications. Further research could investigate the impact of several
diversification methods and other transportation efficiency measures, such as fuel con-
sumption.

A further improvement would be to consider a stable user equilibrium (UE) [27] as
a baseline scenario instead of assigning the fastest path for each trip in the travel
demand. User equilibrium (UE) describes the condition in which each driver chooses
their route based on their individual preferences, resulting in a network-wide equilibrium
where no individual driver can reduce their travel cost (e.g., travel time) by unilaterally
using a different route. In other words, UE represents a state of traffic flow where all
drivers have chosen the shortest or fastest paths, given the prevailing traffic conditions
and their preferences or constraints.

In the meantime, our work is a first step towards designing next-generation routing
algorithms that, as our results suggest, should consider some degree of path random-
ization to increase urban well-being while still satisfying individual needs.

Underlying and related material

The code and the link to the dataset to fully reproduce the analysis presented in this
work is available on a GitHub repository at https://bit.ly/route_randomization_
sumo.
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Abstract: Traffic within cities has increased in the last decades due to increasing mobil-
ity, changing mobility behavior and new mobility offerings. These accelerating changes 
make it increasingly difficult for responsible authorities or other stakeholders to predict 
mobility behavior, to configure t raffic ru les or  to  size ro ads, br idges and parking lots. 
Traffic simulations are a  powerful tool for estimating and evaluating current and future 
mobility, upcoming traffic services and automated functionalities in the domain of traffic 
management. For being able to simulate a complex real-world traffic environment and 
traffic incidents, the simulation environment needs to fulfill requirements from real-world 
scenarios related to sensor-based data processing. In addition, it must be possible to 
include latest advancements of technology in the simulation environment, for instance,
(1) connected intersections that communicate with each other, (2) a complex and flex-
ible set of rules for traffic s ign c ontrol and t raffic ma nagement or  a well-defined data
processing of relevant sensor data. In this paper we therefore define requirements for
a traffic s imulation based on a  complex real-world scenario i n G ermany. The project
addresses major urban challenges and aims at demonstrating the contribution that the
upcoming 5G mobile generation can make to solving real-time traffic flow optimization.
In a second step, we investigate in detail if the simulation environment SUMO (Sim-
ulation of Urban Mobility) fulfills t he p ostulated r equirements. T hirdly, w e p ropose a
technical concept to close the gap of the uncovered requirements for later implemen-
tation.

Keywords: Traffic flow optimization, connected intersections, traffic light systems

1 Introduction

In the last decade, traffic density has i ncreased worldwide by the growing amount of 
vehicles making the management of the traffic more challenging [1], [ 2]. This leads to 
more traffic j ams, a ccidents [ 3] o r t ransportation p roblems s uch a s c ostly d elays [4]. 
Reasons for this are, e.g., the growing car ownership and the behaviour of road users 
[1], [5]. Thus, solutions for traffic fl ow op timization is  im portant [4 ]. Es pecially with 
respect to multi-lane intersections [5], different traffic fl ows cr ossing ea ch ot her and
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these crossings have to be regulated. The regulation can take place via traffic light
systems and they thus have an effect on the traffic flow. Developing and testing such
optimizations in the real world is time-consuming, expensive, hardly reproducible and
a potential safety risk. Thus, traffic experiments should be performed in a virtual envi-
ronment using traffic simulations [4]. Mapping the real world into a virtual environment
and simulation which are also being studied intensively in the research community
[2], [4] is of high priority for the traffic management [1]. Simulations require models
which contains roads, buildings, traffic lights or traffic demands to reflect the reality
in those aspects that are needed to find responses for posed research questions [6].
SUMO offers functions and tools for applying traffic simulations such as traffic lights
or road data [6]. Traffic demand represents a basic information for running a SUMO
simulation that is provided in different modes by SUMO [6]. Additionally, SUMO offers
functionalities to understand the traffic state [6]. However, it has to be validated which
requirements of the real-world scenario can be fulfilled with SUMO built-in features
and which components have to be developed further. This paper addresses this issue
by identifying project specific requirements, derived from a concrete real-world project
called 5G-trAAffic 1 supported by the German Federal Ministry of Transport and Digital
Infrastructure, by comparing it with the current SUMO functionalities. One goal of the
5G-trAAffic project is to optimize the traffic flow by tweaking the way traffic lights are
managed at various multi-lane intersections. This is going to be realized by connected
the intersections by a cooperative behaviour of the traffic signal systems.

The main goal of this work is to identify gaps between the project related requirements
and the current SUMO functionalities ending up with a technical concept for a later im-
plementation of new extensions or software plugins for SUMO. In the core, as Fig. 1
shows, we, firstly, analyze which requirements are demanded for SUMO to be able to
closely represent the project reality within the virtual environment. Secondly, the con-
crete requirements are sorted within categories such as the geographical environment,
the traffic logic such as a traffic management, and the data creation of relevant data
sources such as traffic sensors as a traffic optimization is related to a sensor-based
data processing. In addition, the identified gaps between the demanded requirements
and the SUMO functionality resulted within a gap analysis, which transparently shows
required SUMO enhancements to close the gaps. Thirdly, in the last step we use the
gap analysis to suppose a technical concept which provides an overview of the solution
approach.

Figure 1. Overview over the work content

The structure of the paper is organized as follows: Section 2 provides a review of
relevant literature. Section 3 presents an overview of the considered road intersections
in the project and their specific conditions. It also includes the identified requirements
on the simulation environment. In Section 4 there will be shown which requirements
can already be fulfilled by SUMO and which requirements needs to be integrated to

1https://www.keim.iao.fraunhofer.de/de/projekte/5G.html
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meet all requirements. Subsequently, Section 5 presents the technical concept with
a diagram and description about the approach to extend SUMO. Finally, Section 6
provides an overall evaluation and reflection of the results.

2 Related Work

Our work strongly deals with several fields with respect to the traffic flow optimiza-
tion. Jin et al. [7] generated an intelligent control system for traffic signal applications
called Fuzzy Intelligent Traffic Signal (FITS) control. The system is designed to improve
existing signal control systems without changing the fundamental traffic management
infrastructure. It uses fuzzy logic for decision making and communicates with signal
control hardware and simulated traffic environment through a M2M connectivity proto-
col.
Traffic monitoring is required to minimize traffic congestion and accidents and to de-
velop intelligent transportation systems (ITS). Mega et al. [8] analyze a realistic sim-
ulation of vehicle mobility based on traffic surveys of a city using SUMO. The traffic
information was obtained by integrating OpenStreetMap with request data and filtering
with a Kalman Filter method. Muzamil et al. [9] designed an adaptive traffic signal con-
trol based on fuzzy logic with Webster and modified Webster’s formula considering the
average waiting time, average travel time, and average speed as performance indices.
Data from three, four and five intersections were collected and by using SUMO it turned
out that the two proposed adaptive traffic light control algorithms showed better results
in terms of performance indices at a four-access intersection. In the KI4LSA project
phase [10], a solution for real-time data-based traffic flow optimization of existing traffic
light systems with artificial intelligence (AI) was proposed. They used SUMO and col-
lected data from different sensors such as radar sensors or video-based sensors of the
city of Lemgo. They showed a positive impact on the traffic flow by applying linear opti-
mization. In comparison, our focus is on collecting other kinds of data like statistical and
historical data sensor data, which later in the project will result in a set of rules that will
provide the traffic light systems with suggestions for the next traffic light phase. Tomar
et al. [11] address the problem to update traffic signal timing and synchronize the traffic
signal at intersections based on real-time traffic information. They provide an overview
of traffic light synchronization techniques for intelligent vehicles, a cutting-edge tech-
nology in ITS. They proposed a traffic signal synchronization framework which divides
the system in two levels of synchronization to reduce the congestion, working with any
technology to collect traffic density at intersection. Pandey and Jalan [12] use image
and video processing to gather information on traffic density at an intersection and de-
velop a strategy for allocating time periods for traffic signals. With their suggestion they
want to reduce the waiting times for vehicles and reduce the average waiting queues.
The work of Lobo et al. shows the concept, model and validation to presents a realistic
traffic scenario for Ingolstadt. For this purpose, observations from the real world were
taken over, such as the average green phases at traffic intersections [13]. In contrast
to our approach, we want to access the actual sensor data to provide an accurate
representation of the traffic light phases and intersection situation in the simulation en-
vironment. In Luow at al. [14] the queue length at intersections is to be optimized.
For this purpose, the two approaches of Machine Learning: Q-learning and policy op-
timization are faced. Here, the agents have access to the state of the traffic light as
well as the number of vehicles. This approach excludes environmental factors to be
considered in this work. Halbach and Erdmann [15] focus on the setup of intersections
with SUMO and the implementation of traffic light codes of a manufacturer, which are
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transmitted in a fixed interval. The transmission is realized by Traffic Control Interface
(TraCI).

3 Requirements Analysis

Deriving requirements from the real-world project 5G-trAAffic for virtualization, the real-
world project needs to be analyzed in detail including the core characteristics such as
the traffic flow or the logic of traffic management. Thus, in the following the project is
described in detail followed by the the requirements analysis.

3.1 Overview of the 5G-trAAffic Project

The main goal of the 5G-trAAffic project is to examine potential applications of the
5G mobile communications technology in cities. The project addresses major urban
challenges and aims at demonstrating how the upcoming 5G mobile communications
generation can contribute as a key technology to the solution of real-time traffic flow
optimization.

The project is located in Aalen, Germany. Fig. 2 shows the three traffic intersections
in Aalen that are taken as concrete scenario for the traffic flow optimization.

Figure 2. Overview about the intersections within the 5G-trAAffic project

The two streets Friedrichsstraße and Friedhofstraße represent Intersection 1. The mid-
dle intersection Intersection 2 contains the both crossing streets Gartenstraße and
Friedrichstraße and connects the Intersection 1 and Intersection 3. The last intersec-
tion Intersection 3 contains the Stuttgarter Str. and the Julius-Bausch-Straße. The
intersections are connected by multi-lane roads and build major traffic axes. The traffic
is characterized by motorized traffic including bicycle lanes, cars, trucks, buses or mo-
torcycles. Pedestrians can request green phases via a request button on the traffic light
pole. Induction loops and basic video detection to identify the amount of road users are
provided at all intersections. The existing traffic light systems have a static traffic signal
phasing program and have no knowledge about the current or next phase of the other
intersections. The selection of the next traffic light phase can be influenced by the
request buttons (pedestrians), induction loops and video detection. Several additional
modern sensor devices will be added to the intersections and roads comprising, e.g.,
road-side units or weather sensors. These sensors can enable better optimization of
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traffic flow by providing additional relevant data for optimization. Furthermore, the driv-
ing areas will be equipped with modern AI assisted camera systems that can establish
the fluctuation of the travel. This includes to detect the amount of vehicles per time as
well as the class of vehicles (e.g., bus or car). Camera systems will enable tracking in
which direction a vehicle is travelling. Thus, the camera systems will exchange data
with each other. The current basic operating principle of the traffic light systems is to
receive internal suggestions from the traffic system to decide which traffic light phase
should be selected next. This should enable the traffic light system to react to local
traffic conditions, but also to achieve macroscopic overall effects. Fig. 3 shows the
5G-trAAffic project and its basic solution approach in order to optimize the traffic flow.

Figure 3. Overview over the traffic flow optimization using the rules based framework

The core of the traffic flow optimization are based on a rules-based framework which
optimizes the traffic lights by sending a proposal for the next phases based on multiple
data sources. Algorithms are being evaluated that calculate a recommendation for the
next phase, based on the input signals from the sensors. The characteristics of the
traffic light of the considered intersections 5G-trAAffic is that they have a built-in logic
to accept or reject the proposal. In real world this is performed by a hardware unit called
a programmable logic controller (PLC). For simulation purpose in the running project
5G-trAAffic, the PLC has to be emulated by a software module. This means that the
behavior of the hardware unit (PLC) from the real world has to be modeled with a self
developed software module. The PLC serves as an interface between the rule-based
framework and the traffic signal system. The incoming proposal for the next traffic light
phase is received and evaluated by the PLC. By accepting the suggestion, it sends
the suggested phase to the traffic signal. Which requirements the SUMO environment
needs to fulfill is part of this paper. In the next Section the requirements are identified
that have to be fulfilled by the simulation environment.

3.2 Requirements Analysis

The requirements for the 5G-trAAffic project focus all on traffic flow optimization and
not on traffic safety issues. Pedestrians will just be considered to represent how pedes-
trian requests affect the vehicle traffic flow. The requirements are structured in sev-
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eral groups. The first group addresses the requirements for the traffic signal systems.
These are central to the objective of traffic flow optimization. The second requirement
group is made up of the sensor systems which are used with the 5G technology, called
the 5G sensor systems. The described 5G-trAAffic project uses already installed sen-
sor systems such as induction loops or specific sensors (e.g., camera systems or 5G
components) which provide the input sensor-data for the SUMO simulation. The third
requirement group focuses the traffic simulation itself, which combine the traffic signal
systems and the 5G sensor systems. The fourth requirement group represents the
traffic flow optimization. Table 1 shows the identified requirements for the traffic light
system.

Table 1. Traffic Light System Requirements

Requirements - Traffic Light System
RID Description
1.1 Traffic signals need to be manageable via phase transitions.
1.2 Selecting the next phase, incoming signals from sensor devices need be con-

sidered.
1.3 An interface is needed to request the next phase based on the current input

signals.
1.4 An interface is needed to change the current phase to the transmitted phase.
1.5 A PLC is needed to decide if a suggestion of the next phase is accepted or

rejected.

Controlling traffic signals via phases within a traffic signal program is a standardized
approach. Thus, the requirement RID 1.1 is of particular importance. Furthermore, a
traffic light program consists of multiple phases and its transitions. A 5G sensor sys-
tem should deliver relevant information to determine the next phase (RID 1.2). For the
development optimization of the traffic flow, the basic information about current state of
the traffic light must be known by transmitting relevant data via a proper interface, de-
fined in requirement RID 1.3. The traffic signal system requires an interface to change
to another phase. This interface is necessary because the generated phase proposal
of the rule-based framework need to to be transmit to the traffic light system.RID 1.4.
PLC are installed in the traffic signal systems relevant to the project. The phase pro-
posals are sent to the PLC. One task of the PLC is to check whether external signals
such as the proposal for the next phase are accepted or not. The PLC decides on the
basis of defined criteria whether a phase proposal is accepted or not. RID 1.5

In Table 2, the identified requirements for the 5G sensor system are presented. In
the project also pedestrians are considered and they can use request buttons at the
intersections. Thus, the simulation needs to consider such functionality for the traffic
flow optimization RID 2.1. In addition, the project requires detectors to distinguish
between different types of vehicles such as cars, trucks of busses, which is set in
RID 2.2. The used cameras must be connected with each other by a camera system,
because they share information about the traffic comprising, etc, detected vehicles and
their driving directions, described in RID 2.3. Finally, further information from vehicles
such as speed or the destination lane is also required for the later optimization. Thus,
road side units are installed which needs to be considered RID 2.4.

Table 3 shows the identified requirements for the traffic simulation. Creating a realistic
model from real world data, it must be possible to reproduce the road layout as accu-
rately as possible (i.e., RID 3.1). In addition, the traffic simulation needs to consider
different road users for cars, buses and pedestrians i.e., RID 3.2. For the data collec-
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Table 2. 5G Sensor System Requirements

Requirements - 5G Sensor System
RID Description
2.1 Request buttons need to be considered used by pedestrians influencing the

next phase.
2.2 Induction loops need to be considered counting the traffic and making a dis-

tinction between cars, busses or trucks.
2.3 The traffic cameras need to be connected to an intelligent camera system to

track each vehicle or pedestrian from entering until leaving the intersection.
2.4 Road side units needs to be included that can communicate with vehicles.

tion, 5G sensor systems need to be adaptable to the changing settings, meaning that
properties of the sensor systems must be customizable (i.e., RID 3.3). During the sim-
ulation the behaviour of vehicles, the pedestrians and cyclists needs to be considered
based on statistical information (i.e., RID 3.4).

Table 3. Traffic Simulation Requirements

Requirements - Traffic Simulation
RID Description
3.1 The intersections need to be modelled closely to the real-world project.
3.2 Different types of lanes need to be distinguished including, pedestrians, bicy-

cles, cars/trucks and busses.
3.3 The 5G sensor systems need to be configurable within the traffic simulation

in order to match the real-world project characteristics such as angle of the
cameras.

3.4 Behavior pedestrians, cyclists or vehicles needs to be considered within the
simulation.

Table 4 shows the identified requirements for the traffic flow optimization. The algorithm
for determining the next traffic light phase requires the current status of all sensors. This
is specified in requirement RID 4.1. Requirement RID 4.2 states that an interface must
exist at the traffic signal system for the transmission of a suggestion for the next traffic
light phase. For the evaluation of the developed traffic flow optimization, a feedback
from the traffic signal system is necessary to see if a proposal for the next phase has
been accepted or rejected (i.e., RID 4.3). The identified requirements will be used in
Section 4 to check which requirements can be fulfilled by SUMO and to identify the
gaps.

Table 4. Traffic Flow Optimization Requirements

Requirements - Traffic Flow Optimization
RID Description
4.1 The simulation need to request the current state of each sensor via an inter-

face.
4.2 Suggestions or next phases of traffic light systems need to be interface-

requestable.
4.3 A feedback mechanism is needed to get information of the suggested phase

acceptance.
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4 The SUMO Traffic Simulation Environment

In this Section, the requirements from Section 3.2 are compared to the available fea-
tures in SUMO by performing a gap analysis based on the official documentation of
SUMO 2 as well on Lopez et al. [6]. The results of the gap analysis are presented and
discussed in Section 4.2. By mentioning SUMO, the whole SUMO package, including
all official components, which is available at the official SUMO webpage3 is meant. By
mentioning TraCI, which stands for Traffic Control Interface, the Python4 based TraCI
library5 is meant. TraCI is an interface to interact with a running simulation, to retrieve
current values and to modify simulation parameters and properties of simulated ob-
jects. This allows to implement highly customizable traffic simulation models.

4.1 Existing built-in Features

4.1.1 Traffic Light Systems

SUMO offers sophisticated standard functionalities for traffic light system controls, such
as fixed-timing control and adaptive traffic control based on detected time gaps [16].
The integration of traffic light systems (TLS) into SUMO models can be realized by the
following SUMO tools: netconvert [17] or the OSMWebWizard[18] to work with real
world maps and netgenerate [19] to work with generic traffic networks (e.g., grid or
spider web shaped). These tools automatically create traffic light systems and traffic
light programs with default settings, which are both represented in XML files. The cycle
length is by default 90 seconds and the green time is equally split between the main
phases. The created XML files can be customized, by modifying, adding or removing
parameters, traffic light programs or whole traffic light systems to the corresponding
XML files. By default, the latest assigned program will be used. Switching between
predefined programs can be performed by TraCI or by WAUT switches [16], which can
switch between different traffic light programs for different timestamps [16]. To simplify
the import of TLS programs from real world TLS, SUMO provides Python scripts such
as tls csv2SUMO.py and tls csvSignalGroup.py [16]. Furthermore, it is possible to
model induction loop detectors to detect time gaps between vehicles, which affects
the phase duration of TLS. Customizing different behaviour for traffic light systems can
be implemented with TraCI, which provides various TLS functions [20] like setPhase,
setPhaseDuration, setProgram or setProgramLogic.

4.1.2 5G Sensor Systems

5G Sensor Systems can be modeled by the offered types of detectors provided by
SUMO. There are different types of detectors to retrieve data from intersections, which
can be used to optimize traffic light programs. They comprise the induction loop detec-
tor (named as E1 [16]), lane-area detectors (named as E2 [16]) as well as the multi-
entry-exit detectors (named as E3 [16]). The induction loop detectors are simple de-
tectors to retrieve the number of passed vehicles, the time gap between vehicles, the
length and the speed of the passed vehicles. Lane-area detectors represent vehi-
cle tracking cameras for certain areas. Compared to simple induction loop detectors,
lane-area detectors track each vehicle that enters the supervised area and measures
queues of jammed vehicles, jam length and halting duration. This information can be

2https://sumo.dlr.de/docs/index.html
3https://www.eclipse.org/sumo/
4https://www.python.org/
5https://sumo.dlr.de/docs/TraCI/Interfacing TraCI from Python.html
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coupled with traffic light systems to optimize their programs. With multi-entry-exit de-
tectors (named as E3 [16]) the entering vehicles and exit positions can be supervised
and the information can be processed via TraCI [21].

4.1.3 Traffic Simulation

SUMO provides various tools like the OSMWebWizard[18] and the netconvert[17] to
create simulation models from real-world map data including road networks that con-
sist of different lane types for cars, trucks, buses, bicycles and pedestrians. The infras-
tructure, the vehicles, the pedestrians, the routes, the traffic light programs and other
relevant information and parameters like simulation time, speed limits and overtake be-
haviour are defined with a set of XML files. The traffic simulation can be performed
in two possible modes: a static mode and a dynamic mode. The static mode uses
static settings based on XML files including, e.g., fixed defined routes or speeds. The
dynamic mode enables interactive behaviour during the runtime based on TraCI. Ad-
ditionally, TraCI provides data for each entity of the simulation and the associated pa-
rameters can be modified. This allows, e.g., changing routes, speed limits and vehicle
parameters during the runtime.

4.1.4 Traffic Flow Optimization

Using TraCI allows the implementation of highly customizable traffic flow optimization
modules, which allows to retrieve different kinds of detector data. Furthermore, that
modules can also switch between traffic light phases and evaluate traffic flow data
(e.g., number of vehicles per lane or number of entering and exiting vehicles per lane).
The core task of the a traffic flow optimization is to find an optimized next phase for
the traffic light system, for example to reduce waiting times. This information about the
next traffic light phase need to be sent as a proposal to the traffic light system by the
rule-based framework. Also further data sources, like weather data or event data can
be taken into account to adjust the simulation parameters according to the real traffic
behaviour.

4.2 Gap Analysis

In the following, a gap analysis is performed and presented in Table 5. It shows the
requirements, described in Section 3.2, and its degree of fulfillment by SUMO to model
the real world scenario described in Section 3.1. The fulfillment differs between com-
pletely fulfilled, partly fulfilled, and not fulfilled. The requirements are structured in Table
5 and in the description by the aforementioned topics, comprising traffic light system,
5G sensor system, traffic simulation and traffic flow optimization.

4.2.1 Traffic Light System

RIDs 1.1 to 1.4: The requirements for modeling traffic light systems are completely
fulfilled. SUMO provides sophisticated functions to define the phase transitions via
different TLS Programs, to retrieve signals from traffic sensors and to change between
predefined TLS programs during runtime.
RID 1.5: The requirement is not fulfilled, because the programmable logic controller to
accept or reject proposals, which are sent to the traffic light systems for changing their
current traffic light program is not part of the SUMO standard functionality and must be
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Table 5. Overview of the gap analysis.

Gap Analysis - Traffic Light System Requirements
RID Fulfilled Description
1.1 Yes SUMO provides customizable TLS-Programs
1.2 Yes The TLS can be actuated by detectors
1.3 Yes TLS phases can be switched with TraCI
1.4 Yes For one TLS several interchangeable Programs can be de-

fined
1.5 No PLCs are not represented in SUMO

Gap Analysis - 5G Sensor Systems Requirements
RID Fulfilled Description
2.1 No There is no TLS request button, but this can be emulated
2.2 Yes E1 Induction Loop Detectors count and measures time

gaps
2.3 Partly Camera interaction can be modeled with TraCI
2.4 No But 5G Sensors can be represented with TraCI

Gap Analysis - Traffic Simulation Requirements
RID Fulfilled Description
3.1 Yes SUMO provides tools to import OpenStreetMap data
3.2 Yes SUMO allows to model different lane types
3.3 Yes The Sensor Types E1, E2 and E3 are customizable
3.4 Yes Each vehicle / person can be accessed individually

Gap Analysis - Traffic Flow Optimization Requirements
RID Fulfilled Description
4.1 Yes TraCI allows sensor value retrieval
4.2 Yes TLS phases can be changed by TraCI
4.3 Partly A feedback mechanism can be implemented

extended by a custom implementation. For the integration into the SUMO environment,
TraCI can be utilized.

4.2.2 5G Sensor Systems

RID 2.1: This requirement is not fulfilled, because SUMO does not provide traffic light
request buttons for pedestrians, but such buttons can be emulated via a custom soft-
ware implementation by interacting with the simulation by TraCI according to an already
existing tutorial[22].
RID 2.2: This requirement is completely fulfilled, because induction loops can be mod-
eled with induction loop detectors (names as E1[16]) and customized with a set of
parameters.
RID 2.3: This requirement is partly fulfilled, because traffic camera behaviour can be
modeled with multi-entry-exit detectors (named as E3 [16]) to detect source sink re-
lations for each lane, but not for tracking individual vehicles over a wider range (e.g.,
several intersections). Therefore the behaviour of the AI assisted cameras, described
in section 3.1 needs to be implemented, by connecting several multi-entry-exit detec-
tors (named as E3 [16]) via TraCI.
RID 2.4: This requirement for 5G Sensor Systems is not fulfilled. The reason for this
can be found in the very specialized use case described in Section 3.1 and in the fact
that 5G sensors are not in the scope of the SUMO environment. But their behaviour
can be emulated and integrated via TraCI.
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4.2.3 Traffic Simulation

RIDs 3.1 to 3.4: The requirements for the traffic simulation are completely fulfilled.
SUMO provides all required functions and tools to set up simulation models and to
perform sophisticated traffic simulations. The OpenStreetMap6 Data is imported, pro-
cessed and a set of XML files are created as output, as shown in Table 6. Additionally
to the predefined definitions from the XML files, TraCI allows clients to interact with
the simulation during runtime, e.g., to adjust parameters (like routes, traffic light states
and speed limits), track entities and retrieve detector values. When the simulation is
finished, SUMO retrieves the overall simulation results and writes result files as config-
ured in the osm.sumocfg file.

Table 6. Overview of basic XML files for SUMO

Overview of basic XML files for SUMO
xml file Description
osm.net.xml street network with edges lanes and traffic lights
osm.[x].trips.xml predefined trips for different vehicles / pedestrians
routes.xml route definition for the vehicles / pedestrians
osm.sumocfg master file which imports all the other files
osm.view.xml GUI view settings
osm.poly polygons (areas and buildings) and points of interest

4.2.4 Traffic Flow Optimization

RID 4.1 and RID 4.2: The requirements on performing traffic flow optimizations are
completely fulfilled. The current state of the sensors can be queried and simulation-
parameters can be modified at each time-step during the run-time of the simulation via
TraCI. RID 4.3: The light signal channel does not have a feedback mechanism, but this
can be modelled via the PLC. Thus, the rule-based framework initially communicates
with the PLC, which serves as the interface to the traffic light system.

5 Concept for SUMO Extension

in the next Section, the technical concept is presented that meets the described re-
quirements of the 5G-trAAffic project. The concept comprises components and inter-
faces that are required to transfer the reality from the real world project to the virtuality
of SUMO. Figure 4 shows the technical concept, which is divided into three perspec-
tives: the reality, the modeling and the virtuality. Finally, for rounding off, the fulfilled or
not fulfilled requirements are mapped to the technical concept.

5.1 Extension Points

There are two possible extension points in SUMO shown in Figure 5. The first exten-
sion point is to use self-provided applications by SUMO and the second extension point
is to connect self-developed components via TraCI. The two applications osmWebWiz-
ard and netconvert are provided by SUMO. Both can be used to import map materials
into SUMO and fulfills RID 1. In the progress of the project it may turn out that other
applications can be useful, this is represented by the three dots in Applications. For
importing the map material osmWebWizard will be used in the technical concept to

6https://www.openstreetmap.org

99

https://www.openstreetmap.org


Trautwein et al. | SUMO Conf Proc 4 (2023)

Figure 4. Technical Concept

import, e.g., streets or intersections. The second extension point TraCI which is pro-
vided by SUMO is to integrate third-party (external) applications. With respect to TraCI,
it allows to interact with a traffic simulation at runtime via programming scripts. Python
scripts, for example, can be used to emulate a PLC or the 5G sensor system. The
PLC from the real intersection environment is not linked so an own implementation is
needed. Furthermore, also states of traffic intersections can be retrieved and sugges-
tions of a rule-based framework can be send back to a traffic light system within the
simulation.

5.2 Technical Concept

The two extension points are used to close the identified gaps from chapter 4.2 and
convert them to a technical concept.

With reference to Figure 4, for understanding an existing real scenario which needs
to be modelled, the reality perspective helps to analyse the real-world with its infras-

Figure 5. Overview of SUMO’s extension points
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tructure such as streets, intersections and sensor systems (e.g, traffic signals or other
detectors). Furthermore, this perspective gives also insights into relevant data that can
be collected from different sources such as vehicles, pedestrians, parking sensors or
weather sensors.

After the analysis of the reality, it is possible to create a model from the reality. For
this, the modeling perspective offers different possibilities to map the reality into the
virtual world using different applications or SUMO build-in detectors. This perspective
shows two different areas for possible modeling approaches that are necessary to meet
our defined requirements of the real-world scenario. The first area refers to the build-
in applications, like sensors and the traffic lights that SUMO offers for modelling. To
meet the defined requirements, we used the following different modeling approaches.
Beside the osmWebWizard to integrate roads or intersections, we modelled different
lanes and induction loops by using the multi-entry-exit detectors and induction loops.
The existing project’s related traffic light programs are, finally, modelled by the SUMO
Traffic Lights tool including the traffic light programs itself, the traffic light phases, and
the state transitions. The second area is related to the Self-development of external
components which are not or partly included within SUMO.

Finally, the virtuality perspective represents the virtual area where different configu-
ration files map the reality and TraCI provides to interact with the the simulation during
runtime via an interface between the Self-Development and the Simulation. The con-
figuration files contain the modeling aspects from the perspecitve modeling that arise
from the individual applications such as osmWebWizard. For instance, they describe
the traffic light programs, phases and state transitions for the Traffic Lights. The con-
figuration files are XML files that are imported when the simulation is generated.

5.3 Mapped Requirements

In the following, it is summarized which and how the defined requirements are mapped
and assigned to the presented technical concept which need to be implemented into
the 5G-trAAffic project.
Traffic Light System Requirements: The requirements RID 1.1 - 1.4 are already ful-
filled by SUMO by default. By configuring the XML file, the traffic light programs and
phase transitions can be modeled. At runtime, phase changes can be modified via
TraCI. For the fulfillment of the requirement RID 1.5 an own development is planned.
For this purpose, a plc controller.py will be developed to interface the rule-based frame-
work and interact with the simulation via TraCI.
5G Sensor Systems Requirements: The Request Button from the RID 2.1 require-
ment must be emulated by a self-development, based on an already existing tuto-
rial[22], which shows in detail, how this emulation is performed with TraCI. The re-
quirement RID 2.2 is fulfilled and all relevant functions for the induction loop are avail-
able. The camera system, which is described in RID 2.3, can on the one hand be
mapped via the multi-entry-exit detectors, but must be extended by the in-house de-
velopment. The emulation of the extension is located in the Self-Development block in
5G sensor system.py. In addition, the RID 2.4 requirement is fulfilled here, the emula-
tion of the road side units as well as the communication between the vehicles.
Traffic Simulation Requirements: The applications provided by SUMO meet the re-
quirements RID 3.1 and 3.2. Via osmWebWizard the map material can be imported
and provided to the simulation as a configuration file to initialize the environment. Re-
quirement RID 3.3 is represented by the multi-entry-exit detector, but the extended
functionality is represented in the file 5G sensor system.py.
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Traffic Flow Optimization Requirements: With TraCI the requirements RID 4.1 to
4.3 can be fulfilled. This allows the current state to be retrieved in each time step and
individual states to be manipulated.
Traffic Flow Optimization - Planned Process: Starting from the rule-based frame-
work, the generated data from the reality is included and additionally the emulated
data from the 5G sensor system.py. Based on this data a proposal for the next traffic
light phase is generated. This proposal is forwarded to the plc controller.py. Here it
is decided whether the proposal is accepted or rejected. If the proposal is accepted,
the new traffic light phase is sent to the Simulation via TraCI. The Simulation sends via
TraCI the state of the simulation, which is passed to the state processor.py. The re-
ceived state is processed and serves as additional input for the rule-based framework.

6 Conclusion

In this work, a technical concept was shown that represents an approach how to trans-
fer a running real-world project comprising different types of complex traffic questions
into SUMO in order to implement a later traffic flow optimization using a rule-based
framework. The described real-world project comprises sensor systems, roads, inter-
sections, lanes and a traffic light system. Based on this, concrete project-based re-
quirements were derived and compared with the current available functions and tools
of SUMO. This requirement analysis was based on the official SUMO documentation.
It revealed some gaps which need to be closed in order to make the project a success
regarding the traffic optimization goals. The result of the gap analysis was then used
as input to define a technical concept showing how SUMO can be extended by self-
developed extension in order to meet the unfulfilled or only partly fulfilled requirements.
The technical concept reveals different perspectives (i.e., reality, modeling and virtu-
ality) with different aspects that are relevant to meet the defined project requirements.
The technical concept combines the usage of SUMO’s built-in applications as well as
the integration of self-developed programs by using TraCI. At the beginning of the work,
we expected a higher demand of self-development. We intensively studied the avail-
able features of the SUMO environment and were positively surprised that most of the
requirements are already fulfilled by SUMO. In our future work we are going to imple-
ment the described concept. A later implementation will show how the integration of the
self-developed components works in combination with the processing of real-time data
from the real-world scenario. A functional and evaluated rule-based framework will be
created in the running project 5G-trAAffic and the results will be presented as follow-
up. To complete the picture, SUMO already offers different tools and applications to
model many aspects with respect to traffic flow optimization. Therefore, many derived
requirements from the real-world scenario were already covered by SUMO. Additional
features that include current and future developments of technologies that include new
protocols (e.g., a MQTT), more complex traffic logic, or more complex communication
functions or associated logic (e.g., Vehicle-to-X) should be considered. However, this
work has shown that SUMO enables and makes it possible to model and simulate com-
plex traffic aspects and offers TraCI to apply and integrate self-developed traffic logic,
functions and tools.
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Abstract. Cyclists pose an interesting challenge in the microscopic modeling and simulation 
of urban traffic. Like motorists, cyclists can move on roadways, tend to have one main axis of 
movement (longitudinal), and cannot change their velocity instantaneously. However, like pe-
destrians, cyclists are less bound by lane discipline and are often less rule-oriented than mo-
torists. They flexibly adjust their lateral position within a lane, fluidly move between different 
types of infrastructure (bicycle lane, sidewalk, roadway), and tactically select their pathways 
across intersections. Their interactions with other road users are more intuitive and less de-
fined by the lane markings. How should the behavior of such adaptable road users be mod-
eled? In SUMO, modifications to the simulation environment enable the application of car-
based models to cyclists. A driving lane is divided into multiple sub-lanes along the longitudinal 
axis. Lane change and car-following models can be calibrated and applied to simulate realistic 
bicycle and mixed traffic using this approach. However, the flexible nature of cyclists, particu-
larly at intersections or when switching between different types of infrastructure, is difficult to 
simulate. A modeling framework for linking the paradigms used to simulate motor vehicle traffic 
(one-dimensional lane-based models) and pedestrian traffic (two-dimensional social force type 
models) is presented. Guidelines are used to lead each cyclist through the network while they 
move freely on a two-dimensional plane, their movement and interactions governed by an 
adapted social force model. The conceptual framework and an openly available Python pack-
age CyclistModel are introduced, and advantages and possible use cases are discussed.  

Keywords: Bicycle Traffic, Mixed Traffic, Non-Lane-Based Traffic, Social Force 

1. Introduction

The earliest microscopic simulation tools, which emerged in the 1960’s, were comprised of 
cars that progressed through road networks by traveling single-file along lanes, initially by hop-
ping from one cell to the next [1]. Despite the tremendous advances in the field of traffic simu-
lation since then, most simulation software still operate around the concept of the driving lane 
[2], [3]. In lane-based tools, motion is simulated using vehicle dynamics models, preference 
models (e.g. desired speed and acceleration), models of traffic rules and regulations and traffic 
signal control models. Interactions with other road users are reduced to one-dimensional, sin-
gle-file following behavior, lane selection, (cooperative) lane changing, and yielding at points 
of conflict.  

This relatively simple paradigm is very powerful for designing and evaluating road infra-
structure, planning traffic signal control, developing Cooperative Intelligent Transport Systems 
(C-ITS), and investigating automated vehicle traffic, to name a few fields of application. Unfor-
tunately, lane-based simulation tools are inherently bad at simulating other types of road users 
with different, more fluid ways of moving and interacting, such as pedestrians and cyclists.  

As simulation became a more accepted tool for traffic analysis in the 1990s, approaches 
for simulating pedestrians emerged [1]. In contrast to motorists, pedestrian traffic is not always 
characterized by a common direction of travel. Pedestrians (typically) do not move single-file 
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but rather exhibit free motion on a two-dimensional plane, changing their velocity almost in-
stantaneously. In consideration of these major differences, a new type of model based on in-
ternal or social forces was proposed. The original social force model for pedestrian dynamics 
was introduced by Helbing and Molnar [4] and conceptualized the motion of a pedestrian as 
the result of multiple internal motivations. These internal motivations or forces include a driving 
force towards the (interim) destination, repulsive forces from other pedestrians, obstacles, and 
boundaries, as well as attractive forces to friends and points of interest. In each simulation 
step, an acceleration vector is calculated based on these attractive and repulsive forces that 
move the pedestrian through a continuous two-dimensional space. Over the 30 years since 
the original formulation of this model, there have been many further developments, extensions, 
and divergent models [5], [6]. Researchers have formulated social force models specifically for 
bicycle traffic [7], [8], the most notable of which is the model developed by Schönauer et al. 
[9]. In the Schönauer et al. model, operational behavior is modeled using an adapted social 
force model in which the degrees of freedom are limited based on the single-track model for 
car dynamics. Road users’ pathways are determined using an infrastructure force field model.  

Cyclists’ behavior falls on a spectrum between the movement and interaction patterns of 
motor vehicle traffic and those of pedestrians. They can adjust their behavior along this spec-
trum to adapt to the current situation. At one end, cyclists ride quickly in one direction with little 
lateral movement while sharing a roadway with motor vehicle traffic. On the other end, cyclists 
move slowly and are ready to deviate from their pathways in spaces shared with many pedes-
trians. The SUMO user documentation indicates that there are no bicycle-specific models 
available and cyclists are to be simulated as ‘fast pedestrians’ or ‘slow vehicles’ [10].  

Most of the extensions and further developments to microscopic traffic simulation software 
since the 2010s, including SUMO, have focused on the bicycle as a ‘slow vehicle’ option to 
enable the more realistic inclusion of cyclists. These extensions are also relevant for other 
types of road users, such as users of micromobility modes (e.g. e-kick-scooters), who are less 
bound by lane discipline. In SUMO, the main extension is the sub-lane model, which allows for 
the longitudinal division of driving lanes into multiple sub-lanes, the width of which can be 
defined by the user. The width of each road user relative to the width of the sub-lanes deter-
mines the number of sub-lanes occupied. In Figure 1, the original lane-based (left) and sub-
lane approaches for simulating mixed-traffic streams are depicted.  

 

Figure 1. Original lane-based (left) and sub-lane (right) approach for simulating mixed traffic 
in SUMO. 

Essentially, in the sub-lane approach, car-following models are used to simulate the reactions 
of a following road user to the speed and position of a leading road user in the same sub-lane 
(or one of the same sub-lanes if the width of the road user covers more than one sub-lane). 
Interactions between road users in adjacent sub-lanes are modeled using lane selection and 
lane change models. This approach enables narrower road users to pass and be passed in a 
single driving lane and makes it possible to simulate traffic in situations with little lane discipline, 
even amongst motorists.  

Although the sub-lane approach permits modeling bicycle and mixed traffic flows with 
much more realism than the conventional single lane approach (see example in Figure 1, left), 
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it is still difficult to capture the inherent flexibility of cyclists and users of micromobility modes 
in simulations.  

Why is it important to simulate the movement and interactions of cyclists realistically? First, 
in reaction to the persisting and worsening effects of overdependence on private motor vehi-
cles, cities and regions are strongly promoting and building for more sustainable modes of 
transport, including cycling and micromobility. The number of cyclists, e-kick-scooter users, 
and e-moped users is increasing as a result. For example, in German metropolitan regions, 
the modal share of cycling increased from 9 % in 2002 to 17 % in 2017 [11]. Considering this 
trend and the goal of the German government to double the number of kilometers traveled by 
bicycle by 2030 compared to 2017 [12], the volume of bicycle traffic is expected to rise drasti-
cally in urban areas. In this future, it will no longer be defendable to develop any C-ITS, auto-
mated driving, or future technological system for urban (motor vehicle) traffic without including 
bicycles in the research and development process. Not only will it be (more) necessary to 
consider bicycles in the development of future technologies for motor vehicle traffic, but it is 
likely (and hoped for) that the focus of technological development will shift largely to active and 
micromobility. In this future scenario, research questions concerning the dimensioning and 
design of road infrastructure for enormously high volumes of mixed bicycle traffic, the necessity 
and programming of traffic signal control as well as road user safety could be investigated 
using microscopic traffic simulation. This will only be possible if microscopic traffic simulation 
tools and the underlying behavior models accurately simulate bicycle and mixed traffic flows.  

2. Conceptual framework 

A straightforward approach for establishing compatibility between the one-dimensional lane-
based and the two-dimensional force-based simulation paradigms and thus enabling the more 
realistic simulation of non-lane-based traffic is presented in this paper. The term guideline is 
used to describe the intended pathways of a cyclist or other non-lane-based road user and 
was coined with this specific meaning in the doctoral thesis Development of tactical and oper-
ational behaviour models for bicyclists based on automated video data analysis by Heather 
Twaddle (now Heather Kaths). A guideline is a polyline that a road user intends to follow to 
reach their interim destination, congruent in form to the center of a driving (sub-)lane.  

Conceptually, guidelines are the result of conscious decisions made by a cyclist or other 
non-lane-based road user at the tactical behavior level. At this level, road users decide how to 
act in order to best cope with the current situation [13]. This includes making movement and 
interaction plans on a time horizon of seconds to minutes under the consideration of the speed 
and position of nearby road users, the form and state of the road infrastructure, and the phase 
of traffic signals, as well as many other factors. Based on this conceptual definition, an entire 
route through a network is comprised of numerous successive guidelines, again congruent to 
the centerlines of lanes in lane-based simulation tools. Indeed, if the non-lane-based road user 
simulated using the proposed approach does not encounter any impedance from other road 
users or obstacles, they will proceed along the guideline as they would the centerline of a (sub-
)lane.  

So far, the congruity with the (sub-)lane-based simulation paradigm is clear. The pre-
sented model diverges from the lane-based approach in that the road user is not bound to the 
guideline and does not travel along the line in one-dimension. Rather the guideline is used to 
determine the interim destination in the next simulation step to use as input for a social force-
like behavior model. The point on the guideline closest to the front of the road user 𝑙(𝑡) is 
located. Then, a point along the guideline in the direction of travel 𝑙(𝑡 + 1) = 𝑙(𝑡) + 𝑉0 is se-
lected, where 𝑉0 is a scalar value that is at least as large as the distance that will be travelled 
in the next simulation step. The magnitude of 𝑉0 determines how closely the road user follows 
the guideline. An example of using the guideline to determine the interim destination in the 
next simulation step is shown in Figure 2. 
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Figure 2. Locating the next interim destination using a guideline. 

The model used to generate the movement and interactions of cyclists and other non-lane-
based road users belongs to the family of social force models. Twaddle [14] formulated a model 
for cyclists’ movement and interactions based on the NOMAD model for pedestrian dynamics 
[15], [16]. The basic formulation of the NOMAD model is: 

𝑎𝑝(𝑡) =
𝑣𝑝

0 − 𝑣𝑝(𝑡)

𝑇𝑝
− 𝐴𝑝 ∑ 𝑢𝑝𝑞(𝑡) 𝑒

−𝑑𝑝𝑞(𝑡)

𝑅𝑝

𝑞∈𝑄𝑝

 (1) 

where:  

𝑑𝑝𝑞(𝑡) =  ‖𝑟𝑞(𝑡) − 𝑟𝑝(𝑡)‖ (2) 

𝑢𝑝𝑞(𝑡) =
𝑟𝑞(𝑡) − 𝑟𝑝(𝑡)

𝑑𝑝𝑞(𝑡)
 (3) 

The desired velocity 𝑣𝑝
0 is towards the desired destination of pedestrian 𝑝. The velocity 𝑣𝑝(𝑡) 

and the position 𝑟𝑝(𝑡) are two-dimensional vectors at instant 𝑡. The set of pedestrians in a 
defined vicinity of pedestrian 𝑝 is given by 𝑄𝑝. Four pedestrian-specific parameters, the desired 
speed 𝑉𝑝

0, the necessary time for acceleration 𝑇𝑝, the interaction factor 𝐴𝑝 and radius of inter-
action 𝑅𝑝, are defined. The model was calibrated using trajectory data extracted from video 
data at four intersections in Munich. Guidelines were generated by clustering the observed 
trajectories and using the centroid trajectory of each cluster as the guideline for all the cyclists 
in the cluster. This is a shaky presumption, but it made it possible to calibrate the model pa-
rameters using Maximum Likelihood Estimation (MLE). More detailed information about the 
model specification, calibration and validation can be found in Twaddle [14]. 

Because the simulated cyclists and other non-lane-based road users are no longer con-
strained to a lane in the simulation, it is necessary to define boundaries that cannot be crossed 
as well as other obstacles that must be avoided. For example, if an on-road bicycle lane is 
shouldered by a steep curb, green strip, or roadside parking, the right side boundary of the 
bicycle lane must be simulated as an obstacle to prevent crossing.  

Practically, the centerlines of (sub-)lanes can be extracted from a SUMO simulation using 
TraCI and used to act as guidelines in this approach. Alternatively, guidelines can be defined 
by the user based on observed motion patterns. The definition of unique guidelines is likely 
particularly relevant at intersections where the behavior of cyclists tends to stray most from the 
planned infrastructure use. A desire line analysis [17]–[19], which examines the forms of 
unique pathways used by cyclists to cross an intersection (or carry out any other type of ma-
neuver) can be useful for creating guidelines.  
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3. Implementation and first results 

The original model formulated based on the concept of guidelines and social force was demon-
strated in SUMO using the TraCI Python interface by Twaddle [14]. Simulations of the research 
intersections were built in SUMO and the centroids of the trajectory clusters were extracted, 
smoothed, and used as guidelines as described above.  

CyclistModel is an open-source Python package that uses TraCI to integrate the guide-
line/social force model approach in SUMO. CyclistModel is based on the original Python code 
developed by Twaddle [14] and can be accessed here https://github.com/HeatherAnne85/Cy-
clistModel. A flowchart of the basic functionality of CyclistModel is shown in Figure 3. 

 

Figure 3. Computational steps in CyclistModel. 

Currently, CyclistModel extracts the centerline of each lane along the route of a cyclist to use 
as the guideline for the adapted NOMAD model. Polylines and polygons created in SUMO are 
imported through TraCI and are integrated as obstacles in the simulation. Figure 4 shows an 
example of the same simulation of a 1.5 m wide bicycle facility with two variations in the place-
ment of the non-crossable boundary (red line). In the simulation on the left, the bicycle facility 
is on the roadway and a curb prevents cyclists from deviating onto the sidewalk. As a result, 
cyclists move onto the roadway to carry out passing maneuvers (if traffic permits). The image 
on the right shows the non-crossable boundary on the left shoulder of the bicycle lane and a 
resulting passing maneuver using the sidewalk.   
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Figure 4. Example with a non-crossable boundary between the bicycle lane and sidewalk 
(left) and bicycle lane and roadway (left) and resulting passing behavior. 

Qualitatively, the presented approach enables the simulation of the higher flexibility and more 
fluid interactions characteristic of bicycle traffic. However, it is difficult to use standard methods 
for assessing validity to determine if this method is more capable of realistically simulating 
bicycle traffic than the sub-lane approach. Macroscopic parameters that are typically used to 
evaluate microscopic traffic simulations, such as average delay time, total travel time, and 
speed distribution, do not allow for the assessment of flexible infrastructure use (such as mov-
ing against the given direction of travel, using unintended infrastructure (such as the sidewalk) 
and crossing using unexpected maneuvers. Depending on the level of realism necessitated by 
the simulation study research question, model calibration and validation using parameters that 
capture behaviors characteristic of cyclists and other non-lane-based road users is necessary.  

Some work has been done in this area for mixed traffic in countries where lane disci-
pline is less strong and traffic is more heterogeneous (e.g. India, see for example [3]) that is 
useful for defining parameters for the calibration of mixed traffic simulations. These tend to 
build on car traffic-based approaches and do not account for the spatial distribution of the 
parameters. Twaddle [14] proposed evaluating the simulation by dividing the intersection into 
a grid of small cells (1.5m by 1.5m was used in the original publication, Figure 5).  

 

Figure 5. Examples of cell grids for the evaluation of microscopic traffic simulations (Twaddle 
[14]). 

Parameters such as average, minimum and maximum speed, occupancy and density in each 
cell can be calculated from simulated and observed trajectories and compared. Examples of 
heat maps produced from trajectory data from an intersection in Munich, Germany are shown 
in Figure 5. The validity of the simulation model can be assessed based on the summed or 
averaged measure of error (e.g. RMSE) across the cells. As the aim of this paper is to introduce 
the concept of the guideline/social force approach, no validation is presented here.   

Although CyclistModel functions as intended, it is still a very rudimentary prototype that 
requires a great deal of development work to become a functional tool for simulation studies. 

110



The Python package is computationally expensive and very slow, partially because all road 
users in the simulation are loaded to extract interaction parameters (although interaction pa-
rameters are only calculated for road user pairs in close proximity to one another). Extensive 
further model developments are necessary to capture the dynamics, movements and interac-
tions of cyclists and other non-lane-based road users in a realistic way.  

4. Discussion and conclusion 

The modeling approach presented in this paper creates a link between lane-based and social 
force-type models that could allow for the more realistic modeling of flexible road users in lane-
based microscopic traffic simulation tools such as SUMO without altering the fundamental set-
up of the simulation environment. The behavior of cyclists lies on a spectrum spanning be-
tween the rule-based, longitudinally-guided motion patterns of motorists and the continuous, 
two-dimensional behavior of pedestrians. In reflection of this transitionary nature, the Cyclist-
Model approach combines attributes of both modeling paradigms. The major advantages of 
this approach over the lane-based are: 

1. The flexible behavior characteristic of cyclists and other non-lane-based road users is 
easily simulated. For example, the tactical or operational maneuvering between bicycle 
lanes and adjacent sidewalks or roadways can occur where the infrastructure allows. 
The choice to change infrastructures does not have to be explicitly modeled. Similarly, 
at intersections, the variability in pathways used to cross the intersection is greatly in-
creased compared to one-dimensional lane-based models.  

2. Cyclists and other non-lane-based road users interact with other road users that are not 
in their given (sub-)lane of travel. This makes it more possible to capture the more fluid 
and less rule-stipulated interactions of cyclists and makes difficulties concerning the 
modeling of conflict areas at intersections obsolete.    

Theoretically, this approach makes it possible to capture flexible behaviors. However, is the 
presented approach superior to the simpler and less computationally expensive sub-lane ap-
proach in terms of replicated observed traffic flow? Under what conditions is it beneficial or 
necessary to accurately and realistically simulate cyclists and other flexible road users? These 
questions can only be answered by expanding the fundamental knowledge of cyclists’ move-
ment patterns and interactions with all kinds of road users under various conditions. Currently, 
the overall lack of empirical data and fundamental research in this area hinders efforts to cali-
brate, validate and compare behavioral models for bicycle traffic.  

Here, the NOMAD social force model was applied because of the straightforward formu-
lation and the inclusion of anisotropic and velocity anisotropic behavior. However, if social 
force-type models are to be applied to bicycle traffic, a great deal of observational and experi-
mental work is needed to advance specification, calibration and validation. It could also very 
well be that other types of models are better able to replicate the behavior of non-lane-based 
road users.  

Further developments and improvements to the Python package CyclistModel are 
needed. So far, the simulated cyclists interact with one another based on internal social forces 
and do not take into account traffic rules or regulations or signal control. Fundamental 
knowledge concerning how cyclists take these factors into account in moving through the en-
vironment, behavior models based on these findings and additional code in CyclistModel are 
all necessary to make the simulated cyclists behave realistically at intersections.  

It could be beneficial to use both the sub-lane approach and the guideline/social force 
approach for modeling bicycle traffic at different locations in the same simulation. For example, 
cyclists traveling on a separated bicycle lane that has some degree of physical separation from 
both pedestrian and motor vehicle traffic could be simulated realistically using the sub-lane 
approach. At intersections, however, it may be necessary to switch to the guideline/social force 
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approach to reach an acceptable level of realism. This is easily doable with CyclistModel with 
some small changes in the code.  
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Abstract: In transportation, a vehicle’s route is one of the most private information.
However, to mutually learn some phenomena in a city, for example, parking lot oc-
cupancies, we might have to reveal information about it. In this paper, we focus on
assessing the privacy loss in a vehicular federated machine learning system. For the
analysis, we used the Monaco SUMO Traffic Scenario (MoST). We also used the sim-
ulation inputs as statistical data to calculate privacy loss metrics. Results show that a
vehicular federated machine learning system may pose a smaller privacy threat than
individual learning, but its performance is lower compared to a centralized learning
approach.

Due to the vast amount of data and processing time, we also describe a method to
build a Docker image of SUMO together with a software client-server architecture for
SUMO-based learning systems on multiple computers.

Keywords: federated learning, communicating vehicles, efficiency, security

1. Introduction

Modern vehicles carry an abundance of sensors. Additionally, recent developments in
machine learning made it possible to process even more data about the transportation
infrastructure than at any time in the past.

As it would be impossible to store all this information, we shall build compact, predic-
tive models to utilize all the knowledge. These models are valuable inputs to optimize
the traffic in a city. In the future, these models can also be parts of autonomous driving
algorithms.

There are several ways to build machine learning models. In this paper, we consider
that vehicles try to learn such phenomena individually and as participants of a feder-
ated learning system. Like in mobile edge networks, federated learning might have
many advantages also in vehicular learning, including low latency, privacy, and efficient
use of network bandwith [1]. Therefore, with the help of the Monaco SUMO Traffic
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Scenario [2] (MoST) simulations in Eclipse SUMO [3], we analyze the performance of
these learning approaches and compare them to a centralized method in which the
infrastructure itself collects the data and trains the model.

Additionally, while sharing data, even in federated learning, we shall be cautious not
to share too much personal information, especially route origins, and destinations. As
the route is private information, keeping it hidden from unauthorized access is both
a data security problem and a legal obligation. In this paper, we also evaluate the
mentioned learning schemes from a data privacy point of view.

In the following, in Section 2, we review the relevant literature. Section 3 describes
the parametrization and properties of the used simulation. The mentioned learning
schemes are described in Section 4–6. Finally, Section 7 concludes the paper. More-
over, long-running computations required the dockerization of SUMO and a TraCI script,
which we describe in Appendix A. Appendix B, in addition, proposes a method to dis-
tribute SUMO and machine learning workers between multiple computers.

For further development, we published our source codes at https://github.com/
alelevente/sumo_sec.

2. Related works

Crowdsensing complex traffic phenomena, such as parking place availability [4], seems
to be a promising new way of optimizing the traffic flow in cities. However, sharing data
on Vehicular Ad-hoc Networks (VANETs) also poses some technical challenges. We
have to solve the problem of secure data exchange while respecting the limits of the
available network bandwidth [5].

Several papers focus on simulating cyberattacks on Connected Autonomous Vehicles
(CAVs) and VANETs, including active [6], [7] or Distributed Denial of Service attacks
[8]. These simulations usually use SUMO to evaluate vehicle movements.

Moreover, federated learning [9] also gained importance in machine learning on mo-
bile devices in recent years. Federated learning ensures that its participants shall not
exchange their training data. It guarantees a certain level of security and also reduces
communication costs. Therefore, a vehicular network can take advantage of the fed-
erated scheme as well [10]. Unfortunately, the security level in a federated learning
scenario highly depends on identically distributed datasets: with non-IID (not Identi-
cally and Independently Distributed) data, it is possible to carry out various attacks
against the participants [11]. However, there are numerous countermeasures to such
attacks; they might not be applied onboard a vehicle due to the limited amount of power
and computational resources.

In this paper, we measure the parking lot occupancy by multiple measurement se-
tups. We evaluate the idea that vehicular crowdsensing schemes can function as
cooperation-based location privacy-ensuring methods to hide routes, which is a crit-
ically privacy-sensitive property [12], of the vehicles. To infer this information, it is
enough to suppose a passive attack carried out by an honest-but-curious party.

3. Simulation

To obtain measurement results, we used the Eclipse SUMO traffic simulation tool with
the MoST scenario. We have changed the simulation timestep from 0.25 s to 1.0 s
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to reduce the computation time.1 We parametrized the simulation to have a maximum
of 15 minutes of departure offset stochastically for each vehicle. It models that the
population follows some daily routine; however, individuals might not depart at the
same time each day. That yields an average traffic demand similar to what the MoST
defines with a certain perturbance around it.

SUMO is supposed to provide training data on parking lot occupancies measured by
moving cars. Hence, during the simulation, we recorded the position of each vehicle
with 0.1 Hz frequency through the Traffic Control Interface (TraCI). We also recorded
the occupancy of parking lots once each minute. As the MoST originally defined the
scenario, the measurement times ranged from 4:00 a.m. to 2:00 p.m.

These measurements were repeated 60 times, corresponding to a measurement
series of 3 months of working day data. As running a single simulation takes approxi-
mately 1 hour on a PC, we sped it up by running multiple simulations in parallel. To this
end, as described in Appendix A, we created a Docker image that runs a TraCI client
and a SUMO instance.

We assume that a vehicle knows a parking lot’s occupancy if it passes through an
edge with a center that is not more than 50 m away from the edge of the parking lot.
This distance can be understood as the communication or visual range of the cars.
After the simulations had terminated, we determined for each vehicle its measured
parking lots and the actual occupancy values when the cars were nearby.

4. Centralized learning

We trained a neural network only with the simulated parking lot occupancy data to
obtain a baseline model. Figure 1 illustrates the scheme of this learning setup. For
large parking garages, it is possible to implement such an approach by collecting each
garage’s occupation data to train a neural network on a remote server. However, this
centralized setup requires an infrastructure that detects whether a parking lot is free or
occupied. Hence, real-world implementation would be impractical due to its installation
and operational costs.

Figure 1. Scheme of the centralized learning approach. The server has connection to each
parking lot; hence, it can collect data from them, and use this data for learning a
predictive model.

1Because of this, accidents might occur in SUMO due to the small τ values. In our case, this is only considered to
be a random event without any further investigation.
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4.1. Neural network architecture and parameters

The training data consisted of {ID of parking lot, timestamp, occupancy} records,
from which the first two properties were the training features and the occupancy column
was the label to predict. We normalized the timestamps (ranging from 4:00 to 14:00)
to the [0.0, 1.0] interval, and we standardized the occupancy data (ranging from 0.0
(empty) to 1.0 (full)) by the mean and standard deviation values measured on the first
simulated day. As there are relatively few parking lots in the MoST, we were able to
represent them by a one-hot-encoding.

The used neural network is quite simple: it consists of 3 hidden, fully connected lay-
ers (with [200, 100, 20] neurons respectively) with rectified linear unit activation (ReLU)
introduced as eq. (2) in [13]. As the parking lot occupancy prediction is a regression
problem, a mean squared error (MSE) loss function suffices. Finally, we chose the
RMSprop optimizer [14] because we empirically found that it results in a slightly faster
convergence.

Out of the 60 days of measurement, the first 55 days served as training data, and
the rest was the test data. During the training process, 30% of the samples were the
validation set. To achieve maximum performance as well as to avoid overfitting, we
applied an early stopping mechanism that terminated the training process if there was
no significant improvement (0.0001 improvements in MSE loss on the training set within
3 consecutive epochs).

4.2. Performance of the centralized model

In this centralized setup, we can utilize the whole dataset provided by SUMO. There-
fore, the expectation might be that this approach performs outstandingly well in the
parking lot occupancy prediction.

The results confirm this anticipation: on the last 5 test days, the model produces an
MSE loss value smaller than 0.002. As, e.g., Figure 2 shows, the estimation fits the
measured value of the parking lot occupancy with minimal error.

Figure 2. Parking lot occupancy estimation of the centralized approach
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5. Individual learning

As we have noted at the beginning of Section 4, a centralized free parking lot predic-
tion system would require many sensors and communication to track the occupancies.
Consequently, this results in a high installation and operational cost, especially in curb-
side parkings.

Fortunately, as modern vehicles will carry more and more sensors, they might be able
to measure the occupancy rate of the parking lots on the fly. However, such records
can require a vast amount of storage space or have a high communication cost when
sending them to a remote server. Therefore, we have to represent this information more
compactly. For example, a trained machine-learning model can efficiently encode such
data in a predetermined storage space (engineers can determine the number of model
parameters at design time). Based on this idea, we tested how an individual vehicle,
see Figure 3, can measure and learn the occupancy of the parking lots.

Figure 3. Scheme of the individual learning approach. Individual vehicles try to learn the occu-
pancy of the parking lots.

In the following, for illustration, we will see how vehicle commercial 3-1 98 from the
MoST learns and what performance it achieves.

5.1. Performance of the individual training process

To ensure that only the access to the data influences the training process, we trained
an identical neural network to the one proposed in Section 4.1. Hence, the only dif-
ference is, in this case, that the neural network utilized only the measurement data
of the parking lots which lay along the route of the commercial 3-1 98 vehicle. The
edges from which these parking lots are observable according to Section 3 are shown
in Figure 4.

Naturally, we shall not expect that the parking lot occupancies for the whole time
range can be accurately estimated. We can only assume that for the measured parking
lots at the observation time, the vehicle will be able to approximate the occupancy val-
ues. Figure 5 confirms this hypothesis: Figure 5a illustrates how the commercial 3-1 98

vehicle can predict the occupancy of parking lot no. 1140, which lays along its path.
Around the observation time (depicted as a red line), the vehicle can more or less
accurately estimate that this specific parking is full. On the other hand, parking lot
no. 1101 is not in the knowledge base of the commercial 3-1 98 vehicle; therefore, it
cannot accurately estimate its occupancy, see Figure 5b.

As a vehicle often follows identical routes at the same time of the day, corresponding
to the daily routine of its owner, even this model might be helpful to recommend parking
lots that are free with high probability at a given time.
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Figure 4. A section of the map being simulated by the MoST. Edges on which vehicle
commercial 3-1 98 measured the occupancy of the parking lots are depicted in red.
By connecting these points, we might obtain information about the vehicle’s route.

5.2. Vulnerabilities of the individual learning scheme

The trained neural network efficiently encodes the measured occupancy data; there-
fore, it can also be helpful to another vehicle unfamiliar with the environment (at a given
time in a district). Therefore, cars might share their trained models.

Supposing that the receiver might be malicious, we shall evaluate the possible vul-
nerabilities of such a data-sharing technique. To this end, we assume that the receiver
is honest-but-curious, trying to infer the route, i.e., the measured parking lots and the
observation time of the sender vehicle. The receiver is also an oracle possessing all
the occupancy data of the parking lots.

By calculating the prediction accuracy values per parking lot, the attacker can suc-
cessfully identify some measured parking lots, see Figure 6. We estimated that a
vehicle while following its route measures 5.22 parking lots on average in the MoST.
Therefore, an attacker can select 5 parking lots having the lowest prediction loss values
as the inferred route of the sender. That gives the malicious receiver a map similar to
Figure 4, on which it might be able to approximate the path of the sender by connecting
the edges with rational and legal routes.

To approximate the observation time, the attacker can apply the following heuristic:
first, it selects 5 parking lots, of which predicted occupations are the most accurate.
After that, it computes the prediction accuracy lp(t) of these parking lots per timestep.
To smoothen the achieved curve, it can apply a moving average with a window size
of e.g. 60 minutes. Let the smoothened curve be l̂p(t). Then the t̂m observation time
estimate can be defined as:

t̂m = argmin
t

l̂p(t). (1)
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(a) Estimation of the occupancy of a known parking lot

(b) Estimation of the occupancy of an unknown parking lot

Figure 5. Parking lot occupancy estimation of an individual vehicle

Figure 6. Average prediction accuracies for known and unknown parking lots.

121
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As Figure 7 illustrates, the heuristic of (1) can approximate the observation time of
commercial 3-1 98 with 8 minutes difference. Considering that the observation time
offset follows a uniform distribution in the [0, 15] minutes range, this difference is smaller
than the offset range.

Figure 7. Average prediction accuracies for known parking lots during the simulation time. The
minimum of the blue curve is at 10:25 which is the estimate of the observation time
according to (1).

6. Federated learning

As both the centralized and individual learning schemes have their drawbacks, it might
be fruitful to combine them. It would result in cheap measurements done by the vehi-
cles and an accurate model on the server side. It is the idea of the federated learning
scheme, see Figure 8.

Figure 8. Scheme of the federated learning approach. Individual vehicles train their own mod-
els which they send to the server. The server aggregates the models and shares this
federated model with the participating vehicles.
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Considering that the data provided by the SUMO simulations require approximately
240 GiB of storage space, its processing even on a high-end PC is not feasible. There-
fore, we sampled 10% of the vehicles. In this way, we had measurements of approx-
imately 4000 vehicles. This sampling can also represent the situation when only a
portion of the cars can measure complex phenomena such as the parking lot occu-
pancy.

After each simulated day, the server randomly chose 50 participant vehicles. These
participants received the actual federated model (in the beginning, it was initialized
randomly) and trained their local update models, identical to the one described in Sec-
tion 4.1, with all their data from previous measurements until the time of the training.
The participants send the update to the remote server which aggregates them by the
FedAvg algorithm [9] to obtain the next iteration of the federated model.

Unfortunately, operating this learning scheme requires either plenty of time or the
parallelization of the learning tasks. To this end, we developed a software architecture
that distributes the computation among multiple PCs. Appendix B highlights the main
components and design concepts of the architecture.

6.1. Performance of the federated learning scheme

We expect that the accuracy of the federated learning scheme shall converge to the
performance of the baseline, centralized approach. However, there might be some
rarely visited parking lots. Therefore, the training data of the federated learning scheme
might be sparser than in the centralized approach. That can reduce the numeric per-
formance of the federated system, which achieves an average MSE loss of a little bit
above of 1.0 on the test data.

Although this loss value is 3 magnitudes higher than the baseline, a significant part
of the imprecision comes from the prediction error of such remote parking places. In
real life, we may tolerate this kind of mistake because rarely visited parking lots are
usually empty. Hence, it seems more important to predict accurately the occupancy of
frequently used parking facilities. Figure 9 illustrates the performance of the federated
system on an often-used parking lot. As we can see, the shape of the prediction curve
is similar to the real one, but it does not fit as well as that in Figure 2. Due to the limited
datasets of the participating vehicles, this process requires either more communication
rounds or more participants to achieve the convergent state.

Figure 9. Parking lot occupancy estimation of the federated learning approach
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6.2. Vulnerabilities of the federated learning scheme

Considering that the federated learning scheme also incorporates data sharing, we
shall investigate the possible security vulnerabilities. Again, we are interested in the
routes of the vehicles, i.e., the measured parking lots and the observation times.

The whole federated system slowly converges; therefore, we shall concentrate on
the participants’ updates. The updates reflect the gradients of the loss function at
the participants; consequently, they contain implicit information from the participants’
training datasets [9]. Hence, if we compare the performance of the received updates
with the sent federated model, we might extract the route of the participant.

To evaluate the success rate of such a comparison-based honest-but-curious at-
tacker, we defined its accuracy as follows. For each participant, the attacker carries
out an inference fundamentally similar to the methods described in Section 5.2. The
difference is that, in this case, the attacker evaluates the performance of both the fed-
erated and the participant models per parking lot. Let us denote the MSE prediction
loss of the federated model on the ith parking lot as l

(f)
t (i), and the MSE prediction

loss of a participant’s model on this parking lot as l
(p)
t (i). We suppose that the models

perform better on the range of the training data (l(p)t (i) < l
(f)
t (i) if the participant vehicle

measured parking lot no. i). Therefore, (2) gives a heuristic that the participant is likely
measured parking lot no. j:

j = argmin
i

(
l
(p)
t (i)− l

(f)
t (i)

)
. (2)

Let us collect the 5 best parking lots by the above heuristic. Then, we can check
how many of these collected parking lots are in the measured parking lot list of the
given participants. This ratio will be the accuracy of the attacker: e.g., the accuracy
will be 1.0 if all 5 selected parking lots are in the list, up to 0.0 in case these two
sets are disjunct. Figure 10 illustrates the curve of this accuracy value. The heuristic
performs surprisingly well which proves that in the beginning of the training process, an
honest-but-curious attacker can succesfully infer which parking lots were measured by
a participating vehicle. Moreover, as the linear trend estimate indicates, the success

Figure 10. Position inference success rates
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rate of the attacker decreases as more and more training rounds are performed. This is
due to the convergence of the federated system: a participant in a well-trained scheme
would not be distinguished from the other participants. However, we shall note that as
a real-world traffic infrastructure constantly changes, we shall not assume that such a
convergent state exists.

Moreover, we also tried to estimate the observation times of the participating vehi-
cles. For this approximation, we calculated the l̂

(f)
p (t) and l̂

(p)
p (t) smoothened MSE loss

values on the identified 5 best parking lots per timestep of the federated and the par-
ticipant models respectively, similarly as in Section 5.2. Then, the observation time
estimation t̂

(p)
m can be defined as:

t̂(p)m = argmin
t

(
l̂(p)p (t)− l̂(f)p (t)

)
. (3)

Figure 11 illustrates the prediction power of the heuristic based on (3). As depicted,
the average prediction accuracy oscillates around 2 hours. Consequently, in half of
the measurement cases, the approximation error is even smaller than that. As the 1σ
standard deviation range shows, the estimate often might be accurate, leaving only a
marginal error. It concludes that an honest-but-curious attacker in a federated system
may successfully infer both observation time and position.

Figure 11. Observation time inference accuracies

As the linear trend indicates it in Figure 11, the observation time estimate gets more
accurate as the system trains. That can have various explanations. The first one is
that the federated system is yet to converge; therefore, if we perform more training
rounds, the probability of a successful observation time inference will decrease. The
second possible explanation relies on the execution order: first, a participant trains its
local model, then sends back its updates. The malicious server evaluates this update
and finally aggregates the received models into the federated one. In this order, a
participant can more accurately predict a specific parking lot at a given time than the
federated system, explaining why the trendline does not increase. Lastly, it is also
possible that we do not have enough data points to achieve a stable, constant value.
However, it is possible to proceed with the measurements; operating the federated
learning system is computationally really demanding.
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7. Conclusion

In this paper, we presented how communicating vehicles can measure and learn a
complex phenomenon, i.e., the parking lot occupation of the city. To obtain the input
data, we ran Eclipse SUMO multiple times with the MoST scenario. Unfortunately, run-
ning the simulations requires plenty of time. To mitigate the time demand, we created
a Docker image containing Eclipse SUMO and a TraCI script that can run in parallel in
several instances on a PC. As connecting this system with machine learning tools is
also challenging, we present a possible software architecture that allows us to distribute
the SUMO-based learning system among various computers.

We conclude that a centralized learning scheme can outperform a federated one, but
its real-world implementation is not feasible due to the need for thousands of sensors
in a city. On the other hand, vehicles might learn the parking lot occupancies in a spe-
cific district and time of the day; such individually trained models cannot perform well
outside the range of their training datasets. Assuming that this neural network model
is the compressed version of the collected data, it might be worth sharing it with other
vehicles. But it should be emphasized that this data sharing poses a potential privacy
risk as an honest-but-curious partner can infer the vehicle’s route and observation time.

We also tested a federated learning scheme to combine the benefits of cheap data
collection and acceptable model performance. However, such a federated system is
neither entirely secure, especially not at the beginning of the training process. It is a
challenging task to make this federated measurement and learning system protected
and well-performing. To this end, our future research focuses on solving that problem.

A. Creating a Docker image with SUMO and TraCI

As running even one instance of the MoST scenario in Eclipse SUMO takes approx-
imately one hour, running it in multiple instances in parallel is quite beneficial. Un-
fortunately, we ran into a problem2 when we tried to execute our TraCI script either
multithreaded or in separate processes.

As a workaround, we created a Docker image containing SUMO and our TraCI script
to collect measurement data. In our GitHub repository, one can find a Dockerfile that
creates an Ubuntu-based SUMO installation. Besides pulling the latest SUMO version,
the resulting image will incorporate the measurement script too.

B. A multi-computer client-server architecture for SUMO-based
learning systems

The operation of the described federated system requires training multiple neural net-
work agents. Unfortunately, it also consumes a significant amount of time even on a
high-end PC (with AMD Ryzen 7 3800X CPU, 32 GiB of RAM, and an Nvidia RTX3060
GPU). Moreover, we used Tensorflow to implement the neural network, which, for some
unknown reason, does not support multithreaded or process-based parallel training.
Therefore, we designed a framework to distribute the workload among various com-
puters, see Figure 12. This approach is fundamentally similar to the parallel training
described in [15]. However, a reinforcement learning process heavily depends on the

2As of Eclipse SUMO version 1.15.0, the problem may be somehow related to multiprocessing, as the circum-
stances of getting a TraCI error were not deterministic.
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Figure 12. Schematics of a distributed learning system based on SUMO simulations

simulation speed; in our case, the performance bottleneck is the training time of a
neural network.

One can deploy multiple SUMO containers, described in Appendix A, on a computer.
As SUMO efficiently uses the system memory and runs most of the time on a single
CPU core, the simulator server might not necessarily be a high-performance com-
puter.

Moreover, training neural networks can be much faster on computers with GPU. To
take advantage of it, we can create several train workers. These train workers shall
operate a simple HTTP server, e.g., implemented by Flask, and provide services such
as training a neural network. Or use the neural network to predict a value. These
services can be accessed by calling the corresponding HTTP requests. As the interface
is through HTTP protocol, we can deploy train workers to multiple computers. For
more complex tasks and setups, one might also place the train workers into Docker
containers and build up a Kubernetes-based system.
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Abstract: Deep Reinforcement Learning (DRL) is a promising data-driven approach
for traffic signal control, especially because DRL can learn to adapt to varying traffic
demands. For that, DRL agents maximize a scalar reward by interacting with an envi-
ronment. However, one needs to formulate a suitable reward, aligning agent behavior
and user objectives, which is an open research problem. We investigate this problem
in the context of traffic signal control with the objective of minimizing CO2 emissions at
intersections. Because CO2 emissions can be affected by multiple factors outside the
agent’s control, it is unclear if an emission-based metric works well as a reward, or if
a proxy reward is needed. To obtain a suitable reward, we evaluate various rewards
and combinations of rewards. For each reward, we train a Deep Q-Network (DQN) on
homogeneous and heterogeneous traffic scenarios. We use the SUMO (Simulation of
Urban MObility) simulator and its default emission model to monitor the agent’s per-
formance on the specified rewards and CO2 emission. Our experiments show that a
CO2 emission-based reward is inefficient for training a DQN, the agent’s performance
is sensitive to variations in the parameters of combined rewards, and some reward for-
mulations do not work equally well in different scenarios. Based on these results, we
identify desirable reward properties that have implications to reward design for rein-
forcement learning-based traffic signal control.

Keywords: Traffic Signal Control, Reinforcement Learning, Reward Modeling, Pollu-
tant Emissions

1 Introduction

Deep reinforcement learning (DRL) is a data-driven approach that holds promise for
improving traffic signal control (TSC), because DRL can learn to adapt to changing
traffic demands [1]–[3]. To achieve this, a DRL agent interacts with its environment and
learns to take actions that maximize a cumulative scalar reward. By doing so, the agent
can optimize the flow of traffic and improve the overall efficiency of the system.

In TSC, the actions correspond to changes in traffic lights and rewards correspond
to traffic flow metrics (e.g., average vehicle speed, braking accelerations, and queu-
ing lengths at intersections). However, in real-world applications of DRL, the agent’s
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reward should also reflect the users’ goals, which in TSC could be, to minimize traffic
delays [4], [5] and CO2 emissions [6], [7]. Nonetheless, it is not obvious how to select
reward formulations that are also effective in satisfying users’ goals. This is an open
and challenging research problem known as the ”agent alignment problem”. The opti-
mization goal of minimizing travel time in the context of TSC is challenging due to the
influence of various external factors, such as free flow speed and current congestion
level, which are beyond the agent’s immediate control [8]. While this makes travel time
an ineffective reward in practice [4], it is also not obvious which traffic flow metrics are
guaranteed to be effective to this goal. There are several studies that combine traffic
metrics as rewards for DRL agents [4], [5], [9]. Similarly, there is a growing body of
research on training DRL agents to minimize pollutant emissions in TSC [6], [7]. How-
ever, these DLR-based approaches provide limited insight into how the convergence
curves of traffic metrics behave relative to CO2 emissions during the training of DRL
agents. This information is important for designing reward functions that are effectively
aligned with the users’ goals. We investigate how to bridge this knowledge gap by per-
forming a systematic study of the reward design space, which comprises single-metric
rewards, combined-metrics and their corresponding parameterizations (weights in a
linear function). For each candidate reward, we train a Deep Q-Network (DQN) [10] on
two traffic scenarios, one with homogeneous traffic and one with heterogeneous traffic.
To evaluate the various reward model formulations, we adopt the SUMO (Simulation of
Urban MObility) simulator and its default emission model (Handbook Emission Factors
For Road Transportation - HBEFA 3.1) [11]. Our evaluation consist of measurements
of convergence curves of the agent’s reward and the corresponding CO2 emissions,
producing the following results:

1. a CO2 emission-based reward is inefficient for training a DQN agent,
2. only a few single-metric rewards were capable of minimizing CO2 emissions,
3. metrics that individually did not produce effective reward formulations, were, when

combined, successful in minimizing CO2 emissions,
4. and, even when there exists an effective instance of a combined reward (e.g.,

a combination of queue and brake), there are still variations (i.e., from different
parameterizations) of those same traffic flow metrics that produce ineffective re-
wards.

These results generalize both under homogeneous and heterogeneous traffic flow sce-
narios. Based on these results, we generated two contributions in the form of system-
atic analyses.

1. Property-based analysis of convergence curves. This analysis generates expla-
nations for the cases of insufficient alignment between the agent’s reward model
and the CO2 emission goal. The explanations consist of a paradigmatic classifi-
cation of the reward models through orthogonal categories defined by two proper-
ties. Informativeness captures how well the agent approximates the given proxy
reward, and expressiveness reflects how strong episode rewards correlate with
episode CO2 emission levels.

2. Sensitivity analysis of the challenges to align combined reward models with CO2
emission goals. This analysis shows that alignment has two levels of sensitivity:
the choice of traffic flow metrics, and the parameterization of these metrics in a
linear reward formulation.

The remainder of the paper is organized as follows. In Section 2, we present the prob-
lem of agent alignment and its impact on TSC and emissions. We contextualize our
work in relation to DRL for TSC, and for minimization of pollutant emissions (Section 3).
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The approach and experimental setup is detailed in Section 4, while the corresponding
results are presented in Section 5. The analyses of these results in terms of contribu-
tions, implications, and threats to validity are discussed in Section 6. Finally, we offer
our conclusions and ideas for future work in Section 7.

2 Foundations

Deep reinforcement learning (DRL) is a popular approach that combines deep neural
networks with reinforcement learning to enable agents to learn optimal behavior in
complex environments. However, ensuring that the goals of the system align with the
goals of the user is a critical challenge in DRL systems. Misaligned goals can result
in unintended and potentially harmful outcomes that undermine the users’ goals. This
section examines the challenges that make alignment difficult in DRL systems and
describes how reward models align with user goals.

2.1 The Agent Alignment Problem

The AI alignment problem [12] consists of finding ways to ensure that, quoting [13]: ”...
these [machine learning] models capture our norms and values, understand what we
mean or intend, and, above all, do what we want”. In other words, it involves matching
agent rewards and users’ goals regarding behavior [14], intent [15], incentive [16],
inner and outer alignment [17], and instruction alignment [18]. Behavior alignment con-
sists of producing predictions for given inputs, whereas intent looks at more general
specification that cover different desired behaviors. Incentive alignment studies how
rewards induce desired behaviors, whereas inner and outer alignment deals with par-
titioning the alignment in scopes that present specific dynamics. Instruction alignment
consists of communicating human intent as a sequence of instructions that must be
learned. These various definitions of alignment make specification, measurement, and
evaluation challenging.

Therefore, a more pragmatic approach is to look at the failure of the agent to align
with the user’s goals (misalignment). Misalignment can have unintended consequences
that are counterproductive (optimize against the users’ goals), futile (no effect on users’
goals), or simply could jeopardize users’ goals (suboptimal behavior). Additionally, mis-
alignment in DRL can increase the chances of reward hacking [19], [20]. For instance,
in the case of a game boat race, an agent maximized a reward by indefinitely hitting a
nearby target without ever concluding the race [21] – violating what the user intended.

One can argue for a proper definition for the user’s goal and how it should be reflected
on the reward model; however, this is still challenging, as evident in the many recent AI
failure cases reported in the ”Artificial Intelligence Incident Database”1. In other words,
there is no perfect alignment [15]. Instead, one needs to specify models that satisfy the
conditions of being sufficiently meaningful and precise to steer the process of achieving
user goals (e.g., reducing CO2 emissions) by optimizing traffic flow metrics. For that,
one needs a systematic way to evaluate how reward models align with user goals. Our
approach presented in this paper is to partition the alignment specification problem into
two metrics that allow to express a meaningful goal, and inform precisely enough how
this goal can be achieved.

1https://incidentdatabase.ai/
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2.2 Alignment Challenges

Partial observability in the form of hidden states (inherent to DRL environments) make
alignment more difficult to achieve by preventing the agent from observing all the effects
of its actions (in particular the delayed ones).The hidden states can result both from
misspecified (wrong) [22] and underspecified (incomplete) [23] models. In the context
of DRL, wrong or incomplete models can cause the agent to show good convergence
curves at training time, but present unexpected behaviors after deployment. This can
have consequences for the safety and cost of applications like autonomous vehicles
and robotics.

Delayed and stochastic effects of actions are challenges when performing credit
assignment, i.e., determining how each action contributed to achieve the users’ goal.
While delay and stochasticity cannot be eliminated, as they are properties of the envi-
ronment, one can have reward models that are less sensitive to these factors. In the
case of emissions, one can compare how different traffic flow metrics (e.g., average
speed versus queue length) relate to changes in CO2 emissions.

2.3 Deep Q-Network

Q-Learning is a popular reinforcement learning algorithm that helps agents make de-
cisions based on rewards in their environment. It involves estimating the action-value
function, which maps a state and action to the expected future rewards. In tabular
Q-learning, the action-value function is represented as a table, but this becomes im-
practical for large or continuous state and action spaces [24]. Function approximation
can solve this problem by representing the function using a neural network or another
approximator.

Neural Fitted Q-Iteration (NFQ) [25] is an extension of tabular Q-learning with function
approximation, improving scalability to large state-action spaces. However, NFQ uses
a fixed dataset; thus, it is susceptible to overfitting on the training data. To mitigate
this problem, Deep Q-Network (DQN) was introduced [10]. DQN builds on NFQ and
introduces two key components: the experience replay buffer and the target network.
The replay buffer stores the agent’s experiences that can be retrieved for updating
the Q-value estimates. The target network is used to set the TD targets, which are
calculated based on the immediate reward and discounted future returns. Finally, our
choice for DQN relied on its simplicity (off-policy and model-free), as it would allow
to establish a comparison baseline for more sophisticated approaches like Proximal
Policy Optimization algorithms (PPO) [26].

3 The State of the Art

This section introduces the topic of reward modeling in deep reinforcement learning
(DRL) and its application to traffic signal control (TSC).

3.1 Reward Modeling

Reward modeling consists of learning to achieve specific user goals without requir-
ing human feedback [14]. It has become a popular approach that precludes manually
solving the credit assignment problem (e.g., via reward shaping [27]). However, be-
cause designed rewards can still be tampered by a learning agent [19], one still has to
evaluate how alignment is done via reward modeling. This gives rise to the Optimal
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Reward Problem - ORP [28], which aims to reduce the alignment problem to a reward
modeling problem. This might involve defining intrinsic or extrinsic rewards [29]. The
intrinsic reward constraints the agent on how it can learn, whereas the extrinsic reward
instruments the user’s goal by steering the agent on what it can learn2. We translate
these intuitions respectively into two convergence properties named informativeness
and expressiveness (formalized in Section 6.1).

3.2 Reward Models for Traffic Signal Control

Minimizing travel time is the main goal of a TSC policy. However, because travel time is
affected by a multitude of factors and actions with delayed effects [8], traffic engineers
rely on proxy reward metrics, like average waiting time, average intersection speed,
or total braking acceleration. Accordingly, in DRL, various combinations for a reward
models were investigated: queue length and delay in [5], queue length and pressure
in [4], stop time and average speed and time lost [9], and many others (see Table-5 in
[8]). We extend this family of work by combining more metrics (vehicle speed, brake
acceleration) and evaluating their impact on CO2 emissions.

3.3 Pollutant Emissions in Traffic

Traditionally, the first solutions comprised non-DRL control (both with SUMO [31], [32]
and other simulators [33]–[35]). More recently, DRL-based TSC approaches to mini-
mize pollutant emissions have been investigated [6], [7]. However, these DLR-based
approaches provide limited understanding about the relationship between metrics for
emissions and traffic flow, in particular, regarding how the convergence curves of met-
rics behave during the training of DRL agents. Without a proper understanding of this
relationship, one is hindered in the task of reward modeling for aligning the agent’s re-
ward with CO2 emission goals in TSC. Therefore, to bridge this gap, we investigated
various formulations for a linear reward function based on traffic flow metrics, and com-
puted the corresponding CO2 emissions using SUMO’s provided emission model from
the Handbook Emission Factors For Road Transportation (HBEFA 3.1) [11].

3.4 Deep Reinforcement Learning for Traffic

The specification of the DRL approach goes beyond the choice of reward function: one
needs to choose an algorithm and how to model the state-space. Among the many
DRL algorithms to have been adopted [8], the DQN [10] algorithm has been one of
the most popular choices (Table-1 in [3]). The adoption of DQN for TSC stems from
its relative simplicity of having discrete actions, while still providing good convergence
behavior [36].

Concerning the state-space, the traffic environment has been modeled at various
levels of resolution, from coarse (flow) to fine (vehicle speed and position) [8], resulting
in tabular discretized metrics [37], and image representations [36]. We opted for a lane
segment level resolution and discretized metrics because studies could not show better
results when adopting higher resolution [38] or more complex state representations [5].

2This could involve curiosity-driven exploration [30], which attributes credit based on the novelty of the state-action
pair, usually measured by some information theoretic metric, e.g., entropy, mutual-information, or KL-divergence.
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4 Methodology

In this section, we outline the methods used to study CO2 emissions produced at sig-
nalized intersections. Our approach builds on the principles of reinforcement learning,
where an agent learns to make decisions based on the interaction with its environment.
We outline the traffic simulation scenario in Section 4.1 and formulate the reinforce-
ment learning task in Section 4.2, defining the states, actions, and rewards used by
the agent. Finally, in Section 4.3, we provide a detailed description of the experimental
setup, including the neural network architecture, hyperparameters, and the setup of the
traffic environment, used to train and evaluate the DQN algorithm.

4.1 Traffic Scenarios

We propose a scenario that comprises a controlled intersection (shown in Fig. 1), fea-
turing two incoming and two outgoing lanes. The intersection allows two types of
phases: either green or yellow in the north-south direction (NSG, NSY ); or green or
yellow in the east-west direction (WEG, WEY ). In both cases, the orthogonal direction
is set to red. Fig. 1 illustrates the intersection in NSG phase.

Figure 1. Screenshot (SUMO GUI) of a signalized intersection with four lanes.

We combine this infrastructure with traffic flows as shown in Fig. 2, consisting of two
types: a time-varying Bernoulli distribution, and a traffic flow that remains constant
throughout the simulation. At each second and on each road (north-south, west-east,
etc.), a car is released into the simulation with a probability of p. Each traffic demand
combined with the signalized intersection infrastructure gives rise to one scenario: a
heterogeneous traffic scenario, using the time-varying demand, and a homogeneous
traffic scenario (using the fixed demand).

For the heterogeneous traffic scenario, depicted in blue in Fig. 2, we deliberately
chose a peak traffic volume of p = 0.25 – the maximum probability of releasing a car.
This level of peak traffic makes the scenario challenging, as it exceeds the maximum
intersection throughput and causes congestion temporarily. In contrast, the homoge-
neous traffic flow, depicted in red in Fig. 2, has a fixed probability of releasing a car
with a value of p = 0.2. This value represents the maximum intersection throughput,
ensuring that the flow remains steady throughout the simulation.

4.2 The Reinforcement Learning Task

Traffic signals play a critical role in ensuring safe and efficient traffic flow at intersec-
tions. Fixed pre-timed controllers are often insufficient in optimizing traffic flow, as traffic
volume and driving behavior vary widely. Adaptive traffic signal control (ATSC) provides
a solution, which uses electrical sensors and sets signals based on the data, adapting
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Figure 2. The probabilities of releasing cars into the system over simulation time.

to the current traffic situation. One of the simplest methods to achieve ATSC is actu-
ated signal control, which triggers a specific signal based on sensory data gathered
around the intersection. Reinforcement learning (RL) is a possible solution to obtain
a program for ATSC. The output of the RL algorithm, the agent’s policy, becomes the
desired ATSC program, which works fully automated, and can be scaled. ATSC with
DRL has achieved outstanding results, outperforming conventional methods in many
situations. The agent repeatedly collects state information, acts, and updates its policy
with a scalar reward, while being trained in safe or simulated environments. For the
remainder of this Section, we will assume the environment described in Section 4.1
and specify the components of the reinforcement learning problem, the states, actions
and rewards of the agent.

The agent’s state or observation is a representation of the environment that the
agent perceives at any given time, including relevant information that the agent can
use to take actions that maximize its rewards. In the case of traffic signal control with
reinforcement learning, the DTSE (Discrete Traffic State Encodings) state [39] is a
commonly used representation that consists of two 2D matrices. The first matrix is
a binary position matrix that encodes the presence or absence of a vehicle at each
intersection, as depicted in Fig. 3 (b). The second matrix is a normalized velocity
matrix that tracks the average speed of the vehicles on a given segment, as depicted
in Fig. 3 (c).

Figure 3. Example of simulated traffic (a) with corresponding Boolean- (b) and Real-valued
DTSE vectors (c). Image source: [39]
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Our approach uses DTSE representations, which capture the position and speed of
vehicles – key factors in determining CO2 emissions. This allows the agent to make
informed decisions about when to change traffic lights to achieve the goal of our RL
task, which is to minimize CO2 emissions.

The agent’s actions are determined by the traffic scenario, as described previously.
That is, the agent takes action every ∆t (in seconds) and chooses from the set of al-
lowed phases A = {NSG,WEG}. Additionally, on each phase change, a yellow tran-
sition phase (NSY or WEY ) is induced to ensure safety. In contrast to our approach,
the agent could also cycle through a pre-defined sequence or operate in non-fixed in-
tervals. However, using a fixed action interval with a set of allowed phases provides
a balance between flexibility and difficulty, as non-fixed intervals make the problem
harder, and a pre-defined sequence limits the agent’s options.

The agent’s reward is composed of one or multiple of the following average traf-
fic metrics, aggregated over all lanes: queuing length (queue reward), vehicle speed
(speed reward), braking acceleration (brake reward), and CO2 emission rates (emis-
sion reward). Additionally, we provide linear combinations of average queuing length
and braking acceleration (queue+brake reward) as well as queuing length and speed
metrics (queue+speed reward).

4.3 Experimental Setup

Each experiment uses one of the intersection scenarios described in Section 4.1, with
either heterogeneous or homogeneous traffic. Each training run uses simulations that
last for 3600 seconds (simulation time), and the agent interacts in intervals of ∆t = 5s,
resulting in 720 steps t = 1, . . . , 720 per episode. At episode termination, the simula-
tion is reset, and the agent continues training. For a phase-switch, we selected a yellow
time to of tyellow = 2s. The agents observe DTSE features with speed and position in-
formation. To compute DTSE features, we split each road into 30 segments (segments
of length c ≈ 8.33m). Table 1 summarizes this general setup.

The DQN agent uses a Multi-Layer Perceptron (MLP) with two hidden layers as the
neural network, each containing 64 neurons, and a linear output layer with four neu-
rons (one for each action). We use the Adam optimizer [40] for mini-batch gradient
descent, with a batch size of 64 and an initial learning rate of α = 1e−4. To explore the
environment, the agent begins with 100% exploration (ϵ = 1) and gradually decreases
exploration linearly to 10% over the first third of training. The replay buffer holds up
to 2000 samples, and learning begins after the first episode (720 steps of initial ex-
perience). The target network is updated every C = 10000 (steps), and the agent’s
discount factor is γ = 0.99, which captures long-term rewards. Hyperparameters and
training setup are summarized in the second section of Table 1.

5 Results

This section is organized into three parts. In Section 5.1, we evaluate the suitability of
CO2 emission rates as a reward. In Section 5.2, we compare the performance of agents
trained on proxy rewards to those trained on a CO2 reward. Finally, in Section 5.3, we
examine how different combinations of reward parameters impact agent’s alignment.
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Table 1. Environment, hyperparameter and training setup.

Parameter Value Description

episode length 3600s episode length in seconds
∆t 5s interval in which the agent interacts in seconds
T 720 steps number of agent-environment interactions in an episode

tyellow 2s yellow transition time for phase switches
A {NSG,WEG} action space of the agent
S DTSE the agent’s observable state space
c 8.33m length of a DTSE segment

optimizer Adam optimizer
α 1e−4 learning rate

batch-size 64 mini-batch size
buffer-size 2000 size of the replay buffer

learning starts 720 steps number of steps of initial exploration without learning
C 10000 steps update interval for the target-network of DQN
γ 0.99 discount factor

5.1 CO2 Emissions as Reward

In Fig. 4 we show the performance of two DQN agents: one agent was trained on a
speed reward, and the other agent was trained on the CO2 emission reward. The solid
line represents the median episode emission rate in g/h, and the shaded area shows
the 95% confidence intervals. Our results demonstrate that while the agent trained on
the CO2 emission reward does improve in the first episode of training, it converges to
a higher emission rate than the agent trained on the speed reward, and does not show
any further improvement over time.

These findings suggest that training with the CO2 reward leads to suboptimal behav-
ior, as the agent is constrained in maximizing this reward and fails to learn an effective
policy for minimizing CO2 emissions. In contrast, the agent trained on the speed reward
is able to converge to a better policy for emission minimization, ultimately achieving a
lower emission rate.
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Figure 4. Two agents’ performance on minimizing CO2 emissions by following distinct formula-
tions of cumulative reward. The blue agent has an emission-based reward formula-
tion, whereas the red agent has a speed-based formulation.
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5.2 Proxy Rewards for CO2 Minimization

To explore alternative approaches to incentivizing emission reduction, we investigate
the use of various proxy rewards in this section. Specifically, we analyze the perfor-
mance of DQN agents trained on rewards based on queue lengths, braking acceler-
ations, average speed, CO2 emissions, a combination of queue length and braking
acceleration, and a combination of queue length and average speed.

We present the results of our experiments in Fig. 5. This figure summarizes the per-
formance of each agent on the different reward models, with each subplot showing the
CO2 emission rates (red line), proxy reward (green line), and maximum observed proxy
rewards (dotted yellow line). In addition, the shaded areas in each subplot represent
95% confidence intervals for the emission rates and rewards.

Based on the results presented in Fig. 5, we observe that the DQN agent trained on
the CO2 emission reward converged to a suboptimal policy after one episode, result-
ing in comparatively high emission levels. Similar behavior was observed for the DQN
agent trained on the queue reward, which achieved a reduction in CO2 emissions, but
at suboptimal levels. The agent trained on the brake reward had a positive correla-
tion between CO2 emissions and the episode reward, leading to no reduction in CO2
emissions.

Good emission performance was achieved by agents using a speed reward and a
combined queue and brake reward, denoted as queue-brake reward. The DQN agent
trained on the speed reward achieved a relatively low CO2 emission rate, while also
achieving the highest speed reward among all agents. The DQN agent trained on
the queue-brake reward achieved the lowest CO2 emission levels so far, showing a
negative correlation with CO2 emissions (see Table 2).

Overall, the queue-brake reward was the most effective in reducing CO2 emissions,
while the speed reward was effective in achieving a relatively low CO2 emission rate and
high speed reward. Conversely, the emission and queue rewards resulted in suboptimal
emission levels.

We calculated the degree of association between the episode CO2 emissions and
episode rewards as a measure of the behavior of the agent alignment (see Table 2).
For that, we adopted the Kendall-tau rank correlation coefficient3.

Table 2. Kendall-tau correlations (τ ) between episode rewards and episode emissions. All val-
ues were statistically significant (p-value ≤ 0.05).

reward τ p-value

emission -1.000 2.7e-91
speed -0.832 8.0e-64
queue -0.361 2.8e-13
brake 0.505 1.5e-24
queue-brake -0.893 2.9e-73

5.3 Sensitivity to Reward Parameters

In this experiment, we explored the impact of reward parameter combinations on the
performance of a DQN agent in managing traffic flow with the aim of minimizing CO2

3The Kendall-tau coefficient is a non-parametric statistic that quantifies the strength and direction of association
between two variables without assuming any specific distribution [41].
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Figure 5. CO2 emission rates in g/h (red) and absolute episode emission reward (green) of
DQN agents over training time. The solid lines depict the median values, while the
shades depict 95% confidence intervals. Each reward is combined to a ”best re-
ward” (yellow) that corresponds to the highest value on this reward that was observed
among all agents (trained with various rewards).
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emissions. We varied the ratio of queue and brake in a combined reward, and queue
and speed in a combined reward. For each combination of metrics, we trained six
DQN agents for 21800 steps and evaluated their performance in both heterogeneous
and homogeneous traffic scenarios.

In Fig. 6 we show the average episode CO2 emissions in g/h (y-axis) and weightings
of queue and brake reward (x-axis). We observed that a combination of both queue
and brake reward was necessary to achieve the lowest CO2 emissions.

Interestingly, we found that the combination ratio of (queue, brake) = (0.5, 0.5) pro-
vided the best performance across both traffic scenarios. Additionally, we observed
that combinations close to (queue, brake) = (1.0, 0) or (0, 1.0) demonstrated similar per-
formance to those combinations. This suggests that the agent focuses on only one
reward parameter, which does not lead to the best outcome.
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Figure 6. Episode CO2 emission rates in g/h (y-axis) for DQN agents trained with various
weighted combinations of queue and brake reward (x-axis).

For a combined queue speed reward, we would expect to see a similar trend in terms of
the combination of rewards required to achieve good performance. However, as shown
in Fig. 7, we observed that the level of queue metric must be zero (or close to zero) to
achieve good performance.

Overall, our findings highlight the importance of reward parameter selection in train-
ing agents to optimize traffic flow and minimize CO2 emissions.

6 Discussion

Next we discuss the results in terms of general properties for reward models, implica-
tions for modeling, and the threats to the validity of our results.
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Figure 7. Episode CO2 emission rates in g/h (y-axis) for DQN agents trained with various
weighted combinations of queue and speed reward (x-axis).

6.1 Informativeness and Expressiveness

The two convergence curves shown in Section 5 correspond to: (1) how well the reward
model informs the agent towards achieving the user’s goal (CO2) and (2) how well the
reward model expresses the behavior of the emission. We call these two properties
of the reward model informativeness and expressiveness. In other words, if the agent
fails to converge to the optimal reward, we deem the reward model uninformative (see
queue and emission reward in Fig. 5). Meanwhile, if the agent optimizes in the wrong
direction, in our case positive correlation between reward and emissions (see brake
reward in Table 2), then the reward model is not expressive.

These two properties are important because together they indicate if the agent is
sufficiently aligned to the user’s goals (minimizing CO2 emissions). The judgment of
sufficient alignment depends on how informative and expressive a reward model is.
This is challenging because informativeness and expressiveness are continuous met-
rics based, respectively, on the measures of distance (from optima) and correlation
(between reward and goal). Therefore, for the purpose of illustration and discussion,
we assumed two arbitrary thresholds, which we introduce next.

Informativeness. A reward model (Rmod) is informative (I(Rmod) = 1) if the distance
between the reward at convergence (Rcon) and the optimal reward (Ropt) is smaller than
δ. Formally, we have

I(Rmod) =

{
1 if (|Rcon −Ropt| < δ)

0 otherwise
, (1)

where Rcon is the episode reward and Ropt is Rcon of the best performing agent regard-
ing that reward.

Expressiveness. A reward model (Rmod) is expressive (E(Rmod) = 1) if the corre-
lation (Corr) between the sequence of the agent’s episode rewards (R) and the cor-

143



Schumacher et al. | SUMO Conf Proc 4 (2023)

responding episode CO2 emissions (G) has a certain direction (positive or negative)
and its magnitude is above a certain strength (ρ). The correlation should be negative
(∈ [−1, ρ]) if the user’s goal G has to be minimized, otherwise positive (∈ [ρ, 1]).

We formalized E for the case where G has to be minimized.

E(Rmod) =

{
1 if (Corr(R,O) ∈ [−1, ρ])

0 otherwise
, (2)

where the magnitude ρ depends on the use case. For the purpose of illustration and
discussion, we set next |ρ| ≥ 0.30, which corresponds to at least a medium strength
correlation [42] and be negative (as it minimizes emissions), hence, the threshold be-
comes Corr(·) ∈ [−1,−0.30].

Applying these formulas (Eq. (1) and Eq. (2)) as threshold criteria for classification,
we populated a Venn diagram (Fig. 8) with the results from Section 5. The intersection
area shows the reward models that are both expressive and informative, hence, they
are considered to be sufficiently aligned with users’ goals (minimize CO2 emissions).
Only the brake reward is considered not expressive, whereas queue, emission, and
queue-speed rewards are considered non-informative. Next, we discuss the implica-
tions of this classification.

Informative Expressive

speed

queue

brake

emission

queue
+

brake

queue
+

speed

Figure 8. Classification of the rewards in terms of their informativeness, expressiveness and
alignment (intersection).

6.2 Implications

Independent properties. The informativeness property did not necessarily imply ex-
pressiveness, and vice versa. Therefore, one has to monitor both properties while
designing reward models. This is an additional requirement that involves a careful
study of the thresholds that lead to agent alignment – satisfying users’ goals. Uninfor-
mativeness detection. Many of the reward models that were deemed uninformative
showed a very early convergence to a local minimum, e.g., queue reward and emission
reward – their green curves follow a step-like function (Fig. 5). This suggests that the
reward models provided a target that was too easy to learn; in other words, the agent
is overfitting to the data collected in the first epoch.

Combining metrics. The design of the reward model should therefore incorporate
metrics that make learning more challenging, for instance, with properties that are less
correlated with emissions (lower expressiveness). This might explain why a combina-
tion of brake (low expressiveness) and queue (low informativeness) produced a suffi-
ciently aligned agent, minimizing CO2 emissions. Looking at the convergence curve
of the proxy reward, green curve in Fig. 5, we can see diminishing returns over time,
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which suggests an increasing degree of difficulty for the agent to learn better policies
as the training progresses. In other words, relative to the queue reward model, adding
a brake metric made the learning more difficult. Conversely, adding the queue metric
to the brake reward model provided the expressiveness that was missing.

Complementary properties. However, looking for complementary properties is not
enough. Take, for instance, speed and queue metrics. Although the speed reward
model is complementary to the queue reward model regarding informativeness and
expressiveness – speed reward has higher correlation with emissions than the queue
reward (see Table 2) – the combination of queue-speed did not produce an aligned
agent. As we can see in Fig. 8, queue+speed convergence is categorized as expres-
sive, but not informative. This is confirmed by the sensitivity analysis of the parameter
weights for speed+queue combined reward (see Fig. 7).

Reward parameterization. Choosing the right traffic metrics to combine is not
enough. One still has to decide on the weights that each metric should have in the
reward model. While for the queue-brake reward we showed an optimum region (see
Fig. 6), there is no guarantee that the combination of other metrics would present the
same global optimum. This is important to design methods that systematically and effi-
ciently look for the optimal parameterization. The shape of this parameterization space
determines how informative and expressive a reward model should be to be considered
aligned to the users’ goal. Because a search in this space could be seen as a balance
between exploitation (following an informative signal) and exploration (expressing de-
sired behavior), one has to decide how to measure these properties. We note that
assuming that these properties have uniform values during training is not realistic.

Property uncertainty. Defining how expressive or how informative a reward is might
require new properties, for instance, properties that evaluate the uncertainty in the
learning (convergence) process. The brake reward model illustrates this case, where
there is larger than 10% variance in reward (green curve in Fig. 5) in the second half
of training. This makes it challenging to decide how many training steps to execute or
when training should stop, because slightly different stopping points could produce very
different policies. Ideally, an engineer would like to know about the trade-off between
reward model simplicity (only use the brake metric) and the risk of suboptimal rewards
(high uncertainty at convergence).

6.3 Threats to Validity

Threats to validity [43], [44] act in ways that can hinder the reproducibility of the exper-
imental results and corresponding interpretations.

Internal Validity evaluates if the causes of the measured effects can be attributed to
our experimental design decisions [45]. In our case, we chose a benchmark (the best
reward across agents - dotted lines in Fig. 5) and a set of proxy reward metrics (speed,
brake, queue). We computed the effects on CO2 emissions by varying the weights
of metrics on combined reward models (e.g., X-axis in Fig. 6). When we claim that
a given reward model is more or less informative or expressive, we are interpreting a
measurement, i.e., the effect of a parameterization choice, that can still be confounded
by what we did not control for, i.e, the other metrics not included in the given reward
model, which might still indirectly affect the CO2 emissions. To improve internal validity,
we suggest more extensive simulations with more complex scenarios, for instance, by
including real-world data.
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External Validity discusses the situations in which the research outcomes might
not generalize beyond the current experimental setup [45] comprised by both dataset
and models parameters. Concerning the dataset, we showed similar results in two
distinct scenarios of traffic demand. Although this might be a straightforward mitigation
of the external validity threat (Fig. 6), a recent survey [2] reported that only seven out
of 21 studies evaluated their models under distinct traffic scenarios. With respect to
parameterization, we showed that certain pairs of weights for the queue-break reward
produced suboptimal CO2 emissions (see the extremes of the bar chart in Fig. 6). This
highlights the challenge to generalize the combined reward results across a range of
parameter values.

Construct Validity concerns the situations for which the performance indicators
(thresholds) do not measure the actual concepts (constructs) [45]. This might hap-
pen because of bias in data generation, incorrect definitions, or inappropriate analy-
sis methods (see Statistical Conclusion Validity). In our study, the mismatch between
thresholds and the convergence properties (constructs) can happen through misspeci-
fication of the reward model and the properties themselves. One example is mistakenly
deeming a reward model to be informative or expressive enough, when it is not. The
reason for the mistake could be an inappropriate threshold or a reward model that is
incomplete. To mitigate that, we specified convergence properties that are indepen-
dent of the traffic signal control domain, but can be easily instantiated by choosing
classification thresholds that are meaningful to what a user consider to be a sufficiently
aligned agent reward model.

Statistical Conclusion Validity concerns the violations in the assumptions of the
adopted statistical methods [45]. One example of possible violation is wrong assump-
tion of normal data distributions. As we worked with small samples of reward out-
comes, we adopted a non-parametric method (Kendall-tau) to compute the correla-
tions, which we reported with their corresponding p-values (Table 2). Regarding conclu-
sions about categorization within the two properties (informativeness and expressive-
ness), although we specified thresholds that were appropriate to discriminate among
convergence curves, we did not take into account the inherent uncertainty in the con-
vergence curves. A possible improvement could be to incorporate uncertainty mea-
surements to the convergence analysis, for instance, the reward variance at the late
training stages (so to ideally minimize it).

7 Conclusion

In the theory of bounded rationality [46], agents are bounded in their learning by the
quality of the information they can access. We investigated this essential limitation
in terms of the reward model, which we evaluated concerning the agent’s alignment
with the users’ goals. Our main result is that, for the agent alignment with the goal
of minimizing CO2 emissions, it is necessary that the corresponding reward model
formulation be both expressive and informative.

7.1 Results and Contributions.

Results. We showed that not all reward models are sufficiently aligned with users’
goals (e.g., the models outside the intersection set depicted in Fig. 8). These results
were reproduced in two distinct traffic scenarios. The sufficiently aligned reward models
shared the characteristic of being both informative and expressive. However, the result
from queue+speed indicated that to determine if an agent is aligned, it is not sufficient
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to look at the properties of the single-metric based rewards. Only after combining the
individual traffic flow metrics into a properly parameterized reward formulation, one can
ultimately assess the agent alignment (again by evaluating its convergence properties).

Contributions. We provided two systematic analyses: (1) a property-based paradig-
matic classification for explaining the failure of an agent to align with users’ goals and
(2) a sensitivity analysis for explaining the challenges of aligning combined reward
models with CO2 emission goals.

7.2 Future work

Towards principles for reward model selection. We showed that combining com-
plementary metrics worked to some extent. However, some outcomes are still counter-
intuitive, i.e., we do not know how to predict good and bad combinations based on
the properties of single-metrics rewards. This is critical, because one still has to rely
on post hoc explanations (as we showed), instead of relying on principles to prioritize
reward model combinations systematically.

Reproducibility in more challenging scenarios. A natural step is to reproduce
our findings in more complex situations, for instance, incorporating real-data4 to the
simulations and a larger set of traffic flow metrics. Besides creating opportunities to
falsify our current claims, we could explore more challenging questions like the effects
of partial observability and confounding in reward modeling for agent alignment in TSC.

Alternative convergence property formulations. In order to evaluate non-linear
relationships, we plan to study expressiveness in terms of mutual information or metrics
like Wasserstein distance. Concerning informativeness, we plan to look at methods that
incorporate variance as a criterion of quality of convergence.
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Abstract. Travel demand is an essential input for the creation of traffic models. However, es-
timating travel demand to accurately represent traffic behaviour usually requires the collection 
of extensive sets of data on traffic behaviour. Traffic counts are a comparably cost effective 
and reproducible source of information on travel demand. The utilisation of traffic counts to 
estimate demand is commonly found in the literature as the static and dynamic O-D estimation 
problem. A variety of approaches have been developed over recent decades to tackle this 
problem. Usually initial estimates of the O-D matrix are calibrated by utilising traffic counts and 
considering different assignment models. Other approaches for the estimation of travel de-
mand solely based on traffic measurements can be found in the simulation software SUMO. 
The present work demonstrates the systematic development of a network model in SUMO in 
the inner city of Munich. In a sample network the estimation of travel demand through the tools 
flowrouter and routeSampler is tested by utilising flow measurements from induction loop de-
tectors. The tests delivered unsatisfactory results, which is proven through observations of 
traffic flows in the resulting simulations as well as comparisons to historic traffic counts. The 
lack of sufficient detector data and the complexity of the sample network are discussed as the 
main reasons for the results. It is concluded that the applied tools should be tested in future 
studies with a more extensive dataset to perform a more comprehensive review of both tools. 
Therefore, we deliver specific requirements based on the network example of Munich. 

Keywords: Induction Loop Detectors, Calibration, Travel Demand Estimation, Urban Digital 
Twin 

1. Introduction

The basis for the model was an automatically generated network of Munich’s inner city which 
was previously developed by the Chair of Traffic Engineering and Control (at TUM). The net-
work is based on data from OSM and was transformed into a SUMO network [1,2]. This net-
work was then manually edited and refined in this project work. Those improvements were 
made based on official site plans of the intersections which were provided by the City of Mu-
nich. These site plans also feature information on the location of loop detectors. A supplemen-
tary CSV-file containing information on the IDs and names of the detectors was also provided. 
In addition to the site plans, aerial images were used and site visits were made to edit and 
verify the model. 
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Aside from the data used for generating the network geometry, two sources of infor-
mation on traffic signal programs were used to generate the control infrastructure in the area. 
On the one hand, original signal plans for a selection of signalised intersections were provided 
by the City of Munich. It should be mentioned that some of these signal programs are outdated 
due to redesigns of the junctions over recent years though they were in some cases the only 
source of information available. On the other hand, the City of Munich provided signal data for 
all signalised intersections in the city between 11:30 am and 11:00 pm from the 25th of July 
2022. The dataset reports information on the status of the signal heads at all junctions over 
the course of the day. From this data, signal plans were reverse engineered. However, some 
traffic lights did not report data which may be related to erroneous communication from the 
traffic signals or ongoing construction works during which the regular signal heads are deac-
tivated. 

Moreover, the City of Munich provided data from induction loop detectors throughout 
the city of Munich between 11:30 am and 11:00 pm from the 25th of July 2022. The dataset 
reports the traffic volumes, speeds and occupancy measured at every detector in the city. 
However, speeds are only measured at few detectors. Aside from the data from induction loop 
detectors, traffic counts at different intersections within the study area were made available. 
The year of origin of the historic counts range from 2010 to 2018. The traffic counts were not 
directly used for modelling travel demand but were consulted to determine the analysis period 
as well as to perform plausibility checks of the resulting simulation. 

2. Network Development 

In the following, we describe the development of the network model. At first, it is described in 
detail how the network geometry was edited and examples for the process are given. Secondly, 
the implementation of the control infrastructure is discussed. This includes a description of the 
structure of the signal dataset which was provided by the City of Munich as well the analysis 
of the data. Additionally, information on the implementation of signal programs in the model is 
given. 

2.1 Network Geometry 

The first step in refining the initial raw network was to remove unneeded network elements 
from the model. These were namely all cycling paths and pedestrian paths which were rem-
nants of the network conversion process. Furthermore, the network was manually cropped at 
the river Isar meaning that all edges on the eastern side of the river were deleted. 

Following that, all intersections were checked and adjusted according to the information 
contained in the available site plans. These plans were always compared to other available 
information gained from aerial images and site visits to check whether the site plans show the 
most recent state of the junction. This was particularly necessary when the site plans indicated 
ongoing construction works since in some cases these construction works are already com-
pleted. When no site plans were available at all, the road geometry was edited solely based 
on the secondary sources, i.e. aerial images and site visits. 

Once the intersection geometry was satisfactory, the induction loop detectors could be 
placed in accordance with the site plans and the supplementary CSV-file. It must be stated 
that the detector placement was done manually which means that their location in the model 
might not match the exact location in the real world. Since the detectors were only used to link 
the counting data to the edges, this simplification is valid. However, should the detectors be 
used in the future for other applications such as the actuation of traffic lights, the placement of 
the detectors should be reviewed. Furthermore, only those detectors that are relevant for road 
vehicles were placed. 
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Lastly, some additional refinements had to be made which included removing implau-
sible turnarounds. These may lead to implausible routes and errors in the simulation. On the 
one hand, these turnarounds existed at the network boundaries which can lead to vehicles not 
being able to exit the network or driving into dead ends and turning around to continue their 
route which is implausible. On the other hand, especially at junctions along residential streets, 
turnarounds were possible which is not plausible for example due to space constraints in the 
real world. Aside from removing these turnarounds, node clusters were joined to remove un-
necessary network elements. 

To conclude this, the process of modelling the network geometry is illustrated at the 
example of two intersections. The first example, shown in Figure 1, depicts the situation at 
Sendlinger-Tor-Platz. The graphic on the left depicts the state of the junction in the initial net-
work and the image on the right depicts the final intersection layout. Firstly, all remaining foot 
and cycling paths were removed (1). The next step was the adjustment of the edge geometry 
(2). For example, the right-turning lane at the western leg of the central junction branches off 
from the left-turning and through lane in the initial network. Due to ongoing construction works 
in the area, this lane currently runs in parallel to the other two lanes. Lastly, the connections 
were corrected (3). In the initial network the eastern leg of the intersection featured a mixed 
lane for right-turning and through traffic and an additional lane dedicated to through traffic. In 
reality, one lane for through traffic and one for right-turning traffic exists. It should be mentioned 
that the network geometry is not an exact depiction of the real world though it is a close ap-
proximation and represents the main characteristics of the junction. 

 

Figure 1. Sendlinger-Tor-Platz in the initial network (left) and the edited network (right). 

A more complex example can be found at the intersection Lenbachplatz/ Elisenstraße. 
Figure 2 depicts the initial network on the left and the edited junction on the right. Initially the 
junction was heavily simplified and additional signal heads in the centre of the junction were 
missing. The intersection was thus edited as follows. The process started again by removing 
all residual foot- and cycling paths (1). Then the junction was split into two signalised intersec-
tions and the junction shape was manually adjusted so that it accurately represents the shape 
of its real-world counterpart (2). This also included the correction of all possible turning ma-
noeuvres between all incoming and outgoing edges as well as an adjustment of the tram 
tracks. Lastly, all induction loop detectors were placed in accordance with the site plans and 
the supplementary CSV-file (3). 

The same procedure was followed at all other junctions across the network though the 
focus was set on those junctions for which site plans were available. These were mostly the 
more complex major intersections of the road network. Junctions of minor importance in the 
secondary road network usually only required minor corrections, e.g. checking for the possible 
turning manoeuvres. 
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Figure 2. Intersection Lenbachplatz/ Elisenstraße in the initial network (left) and the edited 
network (right). 

2.2 Traffic Signal Programs  

Many traffic lights especially those located on main roads within the model’s extent act traffic 
responsive or feature programs with public transport prioritisation or actuation. However, since 
public transport was not modelled and the control algorithms for actuated traffic signals were 
not known, it was decided to simplify the traffic signal programs and to design them as pro-
grams with a fixed cycle. 

First and foremost, the signal programs were created by utilising a dataset containing 
the sequence of signal status of all signal heads at every intersection in Munich. From this data 
simplified signal programs with a fixed cycle were reverse engineered. An example of such a 
procedure is pictured in Figure 3 for the example of LSA 103. It bases on averaging the avail-
able values. 

 

Figure 3. Determination of phase and cycle duration at the example of LSA 103. 

A limitation of the dataset is that it only reports the status of active signal heads as locked (“g”) 
or free (“f”). This means that amber times of the signal heads are unknown. Because of that 
the signal plans implemented in the model also only feature green and red phases which can 
lead to emergency braking by the simulated vehicles in case a signal head switches from red 
to green when a vehicle is close to the stop line. 

In total, 109 traffic lights in the network feature signal programs which were reverse 
engineered from the signal dataset, 13 traffic lights were supplied with signal programs from 
original signal plans and 20 junctions use actuated signal programs that were automatically 
generated by SUMO. 
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3. Application of flowrouter and routeSampler 

Subsequently, the two existing tools of the SUMO package for count-based travel demand 
generation are tested. On the one hand, demand was generated by using the tool flowrouter. 
As described previously the tool generates routes and flows, i.e. numbers of vehicles per route, 
based on detector data. On the other hand, the tool routeSampler was used. This tool requires 
a set of initial routes as well as counting data as input and then selects and multiplies routes 
from the initial set in such a way that the detector data is matched. 

As pointed out previously, a small network was extracted from the larger one for the 
test of both tools. Figure 4 shows the large network on the left and the cropped network on the 
right. The cropped network consists mainly of Sonnenstraße and the important incoming and 
outgoing streets. Streets of minor significance in terms of their traffic volumes were excluded 
from the network in order to simplify the model. In total, the network model features eight sig-
nalised intersections. 

 

Figure 4. Full network model (left) and test network (right) in SUMO. 

The evening peak hour was selected as the test period for the scenario. According to the his-
toric traffic counts, the evening peak hour usually occurs between 4:00 pm and 6:45 pm. It was 
decided to use the period between 4:00 pm and 5:00 pm as the simulation period. In addition, 
15 minutes were added before and after this period so that all vehicles detected within the 
analysis period can enter and exit the network. 

Aside from LSA 43 at Sendlinger-Tor-Platz all intersections in the network are equipped 
with induction loop detectors. These detectors needed to be filtered at first. Two conditions had 
to be fulfilled by the detectors so that their data could be used for flowrouter and routeSampler. 

Firstly, all lanes of an edge should be equipped with detectors since only then values 
over a cross-section are known. Secondly, the detectors should report plausible values. The 
first condition was checked through a manual inspection of the network. This led to the removal 
of three detectors at the intersection LSA 29. Then, the vehicles counted across all time inter-
vals were summed up, to identify erroneous detectors which reported implausible values within 
the dataset. All detectors with a sum of zero across the dataset were excluded from the model. 
This included all detectors at LSA 153, LSA 480 and four detectors at LSA 29. Lastly, the three 
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remaining detectors at the western leg of LSA 29 were removed since the sums of each indi-
vidual detector were the same. Moreover, the values from all individual measurement intervals 
were identical. The remaining detectors are located at LSA 30, LSA 45, LSA 46 and LSA 484. 
At LSA 45 and LSA 46 not all incoming edges are equipped with detectors. The results of the 
analysis are illustrated in Figure 5. 

 

Figure 5. Availability of detector data at intersections in the test network. 

At first, the application of flowrouter was tested. The tool requires as input a network-file, a file 
that specifies the location and ID of the detectors and a file containing the flow measurements 
from the detectors. The flows file can either be provided as a CSV file or TXT file with a “;” as 
separator between columns. The file contains a column “Detector”, specifying the detector ID, 
a column “Time” containing the time interval in minutes and lastly a column “qPKW” which 
describes the vehicles counted at the respective detectors during an interval. Additionally, ve-
hicles may be classified into passenger cars and heavy goods vehicles and measured speeds 
can be added. However, since the detectors in this case only reported vehicle counts without 
further distinction between vehicle types, all counting data was inserted into the “qPKW” col-
umn. 

Following the specification of the flows file, flowrouter was run in the command prompt. 
The setting - -respect-zero was set so that detectors were also considered which may have 
counted no vehicles across one- or multiple time intervals. In addition, the options - -lane-
based and - - interval 15 were set. The first means that the values of all detectors across one 
edge are not aggregated but the counts from each individual lane are used. The latter indicates 
the aggregation interval of the traffic counts which is 15 minutes. The output from flowrouter 
comes in form of a route file and a flows file. The route file consists of all individual possible 
routes and the flow file describes the number of vehicles for each route. 

In theory, the user can specify flow-restrictions as input for flowrouter so that certain 
implausi-ble routes are not considered by the tool. This was attempted by utilising the script 
implausibleRoutes.py, which allows blacklisting of certain routes according to a specified heu-
ristic. However, all attempts to manipulate the output from flowrouter by using this tool failed. 
Thus, the developers of SUMO were contacted via the official forum and according to them it 
is currently not possible to combine flow-restrictions with the option - - lane-based in flowrouter. 
Tests without the option - - lane-based did not produce satisfactory results. 
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The routeSampler tool needs an initial set of routes stored in a route file and an 
edgedata file which contains the flow measurements for all edges. In comparison to flowrouter 
it is not possible to utilise lane-based counting data of each individual detector. Through the 
aggregation of measurements across all lanes certain information from the detectors are lost. 
This includes for example the number of vehicles on dedicated turning lanes. It is also possible 
to define turn-counts as input for routeSampler. This information could not be obtained from 
the induction loop detectors since the detectors are only placed at the inflows of the intersec-
tions and no downstream measurements were available. The following paragraph details the 
specification of the route file and the edgedata file. 

At first, all possible O-D pairs were written manually into a trip file. It was assumed that 
there are no trips that start and end in the same direction. Additionally, it was checked whether 
a trip is possible or not due to turn-restrictions at intersections. This resulted in a total of 174 
O-D pairs in the network. Then, the route definitions were obtained by using duarouter. Since 
there are no parallel streets in the network which allow alternative routes, the tool returned one 
route definition for each O-D pair. The edgedata file was then obtained by transforming the 
flows file used for flowrouter into the required format for routeSampler. This can be done 
through the tool edegedataFromFlow which sums the data from all detectors across an edge 
and assigns the resulting value to the edge. Then routeSampler was run with the route file and 
the edgedata file. The additional commandline specification - -edgedata-attribute qPKW had 
to be set so that routeSampler was able to read the counting data from the edgedata file. 
routeSampler returns a route file which contains information on the selected routes from the 
initial set and the start time of every individual generated vehicle. 

4. Results and Discussion 

The observation of the resulting simulations revealed that neither flowrouter nor routeSampler 
were able to produce plausible estimations for travel demand in the network. First and fore-
most, this is related to the lack of available counting data. As discussed in the previous section, 
only few detectors reported values on the day the data was taken from. Detector measure-
ments on Sonnenstraße itself were only available at the incoming edges of LSA 29. Other 
measurements were available at LSA 45, LSA 46 and LSA 484. However, of these intersec-
tions only LSA 484 is equipped with detectors on all incoming edges. Both tools were not able 
to deliver plausible estimates with this limited dataset. In addition to the lack of data, the char-
acteristics of the study area are another reason for the unsatisfactory outcome. At the inter-
sections LSA 29, LSA 480 and LSA 484, turnarounds are possible on certain edges. The over-
estimation of these turnarounds led to congestion in both simulations. Congestion was also 
experienced in both tools on minor streets on which traffic flows were overestimated which 
exceeded the capacity of the respective traffic signals. 

The following paragraphs give examples for the shortcomings of both simulations by 
qualitatively describing a selection of errors. In case of flowrouter, the turning ratios at LSA 29 
and LSA 480 are compared between the simulation and historic counts. For this purpose, test 
detectors were implemented in SUMO to measure the respective traffic flows. The comparison 
is done to prove the simulation’s shortcomings. The assumption for this plausibility check is 
that turning ratios have not changed significantly at the selected intersections between the day 
of the traffic count and the day the detector data was taken from. Since this superficial quali-
tative analysis already indicates that the output from both tools is implausible, a more in-depth 
quantitative analysis seems not sensible. 

A general finding of the observation of the output from flowrouter is the overestimation 
of traffic flows which originate and end in the same direction. This leads to unusual high shares 
of turnarounds at different junctions. For example, many vehicles which start their trip in the 
northeast of the network drive to LSA 29 where they turnaround and return to the northeast. 
Similar observations can be made at LSA 480 where vehicles coming from the south turn 
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around and return in the same direction. Additionally, congestion effects occur at different in-
tersections. One example can be found at the western leg of LSA 29. Here, the high amount 
of right-turning traffic cannot be handled by the corresponding traffic light. The following para-
graphs illustrate these observations at some examples. These are merely a selection of ob-
servations from the simulation. 

Figure 6 depicts the situation at LSA 29 and the described congestion on the western 
leg of the intersection. Additionally, the unusual high share of vehicles that turn around can be 
seen on the northern leg of the intersection. 

 

Figure 6. Availability of detector data at intersections in the test network. 

Table 1 features the comparison of turning ratios between a historic traffic count and the sim-
ulation for the northern and western leg of the intersection. The historic count was made in the 
year 2014 by the city of Munich and contains information on daily traffic and both peak hours. 
For this comparison, the turning ratios from the evening peak hour are used. The table sum-
marises the traffic flows to the northern and eastern leg of the junction as it was not possible 
to measure them individually in SUMO. However, observations of the simulation show that 
most of those vehicles drive into the northern direction. 

Table 1. Comparison of turning ratios between a traffic count and the simulation at LSA 29. 

From Street Name To Historic Count Simulation Difference 

North Sonnenstr. 

North or 
East 17% 56% 39% 

South 69% 44% -26% 
West 13% 0% -13% 

West Schwantha-
lerstr. 

North or 
East 60% 40% -20% 

South 40% 60% 20% 

All in all, the comparison proves the discussed findings from observing the simulation. The 
share of vehicles which turn around at the northern leg of the intersection was overestimated. 
Additionally, it can be observed that no vehicles turn right. The turning ratios at Schwanthaler-
straße were also not reproduced. While the counts indicate that 60 % turn left into Sonnen-
straße or go straight into Josephspitalstraße, only 40 % of vehicles do so in the simulation. 

Figure 7 depicts the situation at LSA 480. The figure particularly highlights the high 
number of vehicles on the leftmost lane at Sonnenstraße which perform a turnaround at the 
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intersection. Additionally, the rightmost left-turning lane at the eastern leg of the junction is 
frequently congested over the simulation period. Observing these traffic flows in the simulation 
revealed that most of these vehicles turn into Prielmayerstaße at LSA 153. The historic traffic 
count at LSA 153 from the year 2018 shows that only 500 vehicles turn into Prielmayerstraße 
per day. Over the analysis period of the simulation (4:00 am to 5:00 pm) around 400 vehicles 
turned into Prielmayerstraße. 

Figure 7. Simulation results at LSA 480 using flowrouter. 

The comparison of turning ratios at LSA 480 is depicted in Table 2 for all legs of the intersec-
tion. The historic count was made in the year 2018 by the city of Munich and only contains 
information on daily traffic. Key findings of the comparison are that no vehicles turn right from 
Sophienstraße into Elisenstraße and no vehicles turn right from Elisenstraße into Sonnen-
straße. The share of flows between the eastern leg and the western leg of the intersection are 
also comparably low. In the traffic counts, these flows account for 45 % of all incoming traffic 
flows from the east while in the simulation only 21 % of vehicles go straight into Elisenstraße. 
Interestingly, the share of vehicles turning around or left coming from the south is lower than 
in the traffic counts. However, most of these vehicles turn around while in the counts the share 
of turnarounds only makes up for around 1% of the inflow from Sonnenstraße. 

Table 2. Comparison of turning ratios between a traffic count and the simulation at LSA 480. 

From Street 
Name To Historic 

Count Simulation Difference 

North Sophien-/ 
Ottostr. 

South 91% 100% 9% 
West 9% 0% -9%

East Lenbach-
platz 

South 54% 70% 15% 
West 45% 21% -24%
North 1% 9% 8% 

South Sonnenstr. 

West or 
South 21% 14% -7%

North 14% 7% -7%
East 65% 79% 14% 

West Elisenstr. 
East 75% 100% 25% 

South 25% 0% -25%
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All in all, this qualitative description of shortcomings of the resulting simulation using 
the output from flowrouter proves that the tool was not able to produce plausible traffic flows 
from the limited amount of available detector data. 

The application of routeSampler did also not produce plausible results. Running the 
simulation with the set of sampled routes from the tool led to severe congestion and a break-
down of the simulation after around 15 minutes of simulation time. Congestion can be found 
at several intersections and results from the overestimation of routes which include turna-
rounds. Additionally, traffic on minor streets such as Sophienstraße at LSA 480 was severely 
overestimated which led to congestion in the simulation. Due to the breakdown of traffic in the 
simulation the comparison of turning ratios between historic counts and simulation is omitted. 
The reason for this is that representative vehicle counts could not be performed in the simula-
tion since the congestion prevented vehicles from passing the test detectors. 

In conclusion, it can be said that given the limited amount of data it was not possible to 
create a plausible simulation with flowrouter or routeSampler. However, the results of this work 
should not be seen as a definitive evaluation of the capabilities of the two tools since the un-
satisfactory results are mainly related to the poor data basis. In principle, the study area would 
be a suitable test network to evaluate the tools since most intersections are equipped with 
induction loop detectors. Because of that it is recommended to monitor the data platform of the 
city of Munich to check when the currently erroneous detectors report counting data again. 
Then a more in-depth analysis of flowrouter and routeSampler could be performed in a future 
study with a more extensive data basis. Alternatively, both tools could be tested in a different 
study area with more available counting data. A main research question for this study would 
be how both tools deal with the fact that measurements are mostly only available at the inflows 
of intersections. This could show whether it is possible to create plausible traffic flows at inter-
sections as this is a main shortcoming of the results from this simulation given the limited 
amount of counting data. 
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Analysis and modelling of road traffic using SUMO to
optimize the arrival time of emergency vehicles
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Frankfurt University of Applied Sciences, Frankfurt am Main, Germany

Abstract: Traffic simulation tools are used by city planners and traffic professionals
over the years for modelling and analysis of existing and future infrastructural or policy
implementations. There are numerous studies on emergency vehicle (EV) prioritiza-
tion in cities all over the world, but every area is unique and requires the data collection
and simulation to be done separately. In this case, the focus area is the Mörfelder
Landstraße in Frankfurt am Main, Germany, one of the busiest streets in this city. The
study illustrates demand modelling, simulation and evaluation of a traffic improvement
strategy for EVs. Vehicular traffic such as passenger cars and trams are simulated mi-
croscopically. To perform accurate traffic simulation, input data quality assurance and
cleansing of Master Data is required. Therefore, the data is adapted to reproduce the
real-world scenario and transformed into the readable format for the simulation model.
Vehicular demand is calibrated by traffic count data provided by the Frankfurt Traffic
Department. To model road traffic and road network, origin destination matrices using
the Gravity Mathematical Model and Open Street Maps are generated, respectively.
This process is time-consuming and requires effort. However, this process is critical to
get realistic results. In the next step, the road traffic is simulated using SUMO (Simu-
lation of Urban mobility). Finally, EV relevant key performance indicators (KPIs): total
trip time and total delay time are derived from simulations. The real-world scenario is
compared with five alternative scenarios. The comparison of the KPIs revealed that
the real-world scenario results in longer travel times compared to the EV-prioritization
scenario. In the least case, the overall travel times for EV has decreased significantly
and, as we know, in the case of EVs, even a few seconds saved could prove crucial for
a person in need.

Keywords: Demand Modelling, Origin Destination Matrices, Simulation, Emergency
Vehicles, Traffic Improvement Strategy

1 Introduction

In the 21st century, high rate of urbanisation and the advancement in the transport sec-
tor has led to an increase in urban vehicular mobility. This resulted in people opting for
a comfortable and luxurious life. But on the other hand, it has also negatively impacted
the quality of life by increasing the potential for traffic problems such as traffic con-
gestion, accidents, environmental issues for example, increase in greenhouse gases,
carbon emission, particulate matter etc. To combat these problems traffic improve-
ment strategies such as car pool lanes, public transport bus lanes, dedicated space
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for cyclists and pedestrians, to name some, are adopted. Testing and implementation
of such strategies require prior investigation and analysis. Without these studies, the
implemented strategies or policies could be unreliable and might end up costing even
more in terms of infrastructure, time and in some cases even human life. To have a the-
oretical evaluation and predict the outcome of these strategies, traffic simulation plays
a vital role.

For traffic simulation to be implemented properly numerous elements are needed but
the following are the most important ones [1]:

• Network data such as roads, footpaths, tram routes
• Additional traffic infrastructure such as traffic lights, induction loops
• Traffic demand
• Traffic constraints e.g. speed limits, construction sites, bus lanes.

It is time consuming and requires effort to prepare a traffic simulation model using
these elements. Therefore, many simulation tools provide ready to use simulation mod-
els so that the user can directly test their traffic improvement strategies and saves time
and effort required for simulation [2].

One of the main motive of traffic simulation is to evaluate different traffic improvement
strategies. This study shows another traffic improvement strategy based on emergency
vehicles. “An emergency vehicle is a vehicle that is used by emergency services to re-
spond to an incident” [3]. Even a small reduction in the arrival time of EVs (fire brigade,
ambulance or police) can save lives of the people who need immediate assistance. To
tackle such situations EVs have special rights such as violating red lights when ap-
proaching a traffic light junction (TLJ) or traveling in the opposite direction to reduce
the arrival time. But this approach is not a full proof approach to optimize the arrival
time. As, there are times when EVs are stuck in a long queue of vehicles in front of the
TLJ or are stuck in a traffic congestion where there is no way to overtake.

The main objective of the study is to simulate the road traffic of the Mörfelder Land-
straße in the Sachsenhausen area, Frankfurt am Main, Germany, followed by studying
and evaluating different scenarios to optimise the arrival time of emergency vehicle
which could help in combating the aforementioned situations.

This paper is structured as follows: Section 2 discusses in details about the master
data, demand modelling and simulation process by elaborating on data pre-processing,
network modification and traffic generation. Section 3 explains solution methodology,
different case scenarios for EVs. Section 4 shows the result obtained from the case
scenarios. Section 5 presents the conclusion and future work.

2 Master Data, Demand Modelling and Simulation

The data flow diagram based on Gane-Sarson methodology is shown in Figure 1. Mas-
ter Data consists of the road network (supplemented with additional infrastructure and
traffic constraints) and the aggregated vehicle count for 24 hours. The vehicular counts
are provided in the form of shape file for the geographical location of the Sachsen-
hausen area in Frankfurt am Main and the road network is imported from Open Street
Map [4].

A methodology named as Gravity Model [5] is used for calculating Origin Destina-
tion Matrices (ODMs). It is based on the principle of gravitation theory of Newtonian
physics. With reference to the traffic planning, the Gravity Model theory states in [5]
that: ”the number of trips between two Traffic Assignment Zones (TAZ) will be directly
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Figure 1. Data Flow Diagram, whereas Master Data comprises of additional infrastructure and
traffic constraints

proportional to the number of productions in the production zone and attractions in the
attraction zone. In addition, the number of interchanges will be inversely proportional
to the spatial separation between the zones.”

Mathematically, the Gravity Model is defined as [5]:

Tij = Pi

[
AjFijKij∑n

k=1 AkFikKik

]
, (1)

with Tij: number of trips from zone i to zone j, Pi: number of trips produced by zone
i, Aj: number of trips attracted by zone j, Fij: friction factor relating the spatial sep-
aration between zone i and zone j, Kij: optional trip-distribution adjustment factor for
interchanges between zone i and zone j, n: the number of zones.

The initial values of Pi and Aj are considered from the vehicular counts provided in
the form of a shape file. The friction factor and trip distribution adjustment factor are not
considered in this study as the only available data is traffic counts. Therefore, equation
mentioned below is used for calculating the trip distribution:

Tij = Pi

[
Aj∑n

k=1 Ak

]
. (2)

Before applying this methodology, there are two assumptions made regarding the road
network: First, the number of cars occupying the parking space and freeing the parking
space are equal as in reality the difference is negligible compared to the normal traffic.
Therefore it is not taken into consideration. The second assumption is that there is no
generation or elimination of cars within the TAZ (conservative network). Additionally,
the total number of cars generated at the entry points of the TAZ should be equal to
the total number of cars eliminated at the destination points of the TAZ. This is known
as “the closing condition at the edge” [6], also shown in equation 3:

n∑
i=1

Pi =
n∑

j=1

Aj, (3)

with Pi: number of trips produced by zone i, Aj: number of trips attracted by zone j, n:
the number of zones [6].
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If this closing condition is not met, which is shown in equation 3 then the balancing
process is performed using equations 4 and 5. This process is adopted from [5] and
is divided into two steps. Firstly, the balancing factor is calculated using equation 4.
Secondly, the number of trips attracted by each zone is multiplied by this balancing
factor calculated in step 1 to attain balanced number of trips attracted by each zones,
shown in equation 5 and this leads to the fulfillment of equation 3:

Factor =

∑n
i=1 Pi∑n
j=1 Aj

, (4)

with Factor: balancing factor, Pi: number of trips produced by zone i, Aj: number of
trips attracted by zone j and

A
′

j = Factor ∗ Aj, (5)

with A
′
j: balanced number of trips attracted by zone j.

Once the closing condition is met, the trip distribution matrix is generated using equa-
tion 2. The matrix balancing approach [6],[5] is carried out to ensure that the expected
number of trips produced is equal to the calculated number of trips produced for all
the zones. Similarly, the expected number of trips attracted is equal to the calculated
number of trips attracted for all the zones. This is shown in equation 6 and 7. This is an
iterative process, and it iterates until the calculated production and attraction is equal
to the expected production and attraction i.e. FactorAj and FactorPi converges to 1.
This process is implemented using a python script:

FactorAj =
GivenAj

TotalAj

, FactorPi =
GivenPi

TotalPi

, (6)

with GivenAj : expected number of trips attracted by zone j, TotalAj : calculated num-
ber of trips attracted by zone j, GivenPi : expected number of trips produced by zone
i, TotalPi : calculated number of trips produced by zone i and

D
′

ij = FactorAj ∗ FactorPi ∗Dij, (7)

with Dij: trip interchange calculated for each entry/exit zone.

Due to the numerical reasons, equation 6 and 7 do not converges to 1. To solve this
issue, a heuristic approach is used where the study area is divided into 3 parts. This
leads to the creation of 3 constant ODM. Hence section based demand modelling is
performed. The study area for demand modelling is Mörfelder Landstraße. This stretch
is around 3.3 km long, also highlighted in the Figure 2. A total of 21 entry/exit zones
are present in the study area marked in red in Figure 2.

The calculated constant ODMs consist of aggregated count for 24 hours. Then the
distribution of the counts over the period of 24 hours is done with the help of induction
loop data. This data contains counts from June 2020 till March 2021 and each of this
count is split with the time interval of 15 minutes starting from 00:00 until 23:57. With
the combination of induction loop data and SUMO functionalities such as od2trips and
duarouter, time dependent ODMs based route files are created. This acts as the input
to SUMO to simulate the road traffic. In addition to the simulation of passenger cars,
trams are also modelled with safety traffic lights at the tram stops. They are simulated
using public transport model provided by SUMO. The frequency for the trams are set
to every 10 minutes.
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Figure 2. Study Area - Demand Modelling

3 Solution Methodology, Case Scenarios and Study Area

3.1 Solution Methodology

There are many studies carried out to optimize the arrival time of EVs such as op-
timization in routing and dispatching of EV which can led to faster routes for EV [7],
ranking of alternatives for emergency routing [8]. However, behaviour of pedestrians,
especially children is unpredictable, and even though SUMO can be used to model
such patterns, but in the real world it does not function exactly in the simulation. In the
case of re-routing an EV, the algorithm prioritizes the shortest route which is free of
traffic. But the shortest route could include residential areas that consist of more foot
traffic as compared to main streets. Thus, the preferred approach in this study is EV
prioritization approach using V2X (Vehicle to Infrastructure) communication with TLJ.
This approach is adopted from [9],[10],[11]. The basic approach is that as soon as
the EV arrives at TLJ, traffic light is switched to green for the direction of EV trip and
prioritizes the EV[9],[10],[11].

The following steps are performed for the EV prioritization application which is also
known as the WALABI approach[9]:

• EV sends CAMs (Cooperative Awareness Messages) and route information
• Road side unit informs Traffic Management Center (TMC)
• TMC sets traffic lights on the route of the EV: green for the EV and red for all other

traffic participants
• After the EV has passed the intersection normal operation continues.

For the aforementioned EV prioritization approach, the question arises what should
be the optimal distance between an EV and the traffic light so that the traffic light should
turn green. The study [10] shows that the EV is usually within the range of 300 meters
from the TLJ and when EV enters this range, the traffic light is turned to green and when
EV passes the TLJ the traffic light switches back to normal. Therefore 300 meters is
considered as a threshold distance value for scenario 2 which is discussed in section
3.3.

There is a negative consequence of having this predefined value that is for the other
vehicles who are waiting in front of the red signal. If the red phase on the traffic light
increases then traffic congestion on the other side may also increase leading to more
chaos and more time to diffuse the traffic congestion. Therefore to solve this issue, in-
stead of taking a predefined value, it is calculated dynamically (dynamically calculating
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threshold distance). This threshold distance is calculated using the speed of the EV
and the number of vehicles waiting in front of TLJ shown in equation (8) and (9). This
approach is adopted from the study in [9]:

Tfree = (Nwaiting + 1) ∗ tB + tsafety, (8)
with Tfree: time which is needed to let the EV pass the traffic light, Nwaiting: number of
vehicles waiting in front of TLJ, tsafety: safety time which is 3 seconds, tB: time required
for one vehicle to pass the intersection which is 1.8 sec and

d = Tfree ∗ VEV , (9)
with d: distance of the EV to the intersection, VEV : speed of the EV.

3.2 Emergency Vehicle Prioritization Study Area

The highlighted path shown in the Figure 3 is the route of EVs whose behaviour is
evaluated in the simulations. The route length is approximately 1.5 km consisting of 3
major and 2 minor junctions of the Mörfelder Landstraße which are mentioned in Table
1.

Figure 3. EV Study Area [4]

Table 1. Junction Details

Junction ID Junction Name
Junction 1 Oppenheimer Landstraße and Mörfelder Landstraße junction
Junction 2 Schweizer Straße and Mörfelder Landstraße junction
Junction 3 Darmstädter Landstraße and Mörfelder Landstraße junction
Junction 4 Großer Hasenpfad and Mörfelder Landstraße junction
Junction 5 Grethenweg and Mörfelder Landstraße junction

3.3 Case Sceanrio

For each of the three scenarios which are considered for studying the behaviour for
EVs, there are two cases considered. One is the usual traffic condition and other is the
closed lane based on the assumption that only one lane stays available and all others
are closed due to construction/incident reasons or by prioritizing these lanes for non
car traffic. Hence making up a total of six scenarios.
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1. Scenario 1: No-Priority for EVs i.e EV runs with their special rights such as violat-
ing red lights - Usual Traffic Condition (all available lanes are open)

2. Scenario 2: EV prioritization where prioritization starts at a pre defined distance
i.e. 300 meters - Usual Traffic Condition (all available lanes are open)

3. Scenario 3: EV prioritization where prioritization starts at a dynamically calculat-
ing distance at run-time - Usual Traffic Condition (all available lanes are open)

4. Scenario 4: No-Priority for EVs i.e EV runs with their special rights such as vio-
lating red lights - Closed Lane (one or more closed lane present in the route of
EV)

5. Scenario 5: EV prioritization where prioritization starts at a pre defined distance
i.e. 300 meters - Closed Lane (one or more closed lane present in the route of
EV)

6. Scenario 6: EV prioritization where prioritization starts at a dynamically calcu-
lating distance at run-time Closed Lane (one or more closed lane present in the
route of EV).

In this study area, around 60% of the street has more than 1 lane. Figure 4 shows
the setup of closed lanes where edges highlighted in red colour signifies that lanes are
closed.

Figure 4. Closed Lane Setup [4]

To generate traffic in a realistic manner, induction loop data is used. This data of
induction loops is cleaned, averaged out and normalised over the total number of cars
which resulted in creation of traffic flow distribution over the course of the day. It is
shown in Figure 5. The X axis represents the time of timeslice [hh:mm] and the Y axis
represents the average rate normalised for the overall traffic per day. The maximum
averaged, measured count per 3 minutes is observed around 8 am, which is 30 cars. It
can be seen in the Figure 5 that the congestion in the morning from 7:00 am until 10:30
is the most on the street of the Mörfelder Landstraße and therefore that is the time
range selected for testing the EV. A total of 10 EVs are run between this time range
and their trip time and delay time are compared.

4 Results

This section explains the simulation results obtained for case scenarios discussed
above. A total of 10 EVs (ambulances) are run. The departure time for each of these
EV are 8:21, 8:36, 8:53, 9:06, 9:21, 9:35, 9:51, 10:06, 10:21 and 10:36 a.m. respec-
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Figure 5. Traffic flow split of the 24 hour count for the Mörfelder Landstraße with timeslices of
3 minutes intervals

tively. The KPIs that have been considered are the total trip time (time required for the
vehicle to finish the trip) and total delay time (time for which the vehicle travels below
the ideal speed). For EVs, the speed is set 50% above the speed limit of the edge
specified by the attribute ”speed factor” which is defined as 1.5 while configuring the
EV in SUMO. This is adopted from the study [12].

4.1 Emergency Vehicle Behaviour - Normal Traffic Condition

Table 2 and 3 show the comparison of total trip time and total delay time for each of
the EVs, where ”EV with No-Priority (Normal Traffic Condition)” scenario acts as the
baseline reference for calculating the impact. For scenario 1, the trip time varies be-
tween 238 and 439 seconds. The average for scenario 1 is 315 seconds and empirical
variance is 60.5 which is 19% of the average. This variance is almost the same for
all other scenarios (20±3%). The first reason for this variance are the different traffic
conditions such as traffic density. However, there are some specific events that have
major impact on the trip time. In some simulations when a tram stops, the subsequent
red traffic light led to a delay since the EV is not able to overtake the tram. This is
also reflected in total delay time in Table 3 for e.g. ambulance with ID 6 Ambulance.
For scenarios 2 and 3 the average trip time is 153 and 162 seconds respectively and
average delay time is 82 and 91 seconds respectively.
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Table 2. Normal Traffic Condition - Total Trip Time

Total Trip Time No With With Dynamic
(seconds) Priority Priority Priority

Scenario 1 Scenario 2 Scenario 3
1 Ambulance 326 202(-38%) 210(-36%)
2 Ambulance 374 153(-59%) 122(-67%)
3 Ambulance 297 193(-35%) 216(-27%)
4 Ambulance 293 153(-48%) 146(-50%)
5 Ambulance 260 149(-43%) 163(-37%)
6 Ambulance 439 118(-73%) 141(-68%)
7 Ambulance 342 157(-54%) 181(-47%)
8 Ambulance 253 135(-47%) 131(-48%)
9 Ambulance 328 146(-55%) 155(-53%)
10 Ambulance 238 127(-47%) 152(-36%)

Table 3. Normal Traffic Condition - Total Delay Time

Total Delay Time No With With Dynamic
(seconds) Priority Priority Priority

Scenario 1 Scenario 2 Scenario 3
1 Ambulance 255 131(-49%) 139(-46%)
2 Ambulance 303 82(-73%) 52(-83%)
3 Ambulance 226 123(-46%) 145(-36%)
4 Ambulance 222 82(-63%) 75(-66%)
5 Ambulance 195 78(-60%) 93(-53%)
6 Ambulance 368 48(-87%) 71(-81%)
7 Ambulance 272 86(-68%) 110(-59%)
8 Ambulance 182 64(-65%) 60(-67%)
9 Ambulance 258 75(-71%) 84(-67%)
10 Ambulance 167 56(-66%) 81(-52%)

4.2 Emergency Vehicle Behaviour - Closed Lane Scenario

Table 4 and 5 show the comparison of total trip time and total delay time for each of
the EVs (Closed Lane), where ”EV with No-Priority (Closed Lane)” scenario acts as the
baseline reference for calculating the impact. For scenario 4, the trip time varies be-
tween 242 and 469 seconds. The average for scenario 4 is 344 seconds and empirical
variance is 70.2 which is 20% of the average. The variances of the scenarios 4, 5 and
6 are almost the same as scenarios 1, 2 and 3 which is (20±3%). The reasons for the
variances are the same like in section 4.1 but the occurrences of these special events
happened in different time intervals. This is also reflected in total delay time in Table 5
for e.g. ambulance with ID 2 Ambulance. For scenarios 5 and 6 the average trip time is
183 and 191 seconds respectively and the average delay time is 112 and 117 seconds
respectively.
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Table 4. Closed Lane - Total Trip Time

Total Trip Time No With With Dynamic
(seconds) Priority Priority Priority

Scenario 4 Scenario 5 Scenario 6
1 Ambulance 291 268(-8%) 225(-23%)
2 Ambulance 467 159(-66%) 182(-61%)
3 Ambulance 397 214(-46%) 230(-42%)
4 Ambulance 302 164(-46%) 178(-41%)
5 Ambulance 375 209(-44%) 238(-37%)
6 Ambulance 258 169(-34%) 190(-26%)
7 Ambulance 349 197(-44%) 206(-41%)
8 Ambulance 356 133(-63%) 153(-57%)
9 Ambulance 399 178(-55%) 146(-63%)
10 Ambulance 242 140(-42%) 157(-35%)

Table 5. Closed Lane - Total Delay Time

Total Delay Time No With With Dynamic
(seconds) Priority Priority Priority

Scenario 4 Scenario 5 Scenario 6
1 Ambulance 220 197(-11%) 154(-30%)
2 Ambulance 396 88(-78%) 111(-72%)
3 Ambulance 326 144(-56%) 160(-51%)
4 Ambulance 231 93(-60%) 107(-54%)
5 Ambulance 305 138(-55%) 167(-45%)
6 Ambulance 187 98(-48%) 120(-36%)
7 Ambulance 278 126(-55%) 108(-61%)
8 Ambulance 285 63(-78%) 82(-71%)
9 Ambulance 328 107(-67%) 75(-77%)
10 Ambulance 171 69(-59%) 86(-50%)

4.3 Threshold Distance

In Scenario 2 and 5, the threshold distance is constant i.e. 300 meters. In contrast for
scenario 3 and 6, the threshold distance is calculated using equation 8 and 9. Table 6
and 7 show this distance for all major junctions. The variance of these distances is due
to the change in the number of vehicles waiting in front of the TLJs and the speed of
the ambulance when entering the study area. The velocity used in these equations are
derived from initial calculated speed of the ambulances after entering the study area.
It ranges between 36 and 55 km/h.
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Table 6. Normal Traffic - Dynamic Distance

Dynamic Distance Junction 1 Junction 2 Junction 3 Junction 4 Junction 5
(Normal Traffic)
1 Ambulance 263 201 97 222 118
2 Ambulance 87 253 182 111 134
3 Ambulance 139 230 139 121 67
4 Ambulance 211 156 432 101 239
5 Ambulance 334 236 358 138 65
6 Ambulance 394 179 340 179 72
7 Ambulance 397 261 451 126 72
8 Ambulance 196 60 60 105 60
9 Ambulance 276 250 457 146 69

10 Ambulance 83 218 240 105 60

Table 7. Closed Lane - Dynamic Distance

Dynamic Distance Junction 1 Junction 2 Junction 3 Junction 4 Junction 5
(Closed Lane)
1 Ambulance 261 119 47 47 47
2 Ambulance 312 232 526 152 178
3 Ambulance 220 91 188 91 91
4 Ambulance 375 101 348 101 320
5 Ambulance 231 183 207 111 64
6 Ambulance 369 142 142 67 92
7 Ambulance 397 126 208 181 72
8 Ambulance 118 65 100 47 136
9 Ambulance 258 71 205 71 98

10 Ambulance 117 179 283 76 76

4.4 Aggregated Results

Table 8 shows the average impact for EVs under ”Normal Traffic” condition where the
number in parenthesis gives the average of the absolute impact and the percentage
gives the average of the relative impact compared to the baseline reference. The sce-
nario ”EV with No-Priority” is the baseline reference. Table 9 shows the average impact
for EVs with ”Closed Lane” condition. Here, the scenario ”EV with No-Priority (Closed
Lane)/Scenario 4” is the baseline instead of ”EV with No-Priority/Scenario 1”. More-
over, Table 10 ”Baseline Comparison” shows the average increment in the travel time
and delay time when the lanes are closed.

Table 8. Normal Traffic Average Impact

Normal Baseline With With Dynamic
Traffic Reference Priority Priority

Scenario 1 Scenario 2 Scenario 3
trip time 315s -51%(-162s) -49%(-153s)

delay time 245s -66%(-162s) -63%(-154s)
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Table 9. Closed Lane Average Impact

Closed Baseline With With Dynamic
Lane Reference Priority Priority

Scenario 4 Scenario 5 Scenario 6
trip time 344s -47%(-161s) -45%(-153s)

delay time 273s -59%(-160s) -57%(-156s)

Table 10. Baseline Comparison

Base Line Reference Normal Traffic Closed Lane Normal Traffic vs
Scenario 1 Scenario 4 Closed Lane

trip time 315s 344s +9%
delay time 245s 273s +11%

5 Conclusion and Future Work

5.1 Conclusion

The optimization process used in this study involved data pre-processing. This in-
cludes improvement of master data quality which required network modelling and the
creation of ODMs to make the models as realistic as possible. During the process of
importing networks from OSM, the imported network contained a lot of errors due to
the misalignment with reality such as errors in simple road links (lanes wrongly con-
nected), classification of lanes etc. Therefore, network corrections were done using
SUMO (SUMO’s editing tool NETEDIT). ODMs were created by leveraging tools such
as Python and Excel. These processes were time consuming but at the same time it
was important for the execution of the models.

The simulation results in Table 8 and 9 show that the implementation of EV prioriti-
zation techniques results in a significant improvement of the KPI values. For ”Normal
Traffic” condition, the average trip time and delay time is dropped by 51% and 49%,
66% and 63% respectively. For the ”Closed Lane” condition, increases in travel time
and delay time was anticipated but the impact is lower than expected. The reason
maybe that only 33% of the overall multi lanes were reduced to one lane. However,
the average trip time and delay time is also dropped by 47% and 45%, 59% and 57%
respectively. The maximum impact were seen on the scenarios where the tram stops
ahead of the ambulance and the subsequent traffic light is switched to green. The
model where threshold distance is calculated dynamically is not as good as expected.
The reason is that the calculated distance is mostly lower than 300 meters for all major
junctions which reduces the optimization of the travel time of the ambulances. Nev-
ertheless, in all cases the travel time was reduced with the intervention into the traffic
infrastructure. Therefore, it can be concluded that through the EV prioritization ap-
proaches using V2X communication, EVs can save precious seconds which could be
the difference between life and death for a person in need.

5.2 Future Work

In future work, the impact of the length of the closed lanes on the arrival times of the
EV should be investigated. Another interesting addition to the simulation would be to
include foot traffic (pedestrians), buses and cyclists. The current model is used to study
only one EV at a given instant during the simulation. Therefore, further studies could
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be implemented to handle multiple EVs at the same time. As SUMO is a continuously
improving software and thus, for this model, there is still scope of improvement for
lane changing functionalities e.g. overtake using the opposite lane. The traffic light
control plans used in the study are edited as per demand model. Further work can
be carried out to incorporate real world traffic control plans that could lead to even
more accurate depiction of the real-world scenario. Since ”Dynamic Priority” scenario
calculates the threshold distance often less than 300m, delivering the results in the
section 4, the parameters in the ”Dynamic Priority” strategy needs to be optimized.
Finally, this simulation needs to be redone with higher, post pandemic traffic rates.
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Abstract. Microscopic traffic flow simulations as tools for enabling detailed insights on traffic 
efficiency and safety gained numerous popularity among transportation researchers, planners 
and engineers in the first to decades of the 21st century. By implementing a test bed for simu-
lation scenarios of complex urban transportation infrastructure it is possible to inspect specific 
effects of introducing small infrastructural changes related to the built environment and to the 
introduction of advanced traffic control strategies. The possibility of reproducing present prob-
lems or the transportation services, such as the ones of public bus services is a key motivation 
of this work. In this research, we reproduce the road network of the city of Kyoto for observing 
specific travel patterns of public buses such as the bus bunching phenomena. Therefore, a 
selection of currently available data sets is used for calibrating a cutout of the Kyoto road net-
work of a relatively large extent. After introducing a method for geodata extraction and conver-
sion, we approach the calibration by introducing virtual detectors representing present induc-
tive loops and make use of historical traffic count records. Additionally, we introduce bus routes 
partially contributed by volunteer mappers (OSM project). First simulation outcomes show nu-
merous familiar (local knowledge) flow patterns. 

Keywords: Simulation and Modeling, Network Modeling, Public Transportation Management, 
Calibration  

1. Introduction

In this research, we aim to design data conversion procedures to create a digital twin (of at 
least the transportation-related aspects) of the city of Kyoto, Japan. Starting with gathering 
various data sources – static and dynamic information on infrastructural design elements, 
movement representations of tracked road users and sensors for providing traffic counts – we 
define suitable options for modeling and simulating private and public transport. The basic idea 
is to make use of the available traffic count information gathered in 5-minute-intervals from 
more than 1000 sensor location across the whole city for calibration purposes. By extracting 
OpenData on public transport services, we are able to model and simulate most of the present 
bus services and routes (and partially rail-based public transport). 
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We aim to first validate our microscopic traffic flow simulation with real bus trajectories and 
understand specific patterns of delays and congestions at selected time windows. Further-
more, our idea is to introduce method improvement procedures to not only design a data-driven 
conversion pipeline, but also to define a prototypical testbed for testing various traffic control 
strategies for different travel modes. 

2. Methodological Approach – An Overview 

2.1 Open Geodata Extraction and Conversion into Simulation Networks 

One first complex task is the generation of a directed and routable road network, which should 
allow route generation by means of estimating OD-Matrices based on traffic count information 
coming from static sensors such as induction loops. The conversion of this network can be 
started with Volunteered Geographical Information (VGI) coming for example from the Open-
StreetMap project [1]. Other, more detailed information might come from video data acquisi-
tions and field observations. Our approach makes use of the netconvert tool [2] of the micro-
scopic traffic flow simulation environment SUMO [3]. Similar to the approach of Keler, 
Grigoropoulos, and Mussack (2019) [4], we start with an extraction of raw OSM data by select-
ing a rectangle investigation area. After the conversion step into a PlainXML format, we are 
able to improve manually the quality of the road network representation by adjusting elements 
and specific details of the transportation infrastructure via the tool netedit (of SUMO). We refer 
to this by the blue box on the lower left side of Figure 1 by “Improving Conversion Quality”. 

 

Figure 1. Workflow of the approach and components of improvement in blue boxes num-
bered from 1 to 3. 

With the aim of creating a case study covering the most urban area of Kyoto and focusing on 
the most complex intersections in the City – we extracted a study area around the public bus 
route 205, as it is pictured in Figure 2. 

2.2 Matching Sensor or Event Locations along Simulation Networks 

After this road network representation generation, we are facing the problem of matching exact 
sensor locations onto lanes of the road network with respect to the allowed driving direction. 
Matching in the present approach for the Kyoto investigation area is conducted as Nearest-
Neighbor-Search with a matching relation of 1:1, which means one point record (respective 
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induction loop location) is matching exactly one road edge or one road lane (in this case with 
a specific driving direction). 

Related research, which might improve the current data matching outcomes for the case 
of induction loop locations, includes the idea of an exact statistical method for analyzing co-
location on a street network with a Japanese case study by Morioka, Okabe, Kwan, and 
McLafferty (2021) [5]. This fact is visualized in Figure 1 by the blue box on the upper-right side, 
indicating that this may highly influence the quality of the subsequent calibration and simulation 
results. 

This problem of matching point data along a network is also partially intensively investi-
gated by Okabe and Sugihara (2012) [6] in a practitioner book and an accompanying GIS tool 
named SANET (Spatial Analysis along NETworks). 

 

Figure 2. Locations of the bus stops of bus route 205 in Kyoto (a) and extracted and con-
verted sumo traffic flow simulation network (b). 

2.3 Calibration of the Simulation Network based on Aggregated Induction 
Loop Information - Estimating OD Matrices from Traffic Counts 

The problem of estimating O-D demand flows using traffic counts is already very present in the 
literature and might be solved via numerous different approaches [7]. 

In our approach, we use the tool “flowrouter.py” [8] with partially reasonable results for our 
case study in Kyoto. 

The simulation outcomes are currently being validated. Out of the 1100 installed perma-
nent inductive loops in Kyoto, there are 451 located at the road network selection of the inves-
tigation area pictured in Figure 2. Based on selected or aggregated time windows we generate 
routes that comply with the observed or temporally-aggregated number for every virtual detec-
tor in our simulation runs. This means that every direction and lane that matches every of the 
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451 detectors is being taken into account while generating the routes of the private transport 
vehicles. 

On the other hand, the buses are being simulated by introducing time tables and known 
headways for every fully- or partially-available bus route of our investigation area. 

3. First Results and Novel Insights 

Our first traffic flow simulation outcomes deliver novel insights of how to model road users and 
their compositions. As there different driving behavior with differing thresholds for car following 
and overtaking (compared to European conditions), deadlock situations as in Figure 3a appear 
at selected simulated intersections of the Kyoto simulation network. These situations might be 
avoided by adjusting the behavior of all simulated road users. 

Other appearances, when simulating all public bus services, are similar to the bus bunch-
ing phenomena as pictured in Figure 3c. This might be a pattern of the real world worth to be 
validated with real bus trajectories. As Sun, Schmöcker, and Nakamura (2020) [9] state in their 
research this is a typical pattern for the bus service in Kyoto, implying a problem for passengers 
and other road users due to its relation with operational delays and with bus dwell times. In 
Kyoto, there is a schedule-adhere mechanism (holding the bus at the stop until the timetable 
time) but only when the bus is ahead of schedule. Bunching can happen when both buses are 
behind schedule and the operator will not hold the following bus to retrieve the headway [9,10]. 

 

Figure 3. Selected results of the sumo simulation of Kyoto with (a) showing a deadlock situa-
tion at (b) a signalized intersection, and (c) bus bunching example. 

4. Conclusion and Outlook 

This work presents a framework for generating and calibrating a microscopic traffic flow simu-
lation network of the larger scale investigation area in Kyoto as pictured in Figure 2. Several 
simulation outcomes comply with real world observations, mainly due to the availability of the 
detailed (records from 5-minute-intervals) historical traffic count data sets. 

Nevertheless, several evaluation steps are required for inferring a valid simulation testbed, 
which can be seen as parts of the calibration procedure. 
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The inclusion of realistic behavior in the simulated traffic of Kyoto requires the adjustment 
of various model parameters. In case of the sumo applications this is related especially to the 
intersection model, but as well the car-following and lane-changing model. Introducing cyclists 
besides pedestrians would as well rely on for example adjusting the sub-lane model parame-
ters in sumo. 

Another bigger adjustment is related to the requirement to depict the signal programs at 
the signalized intersections in our investigation area. This would need an evaluation step for 
adjusting the previously estimated signal phases via applying the netconvert tool [2]. The avail-
ability of this information is currently being proven. Optionally, on-site observations would be 
required for a more detailed evaluation of the currently implemented programs at the respec-
tive intersections. 

In an outlook to further linking additional information we can estimate selected possibilities 
due to the availability of additional Open Data, which might be important for estimating the 
demand of passenger flows. One example is pictured in Figure 4 by conducting a spatial anal-
ysis of GeoNames locations at the Kyoto investigation area. 

 

Figure 4. Spatial analysis example for estimating the amount of semantic and linked infor-
mation in points of interest (POIs). 

This takes also into account that intermodal trips should be defined for representing the 
most important times of the day of the inspected bus services – rush hours during week days 
with the presence of numerous tourists making use of selected bus routes for sightseeing pur-
poses. This passenger demand is as well related to the distribution of populations in the city, 
which is itself related to distribution of selected building types and respective specifications. By 
including these insights into the present traffic flow simulation, we might estimate the numbers 
and spatial distributions of daily commuters and their daily travel patterns on a macroscopic 
level. 

All in all, we can say that additional input data might highly benefit the already realistic 
simulation outcome of our present simulation testbed for the Kyoto case study. Additionally, 
the idea of a network-scale calibration for the entire City of Kyoto is an additional work in pro-
gress, which might benefit evaluating the findings discovered from our present study [10]. 
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