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Abstract 
Connected and automated driving functions are key components for future vehicles. Due to 

implementation issues and missing infrastructure, the impact of connected and automated vehicles 
on the traffic flow can only be evaluated in accurate simulations. Simulation of Urban Mobility 
(SUMO) provides necessary and appropriate models and tools. SUMO contains many car-following 
models that replicate automated driving, but cannot realistically imitate human driving behavior. 
When simulating queued vehicles driving off, existing car-following models are neither able to 
correctly emulate the acceleration behavior of human drivers nor the resulting vehicle gaps. Thus, we 
propose a time-discrete 2D Human Driver Model to replicate realistic trajectories. We start by 
combining previously published extensions of the Intelligent Driver Model (IDM) to one generalized 
model. Discontinuities due to introduced reaction times, estimation errors and lane changes are 
conquered with new approaches and equations. Above all, the start-up procedure receives more 
attention than in existing papers. We also provide a first evaluation of the advanced car-
following model using 30 minutes of an aerial measurement. This dataset contains three hours 
of drone recordings from two signalized intersections in Stuttgart, Germany. The method designed 
for extracting the vehicle trajectories from the raw video data is outlined. Furthermore, we evaluate 
the accuracy of the trajectories obtained by the aerial measurement using a specially equipped vehicle. 

1 Introduction 
In the last few decades, many traffic simulation software packages have been developed to study 

traffic flow and movement patterns of pedestrians. Multiple reviews regarding performance, usability 
and portability of the programs SUMO (Lopez et al. 2018), PTV Vissim, Aimsun, Paramics, MATSim, 
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CORSIM and TRANSIM have been published in Kotusevski and Hawick (2009), Ejercito et al. (2017) 
and Dallmeyer (2014). SUMO’s ability to handle large networks and its open source framework make 
it attractive for researchers. The source code, written in C++, can be fully examined and modified. This 
creates a foundation for integrating custom car-following models and devices. Another notable add-on 
is the “Traffic Control Interface” (TraCI) (Wegener et al. 2008), which enables the communication with 
SUMO via the Transmission Control Protocol (TCP). 

Simulation studies and modifications utilizing SUMO are often related to connected and 
autonomous driving functions. VSimRTI (Queck et al. 2008) and Veins (Sommer et al. 2008) are two 
exemplary communication tools, which use TraCI to connect the traffic simulation SUMO with network 
simulators (NS2/NS3 or OMNET++), so that real-world network protocols and V2V communication 
can be developed and tested. A multitude of researchers have carried out investigations of how 
connected and autonomous driving will change the road capacity and future traffic flow, by using 
custom programmed devices and extensions, such as the Adaptive Cruise Control (ACC) and 
Cooperative Adaptive Cruise Control (CACC) models (Milanés and Shladover 2014; Xiao et al. 2017; 
Xiao et al. 2018). Among them, Alekszejenkó and Dobrowiecki (2019) present an intelligent traffic 
control algorithm coupled with platooning vehicles developed in SUMO to improve urban traffic flow. 
They point out that future work would need to analyze the impact of human drivers in the scenario to 
better quantify the improvements. Richter et al. (2019) actually study the effect of mixed traffic 
(autonomous vehicles and human drivers) on a highway. They use the Krauss model (Krauss et al. 
1997) and define smaller time headways, reaction times and sigma values (driver imperfection) for 
autonomous vehicles. 

Other studies in this field, e.g., Derbel et al. (2012) and Zhou et al. (2016), use the IDM to represent 
the automated vehicles. They show that the original IDM is particularly well equipped to replicate 
automated driving, while the human driving behavior is either simulated using the Two Velocity 
Difference Model (Derbel et al. 2012) or the Full Velocity Difference Model (Zhou et al. 2016).  

SUMO is also often used for extracting realistic trajectories and their characteristic values. The 
trajectories are then used to retrieve typical driving cycles to calculate the energy consumption of 
vehicles (Macedo et al. 2013; Pfeil 2019; Donateo et al. 2010). These studies use SUMO to incorporate 
the effect of infrastructure and traffic dynamics on the consumption. Grumert et al. (2015) and Erdağı 
et al. (2019) go one step further, not merely focusing on the energy used, but also taking the emissions 
into account. The Krauss model was used for these investigations, which result in realistic velocities 
and traffic flow, but may produce unrealistic accelerations and therefore emissions. When using 
macroscopic values in combination with, e.g., the Handbook Emission Factors for Road Transport 
(HBEFA), the calculated values can be fairly accurate, but when extracting single trajectories, the 
results can highly depend on the acceleration. For this reason, a car-following model is needed that can 
produce realistic accelerations and jerks. 

2 Related Work 
According to the thorough review in Saifuzzaman and Zheng (2014), car-following models can be 

categorized as follows: safety distance models, Cellular Automata, Optimal Velocity Models, desired 
measures models, Gazis-Herman-Rothery models and their extensions as well as models based on the 
human perspective. The last category contains models with perception thresholds, models based on risk-
taking of the driver or driving by visual angle. Enhancements include fuzzy logic, distraction and driver 
errors.  

Safety distance models are designed to always provide a safe distance and prevent collisions. In the 
Gipps model (Gipps 1981), this is achieved without considering the speed of the respective vehicle. The 
virtual driver intends to always brake with parameter b, expecting the leader to decelerate with the 

Salles et al. |  SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 
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They include: 

 Change of speed limits
 Reaction times, light signals and priorities at junctions before drive off
 Reaction times before braking
 Greater gaps after lane changes
 Smaller gaps after lane changes
 Driving behavior near the minimal gap

Salles et al. | SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

identical value. In heterogeneous traffic, this can result in collisions. When the braking parameter b of 
the leader is assumed to be higher, unrealistically large gaps form between the vehicles. 

Optimal Velocity Models (OVM), originally developed by Bando et al. (1995), use a different 
approach. They employ a constant sensitivity coefficient to describe the reactivity of the driver. The 
model, however, is not free of collisions, and when the coefficient is selected to avoid accidents, it 
induces high accelerations and decelerations. Continuing developments led to the Generalized Force 
Model (Treiber et al. 2000) and the Full Velocity Difference Model (FVDM) (Jiang et al. 2001). In 
contrast to the OVM, the FVDM takes the velocity of the leader into account and, thus, stabilizes the 
model. 

Human drivers do not react to every single change of the environment. Wiedemann incorporated 
this observation into his psycho-physical model (Wiedemann 1974). The model features perception 
thresholds, which are only exceeded when the variables change significantly. In addition, The model 
differentiates between four different driving modes, Free driving, approaching, following and strong 
braking, and it has many more functions and parameters than other car-following models. 

In contrast, Cellular Automata (CA) and the Krauss model are much less detailed. Cellular Automata 
as car-following models were first introduced by Nagel and Schreckenberg (1992). They operate in a 
time- and space-discrete fashion. The road is therefore divided into equally large cells that can only be 
occupied by one vehicle at a time. The vehicle’s speed is randomized to produce stochastic behavior. 
Despite its simple nature, this model can realistically reproduce traffic phenomena. The Krauss model, 
the default car-following model in SUMO (Krauss et al. 1997), can be considered a space-continuous 
version of the Nagel and Schreckenberg model. It combines the advantages of the CA model with those 
of the Gipps model. The Krauss model operates collision-free and contains only a few functions and 
parameters. Additional advantages are the asymmetrical acceleration-deceleration behavior and the 
emulation of the human reaction time with the simulation step time. Therefore, this model can well 
replicate many observed traffic phenomena (Alazzawi et al. 2018), despite producing unrealistic 
acceleration and jerk patterns. 

This research article focuses mainly on the realistic representation of human acceleration patterns 
using car-following models. The selected integration scheme has a significant influence on this 
representation. As pointed out by Treiber and Kanagaraj (2015), the ballistic update is always more 
accurate than the Euler method or faster with the same accuracy. In SUMO, you can choose either one. 
Due to discontinuities, such as lane changes, the standard fourth-order Runga-Kutta method is not 
applicable for multi-lane traffic simulations. Therefore, car-following models like the OVM, FVDM, 
GHR and IDM have to be described in a time-discrete fashion, although they were all developed as 
time-continuous models. In this study, the Euler method was used, as it is the default integration scheme 
in SUMO. 

The original IDM produces realistic accelerations and jerks almost independently of the integration 
method and has been continuously modified since its introduction. Shortly thereafter, Treiber and 
Helbing (2004) concluded that human drivers leave larger gaps when driving off than the IDM predicts, 
although the jerk remains realistically small in all driving situations. It should not exceed 1.5 m/s3 
(Treiber and Kesting 2013b). To achieve this goal, all discontinuities that can occur in SUMO’s traffic 
simulation must be taken into account. 
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3.1 Improved Intelligent Driver Model 
The IDM, first introduced as a time-continuous model (Treiber et al. 2000), consists of two main 

equations and five parameters, the desired time headway �, the maximum acceleration ����, the desired
deceleration �, the minimum gap �0 and the acceleration exponent �. The desired gap

��−1
∗ (�) = �0 + ���( 0, ��−1(�) ∗ �−

��−1(�) ∗ (��(�) − ��−1(�))
2 ∗ √����∗ �

)  (1) 

depends on three of those parameters and the velocities ��(�) and ��−1(�). The acceleration

����(�+ ∆�) = ����[1 − (
��−1(�)

�0(�) )
�

− (
��−1

∗ (�)
�(�)

)
2

] (2) 

Figure 1: Notation of the car-following model 

��(�)��−1(�)

�, �, �, ����, �0

s(�) 

�0(�)
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The Extended Intelligent Driver Model (EIDM) is introduced in the following section. Chapter 4 
presents the case study and aerial measurement method. Similar databases to the here presented 
measurement method have recently been released and published by Krajewski et al. (2018) and Bock 
et al. (2019). Their drones observed German highways and unsignalized intersections, but urban traffic 
phenomena at signalized intersections are not included. The advantages of the drone measuring method 
are pointed out in the above mentioned articles: naturalistic driving behavior and the possibility to 
simultaneously capture the movement of multiple vehicles without any occlusion. The authors compare 
their datasets with that of the New Generation SIMulation (NGSIM) set (Kovvali et al.) and other urban 
intersection data. The NGSIM dataset includes trajectories of vehicles crossing intersections, but it is 
not possible to use the raw trajectories without first smoothing the data or re-extracting the trajectories 
from the video (Thiemann et al. 2008; Krajewski et al. 2018; Coifman and Li 2017). Consequently, the 
acceleration patterns are considered unrealistic. 

3 Car-following model 
This chapter starts off by reviewing the original IDM and its substantial enhancements so far. 

Subsequently, the EIDM is presented with all its modifications. Figure 1 defines the nomenclature, 
since many different definitions can be found in the literature. All listed parameters belong to the 
following vehicle and all variables regarding the leader will carry the subindex n. 
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�����(�) = ����[1 − (
��−1(�)

�0(�) )
�

] (3) 

without using the case distinction of the IIDM, but by linearizing the changes in the desired velocity 
�0(�) (see Section 3.4). The following equation of the resulting acceleration �(�+ ∆�) further differs
from that of the IIDM. Instead of calculating the exponent with �����(�), its absolute value is used. If
the exponent were negative, the acceleration would be unsteady at �0(�).

The resulting acceleration 

�(�+ ∆�) =

{

����[1 − (
��−1

∗ (�)
�(�)

)
2

]  ��−1
∗ (�) ≥ �(�)

�����(�) [1 − (
��−1

∗ (�)
�(�)

)

2∗����
|�����(�)|

]   ��ℎ������ 
(4) 

differentiates between two cases: driving at distances lower than the desired gap and higher than the 
desired gap. 

3.2 Human Driver Model 
The Human Driver Model (Treiber et al. 2006) was developed by the authors of the IDM. To 

generate human driver behavior in the model, they introduced a reaction time, imperfect estimation 
capabilities and temporal and spatial anticipation. Spatial anticipation has not yet been integrated into 
the EIDM in SUMO. 

Due to the time-continuous form of the IDM, the reaction time was introduced with a Delay 
Differential Equation (DDE). As SUMO runs in a time-discrete fashion, the variables of the last several 
time steps would need to be stored in vectors to employ this method, thereby requiring significant 
amounts of memory. In addition, the driver always reacts to an earlier state �− ����� ago and the model
needs to be carefully calibrated to stay stable. To solve these issues, Action Points (APs) are introduced. 
Simulating with APs implies that the driver can instantaneously process any information at the action 
time ���. Between two APs, the model uses the variables from the last AP update. Furthermore, ��� can
be varied throughout the simulation to overcome stability issues when the driver needs to react quickly. 

The estimation errors are modeled using a Wiener process, which is defined by the variable ��,
determined at step i, using the correlation time �̃, a randomized number �� of variance 1 and the time
step ∆� of SUMO: 

Salles et al. | SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

is determined by calculating the ratio between the current velocity ��−1(�) and the desired velocity 
�0(�) and the ratio between the desired gap ��

∗
−1(�) and the actual gap �(�). The latter ratio represents 

the intelligent braking strategy and assures a collision-free execution of this model. However, this term 
does not allow following vehicles to reach the desired velocity in homogeneous traffic conditions and 
induces ever larger gaps. The Improved Intelligent Driver Model (IIDM) accounts for this negative trait 
by changing the model characteristics close to the desired velocity (Treiber and Kesting 2013b). The 
new term of free acceleration leads to more realistic gaps between vehicles. The authors calculate 
����� (�) by differentiating between two cases: ��−1(�) ≤ �0 and ��−1(�) > �0. The EIDM calculates 
the free acceleration 
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��= �−∆�
�̃ ∗ ��−1 + √2∆�

�̃
∗ �� (5) 

The variable �� is then used to calculate the estimated distance  ����(�), the estimated velocity of
the leader ��

���(�) and a driving error ����(�), which is added to the acceleration term. For the
systematic derivation, see Treiber et al. (2006). 

In equations (6), (7) and (8), the variables ��(�), ��(�), ��(�) are the corresponding Wiener
processes, represented in (5). The parameters ��, �� and �� describe the respective magnitude of the
errors. 

 ����(�) = �(�) ∗ �����(�)       (6) 

��
���(�) = −�(�)����(�) + ��(�) (7) 

�̃(�) = �(�) + ����(�) (8) 

By introducing a reaction time, the model can become unstable and simulate accidents. To prevent 
those the model uses anticipation terms. The driver anticipates the velocity of the leader and his own 
acceleration to remain constant until the next AP, resulting in the predicted velocities and distances in 
(9), (10) and (11). 

 ��−1
����(�) = ��−1

���(���) + (�− ���) ∗ �(���) (9) 

��
����(�) = ��

���(���) (10) 

�����(�) = ����(�) − (�− ���) ∗ Δ��−1
���(���) (11) 

3.3 Enhanced Intelligent Driver Model 
The Enhanced IDM improves the lane changing behavior of the original IDM, since it was first 

developed as a single-lane model (Kesting et al. 2010). This model reduces the deceleration when gaps 
are instantaneously reduced after lane changes and, nevertheless, remains collision-free. A new 
equation calculates the Constant Acceleration Heuristic (CAH) ����(�) as follows, taking the
acceleration ��(�) of the leader into account.

����(�) =

{

��−1
2 �̃�

��
2 − 2s(t)�̃�

 ��(��−1 − ��) ≤ −2s(t)�̃� 

�̃�−
(��−1 − ��)2�

2s(t)
 ��ℎ������ 

(12) 

�= {0  ��−1 − �� < 0
1  ��−1 − �� ≥ 0 (13) 

�̃�= min(��(�), ����) (14)
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����= {
����        ���� ≥ ����

(1 − ����)���� + ����[���� + �∗ tanh (
���� − ����

�
)]   ��ℎ������ (15) 

This results in a temporary acceptance of lower gaps. Without this modification, the vehicles in 
SUMO often do not change lanes or brake hard after lane changes when using the IDM. 

3.4 Further EIDM enhancements 
In order to create a realistic human driver model in SUMO, a few more modifications have to be 

carried out. First of all, the introduced estimation errors und reaction times cause problems when 
decelerating to 0 m/s. Acceleration jumps occur at small gaps because the predicted and estimated 
values are wrought with intentional errors. Consequently, the virtual driver cannot smoothly approach 
the minimal gap �0. That problem is solved by introducing equation (16). When reaching the gap �0 +
γ (minimal gap plus threshold), the vehicle is forced to decelerate further, although the desired gap 
��−1

∗ (�) might be smaller than the actual gap �(�). This leads to vehicles stopping prior to �0, but
overcomes the effect of oscillating accelerations at low gaps. γ values between 0.3 and 0.5 were 
empirically determined to be suitable. 

��−1
∗ (�) = {�(�) + 0.05 ��−1

∗ (�) < �(�) < �0 + γ
��−1

∗ (�)       ��ℎ������      (16) 

Analog to the definition of the speed factor in SUMO, every vehicle is assigned an individual 
minimal gap �0 from a normal distribution.

Another adjustment is made regarding changing speed limits. The presented equations in Section 
3.1 do not take changing speed limits into account. We therefore use the simple linear function in (17) 
to continuously change the desired velocity when the speed limit changes. The model receives a new 
parameter ����� to look �����*��−1 meters ahead. This results in a model-internal desired velocity �0

���

when driving near two edges with different speed limits �0
� and �0

�+1. The distance to the upcoming
edge is represented by s�(t).

�0
���(�) = {�0

���− (�0
�− �0

�+1) ∗ ∆�/����� s�(t) < �����∗ ��−1
�0         ��ℎ������ 

(17) 

Furthermore, all turns at junctions receive a speed limit according to Table 1, which is used to limit 
the velocity when turning. The parameters in Table 1 refer to the turn categories in SUMO, which are 
defined by the turn’s radius. Alternatively, the limits could be calculated using the specific radius of the 
turn or street curvature. 

To update the desired velocity with the maximum assigned speed of the next turn, the model uses 
Equation (17) with a look ahead of �����*��−1 in order for the vehicle to reach that speed before turning.

Salles et al. | SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

� is the Heaviside step function. The CAH-model cannot operate as a stand-alone model, it is used 
as an extension of the IDM. The acceleration ���� is calculated using the new coolness parameter ���� , 
with values between 0 and 1. It describes how “cool” a driver reacts when gaps are reduced. 
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Parameter 
LINKDIR TURN TURN 

_LEFTHAND LEFT RIGHT PARTLEFT PARTRIGHT

�0 [m/s2] 5.0 5.0 9.0 8.0 12 12 

Table 1: Speed limits for turns at junctions in SUMO 

According to Wagner and Lubashevsky (2003), the time period between subsequent human driver 
decisions can amount to several seconds. For the model, such large reaction times result in hard braking 
behavior. This is solved by introducing variable APs (Treiber and Kesting 2017). Equation (18) is based 
on a similar formula, but uses a predefined action time ��� and a constant threshold � instead of a
random number. This stabilizes the model during critical events, still allowing for potentially long 
reaction times. The modeled driver reacts instantaneously when the car-following model calculates 
negative acceleration changes smaller than ��. 

�(�) − �(�− ���) < �� (18) 

APs have an additional effect on the model: At standstill, just before drive off, the acceleration can 
jump to a value as high as ����. In reality, the jerk is limited by the inertia of the vehicle and the
powertrain. This characteristic is incorporated in the EIDM by applying a simple hyperbolic tangent 
function, thereby introducing a new correction factor �����(�) (see Equation (19)) that limits the jerk
during drive off. This requires the detection of the time at drive off  ���� and the definition of a new
parameter: the time duration ����� between drive off and reaching the maximal acceleration.

�����(�) = { (tanh (((�− ����) ∗ 2/�����− ���) ∗ ���) + 1) /2   t − ����≤ �����

      1            ��ℎ������      
(19) 

The new �����(�)-function is multiplied with the maximal acceleration ����, thus better replicating
drive off procedures of measured trajectories. Examples showing the correction factor over time for 
specific parameter sets are plotted in Figure 2. Parameter ��� defines the flatness of the acceleration
curve and should optimally take on values between 1.5 and 3. A change in parameter ��� shifts the
curve in the direction of the x-axis. Lowering the value results in reaching higher ����� values earlier
in time. 

Figure 2: Drive off correction factor 

Salles et al. | SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 
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��−1
∗ (�)
�(�) =

{

√(
��−1

∗ (�− ∆�)
�(�− ∆�) )

2

−
∆�∗ ����

����
 (

��−1
∗ (�− ∆�)
�(�− ∆�) )

2

− (
��−1

∗ (�)
�(�) )

2

>
∆�∗ ����

����

��−1
∗ (�)
�(�)  ��ℎ������ 

(20) 

To simulate driving on multi-lane roads, car-following models need to be coupled with a lane change 
model. This study uses the default lane change model integrated in SUMO (Erdmann 2014). The model 
is modified for an improved performance with the EIDM. Whether the modifications also improve the 
operation of the other car-following models, will require further investigation and, therefore, are not 
proposed in this paper. 

Salles et al. | SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

Finally, the decrease of the ratio ��
∗

−1(�)/�(�) is limited. This modification produces more realistic 
jerks, especially in a simulation environment with junctions, traffic lights and lane changes, where the 
actual gap �(�) and the desired gap ��

∗
−1(�) can instantaneously change. These discontinuities can be 

countered by the following Equation (20), which limits the change of the ratio to a specific magnitude. 
For ��

∗
−1(�) ≥ �(�) (see Equation (4)), this adjustment guarantees that the jerk of the vehicle never 

exceeds ����, which is a freely selectable, positive parameter.
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right. The arrows represent the street and direction of traffic considered in this study. The vehicles drove 
freely after passing the intersection with a speed limit of 50 km/h. The light signal at this junction 
operated in a fixed-time fashion with a cycle time of 120 s, divided into the following phases in the 
direction of the arrows: 33 s of green light, 3 s yellow, 24 s red, 34 s green, 3 s yellow and 23 s red. 
Between red and green phases, the light signals switched to red-yellow for 1 s. 

Specific configurations and anomalies need to be considered: 

 The lanes before the junction are narrower than behind the junction.
 Only phases, when exclusively passenger cars and vans crossed, are analyzed, this results in

disregarding three green phases when heavy duty vehicles crossed.

Figure 3: Drone recording of the signalized junction with bounding boxes and vehicle types 
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4 Case study 
In this chapter, real-world trajectories are compared to traffic simulation results generated with 

SUMO and the EIDM. First, the environment and the specific configuration of the scenario are 
introduced. The details of the aerial measurements are described, including an accuracy evaluation. The 
results are then compared to those of the SUMO simulation by means of time headways, speeds and 
other characteristic values. 

4.1 Environment 
Figure 3 shows one frame of drone videos recorded on Monday, July 2, 2018, between 07:00 and 

07:35. It depicts a junction in Stuttgart, Germany, often referred to as “Neckartor”. The geographical 
coordinates are approximately 48°47'18.7"N 9°11'28.9"E. The video frame extends 230 m from left to 
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 The red line shown in Figure 3, used as observation reference line, is located approximately
3.5 m to the right of the actual stop line, because some vehicles stopped slightly past it.

 Only the two left lanes are analyzed, because many vehicles in the right lane are temporarily
covered by a tree and some also turn right.

In sum, 1050 vehicle trajectories and 540 accelerations starting at 0 km/h were observed (30 green 
phases consisting of 9 vehicles in 2 lanes each). 

4.2 Drone data 
The full dataset contains over three hours of video recordings in segments of 7-15 minutes. The 

dataset used for the evaluation of the car-following model consists of 5 videos, each about 7 minutes 
long. The videos were recorded with a Zenmuse X5R camera mounted onto a DJI Inspire 1 quadcopter. 
The camera generated RAW-files with a resolution of 3850p25. 

Figure 4 shows the applied traffic measurement process. After the video is recorded, geolocations 
are referenced at about 10 different reference positions within a single frame. The references are used 
to define the camera location, which is then tracked for all frames of the recording. The camera tracking 
algorithm uses automatically detected, well trackable, stationary markers, a method previously used by 
Kaufmann et al. (2018). 

The frame-by-frame vehicle detection uses an artificial neural network for object detection. For this 
recording, a Faster R-CNN (Ren et al. 2015) with Resnet101 (He et al. 2016) is chosen. Afterwards, the 
screen positions of the detections are converted into geographic coordinates, using the camera model 
information and the tracked camera position for each frame. 

The tracking algorithm eventually joins the single frame detections to form vehicle trajectories. 
First, an Intersection over Union (IOU) tracker (Bochinski et al. 2017) combines the detections that 
closely overlap in successive frames into short vehicle trajectories. Then we use a particle filter to 
predict the path of these short trajectories and connect them with others. This leads to trajectories that 
usually cover the entire recording area and correspond to a single vehicle. Some mismatches are 
adjusted manually. 

In order to reduce measurement errors, the vehicle positions are smoothed, after which the velocity 
is immediately derived. This will be discussed in detail in the next section. 

Figure 4: UAV based traffic measurement process 
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We take a measurement point related to the time instant ��. Then, we perform the linear regression
for all measurements within a time interval ��− ����≤ �≤ ��+ ����, where �� is the time interval
duration of the linear regression. In the following, we refer to �� as the MLR interval.

In order to obtain the vehicle speed �2 = ��
2 + ��

2, we first calulate �� and �� separatly via the MLR,
using the same interval. Afterwards, we use the MLR to obtain the acceleration from the speed using a 
different interval.  

In order to find suitable MLR intervals, a measurement was carried out with a reference vehicle in 
the MEC-View research project (Gabb et al. 2019). The vehicle was equiped with an Automotive 
Dynamic Motion Analyzer (ADMA), a highly precise Inertial Measurement Unit (IMU) that uses a 
Differential Global Positioning System (DGPS). We use the speed measurement and the derived 
acceleration as the ground truth for a comparison of the smoothing parameters. 

Figure 6 shows the first measured scenario: the vehicle stops at an intersection. In the second 
scenario, in Figure 7, the vehicle drives across an intersection. The second column shows the 
measurement results using an MLR with an interval of 1 �, and the third column shows the results using 
an MLR with an interval of 2 �. The first row shows the measured speed, the second row only the 
measured ADMA acceleration, the third row shows the acceleration as derivative of the speed, and the 
last row shows the resulting acceleration using an MLR with an interval of 1 �. 

The results in Figure 6 show that a speed MLR interval of 1 � leads to a strong acceleration error 
propagation. Only an MLR interval of 2 � reduces the error sufficiently, but may sometimes cut off 
short-term spikes. Nevertheless, we consider the data quality to be quite usable. 

Figure 5: Explanation of the linear regression procedure. With a framerate of 25 fps, the 
MLR interval is 2 s (Kaufmann et al. 2018). 
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4.3 Measurement accuracy evaluation 
The applied measuring method contains two main sources of error: First, the bounding boxes of the 

same vehicle differ slightly in each frame. This results in a position jitter. Secondly, even the tracking 
of the stationary reference points causes a small jitter in the camera position, which affects the 
transformation of the vehicle positions into world coordinates. 

For a measurement with 25 frames/s and with a position error ��, the error propagates to the speed 
with �� = 1⁄� �� =  25 1⁄� ∆�. The acceleration error increases quadratically ∆� = 1⁄�2 �� = 
625 1⁄�2 ��. As solution for this problem, we apply an averaging procedure using a moving linear 
regression (MLR) as shown in Figure 5. 
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Figure 6: Reference Measurement Scenario 1: Vehicle stops at an intersection. a) the ADMA ground truth, b) 
the UAV based measurement with an MLR of 1 s and c) the UAV based measurement with an MLR of 2 s 
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Figure 7: Reference Measurement Scenario 2: Vehicle merges at an Intersection. a) the ADMA ground truth, b) 
the UAV based measurement with an MLR of 1 s and c) the UAV based measurement with an MLR of 2 s 
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 The vehicle reaches 10 km/h in less than 3 s.
 The vehicle reaches 30 km/h in less than 8 s.
 The vehicle is slower than 60 km/h for the full 10 s of drive off.
 Right before the start-up the vehicle comes to a standstill for at least 2 s.
 The acceleration is between -5 m/s2 and 5 m/s2 for the full 10 s of drive off.
 The vehicle has an internal combustion engine.

This specific method resulted in over 2000 comparable drive off trajectories, showing that the 
vehicles reach 1 m/s after an average time of 0.8 s and their maximal acceleration after an average time 
of 2.3 s. The average time the vehicles need to reach 1 m/s is then added to every drive off detected by 
the aerial measurements. 

Figure 8a) shows the mean accelerations of the drive off procedures of the first nine vehicles (with 
offset) after the light signal turns green. A drop and rise of the acceleration between approximately 3 s 
and 8 s can be recognized. This phenomenon originates from powertrains with manual transmissions. 
The difference between vehicles with automatic and those with manual transmissions becomes evident 
when comparing their mean acceleration curves. Figure 9 shows curves from above mentioned 
measured drive offs of the various vehicle studies. The curves in Figure 8b) and dashed lines in Figure 
9 represent the absolute standard deviation of the corresponding acceleration curves, which are approx. 
±0.5 m/s2 over the whole time period except before the acceleration peak is reached and during gear 
shifting, where the absolute standard deviation is higher because of different gear shifting times and 
durations of the drivers. 

Interestingly Figure 8 reveals that the mean maximal acceleration drops until it reaches a plateau 
with the fourth and following vehicles. This corresponds to the time headways, shown in Figure 10a), 
which also drop significantly until the fourth vehicle passes the intersection. 
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4.4 Analysis of the drive off trajectories 
The aerial measurement method cannot detect the initial movement of the vehicles until they reach 

an average speed of about 1 m/s. An offset has to be applied to the trajectories in order to remedy this 
undesirable feature. For this reason, data from multiple vehicle measurements are extracted and used 
for comparison. The data is provided by the FKFS, where over the past several years many vehicle 
studies have been carried out, each collecting a vast amount of data at high measurement resolutions. 
Vehicle, route and driver specifications of the data samples can be found in the literature (Fried 2004; 
Rumbolz et al. 2010; Wagner et al. 2010). 

The data was entirely collected in the broader area of Stuttgart. To identify a comparable offset all 
start-up procedures that fulfill the following specifications are extracted: 
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Figure 9: Mean acceleration (solid lines) and absolute standard deviation (dashed lines) 
curves of vehicles with a manual and an automatic transmission when driving off 

Figure 8: a) Mean acceleration curves of the first 9 vehicles in the queue from the aerial 
measurement data and b) their corresponding absolute standard deviation 
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CF-
Model 

Length 
[m] MinGap [m] speedFactor [-] Accel 

[m/s2] 
Decel 
[m/s2] 

Tau 
[s] 

ActionStep 
[s] 

� 
[-] 

Mean Min Max Mean Dev Min Max 

Krauss 
Model 

3 

2.5 2.5 2.5 1.1 0.2 0.9 1.4 

2.25 1.75 1.1 

0.5 - 
4 2.50 2.00 1 

4.5 2.75 2.25 0.9 

5 3.00 2.50 0.8 

Intelligent 
Driver 
Model 

3 

2.5 2.5 2.5 1.1 0.2 0.9 1.4 

2.25 2.5 1.1 

0.1 4 
4 2.50 2.75 1 

4.5 2.75 3.00 0.9 

5 3.00 3.25 0.8 

Extended 
Intelligent 

Driver 
Model 

3 

2.5 2.0 3.0 1.1 0.2 0.9 1.4 

2.40 2.40 1.2 0.5 

2 
4 2.70 2.70 1.1 0.5 

4.5 3.00 3.00 1 0.4 

5 3.50 3.50 0.9 0.4 

Table 2: Parameter sets for the SUMO simulations 

CF-model �����
[s] 

�̃���
[s] 

�̃���
[s] 

��
[-] 

��
[-] 

��
[-] 

����
[-] 

�����
[s] 

���
[-] 

���
[-] 

����
[m/s3] 

EIDM 4 10 3 0.1 0.02 0.1 0.99 1.2 2 0.7 3 

Table 3: Additional parameters for the EIDM 
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4.5 Simulation 
To set up the simulation environment delineated in Figure 3, a respective map is extracted from 

OpenStreetMap and converted to a SUMO network. After manual changes to the map, such as changing 
the traffic light program to the one used that day and insuring the correct edge and lane configurations, 
the traffic flow is inserted by defining one flow passing the intersection in the direction of the above 
mentioned arrows. The flow is defined in a manner to ensure that all vehicles passing the traffic light 
during a green phase have before come to a complete stop. The simulation duration is identical to that 
of the real-world measurement (30 green phases in 35 minutes). 

Apart from the car-following model, the selection of the specific parameter set for each vehicle has 
a major effect on the simulation. As an extensive parameter identification is not part of this publication, 
we run simulations with each of the three car-following models. Every simulation contains four 
different sets of vehicle parameters, distributed evenly throughout the simulation. Table 2 shows these 
sets, where parameters existing in each model are varied. Specific parameters for the EIDM, listed in 
Table 3, are identical for all vehicles and are taken from literature or, in the case of newly introduced 
parameters, derived from first empirical observations. Lastly, SUMO version 1.0.1 is used with a time 
step ∆� of 0.1 s for the Intelligent Driver Models and 0.5 s for the Krauss Model. 
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The combination of IIDM with reaction times and acceleration correction (Equation (19)) produces 
realistic values with respect to time headways, velocities and accelerations. The acceleration curves of 
the first 9 vehicles in the different simulations are shown in Figure 11, where each row features the 
results of the different models. Column a) shows the mean acceleration curves, b) the absolute standard 
deviation of each sample and c) the Mean Bias Error (MBE) between the model and the real-world 
measurement. The Mean Absolute Error (MAE) between the mean acceleration curves is calculated 
seperatly for each vehicle position. 

This first analysis of the EIDM shows more accurate acceleration trajectories compared with the 
IDM and the Krauss model. However, the results of the Krauss model improve significantly when we 
cut off the first acceleration peak, illustrated in Figure 11a) third row, and delay the drive off to a later 
point in time. 

Figure 10: a) Mean time headways between vehicles (solid lines) and the absolute standard deviation of each 
sample (dashed lines) when passing the reference stop line, b) mean speed of vehicles (solid lines) and the 

absolute standard deviation of each sample (dashed lines) when passing the reference stop line 

a) b) 
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4.6 Comparison between observations and simulations 
This chapter provides a first brief comparison between the real-world data and the results of the 

simulations. As the model parameters are selected empirically, this section does not focus on the 
absolute differences between the models, but rather on model characteristics and shows the capability 
of the EIDM to replicate the observed acceleration curves. 

Figure 10a) depicts the mean time headway of the simulated and real-world vehicles. The model 
results generally show good agreement with the observations. With more suitable parameter sets, both 
the IDM and the Krauss model could replicate the measured headways even more accurately. The 
advantage of the Extended IDM becomes evident, when we compare the mean speed of the vehicles in 
Figure 10b). While, in this study, the parameters of the IDM and the Krauss model could not be tuned 
to reproduce the observed velocity curve, the EIDM reflects the real-world behavior with the chosen 
parameter set. The velocity curve of the IDM simulation levels off due to its characteristic of never 
reaching the desired velocity: when increased in an effort to match the curve of the real-world data, the 
first vehicles drive unrealistically fast. The IIDM resolves this issue, but vehicles still start off fast, 
reach the saturation speed early and experience sudden acceleration changes when combined with 
reaction times. The Krauss model can only match the observed speed curve with low acceleration 
parameters, which stands in contrast to the measured acceleration curves and maximum values. 
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improve the model. 

In the past, different parameter identification techniques have been introduced to calibrate the IDM 
using floating car data, but that usually results in low ���� values, which do not agree with the data
presented in this study.  

Table 4 lists such calibrated parameter sets. 
Kovács et al. (2016) calibrate the IDM to obtain accurate flow capacities and time headways at 

signalized intersections. They use a reliable method to calculate the IDM parameters based on the time 
headway saturation. On the negative side, the resulting ���� value and the desired time headway are
rather low for urban traffic flow (Schulz 2013). 

In summary, there are many models that can accurately describe time headways and speeds at 
intersections (Le Vine et al. 2016; Dey et al. 2013; James A. Bonneson; Li and Chen 2017; Jumsan 
KIM et al. 2005). But they can generally only calculate the time headway, velocity and acceleration at 
specific points and do not generate trajectories as car-following models can. 

Figure 11: a) Mean acceleration curves of the first 9 vehicles in the queue from the simulation with the 
EIDM (first row), the IDM (second row) and the Krauss Model (third row), b) the corresponding absolute 

standard deviation of each sample, c) the Mean Bias Error between the real-world mean accelerations of the 
queued vehicles and the simulation results, depicted with their respected Mean Absolute Error values over the 

first 9 s of drive off (disregarding the first second, as the movement can’t be correctly detected there) 
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The EIDM possesses a unique characteristic in that the mean maximal acceleration drops until it 
reaches a plateau with approximately the fourth vehicle. Still, the observed vehicles reach their maximal 
acceleration later than those modeled by the EIDM. Consequently, the parameters of the correction term 
need to be slighty adjusted. Increasing the amount and distribution of the parameter sets can further 
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Parameter EIDM Kovács et al. 
(2016) 

Kesting and 
Treiber 
(2008) 

Treiber and 
Kesting 
(2013b) 

Dallmeyer 
(2014) 

Treiber and 
Kesting 
(2013a) 

���� [m/s2] 2.5-3.5 1.6 1.5-1.6 1.0 1.5 1.4 

�̅0 [m/s] 13.89 15.28 16.1 15 13.89 16.1 

� [s] 1.1-1.3 0.86 1.3-1.4 1.0 1.5 1.2 

�0 [m] 1.5-2.5 2 1-1.6 2.0 2.0 1.5 

� [m/s2] 2.5-3.5 5 0.6-0.75 1.5 2.0 0.65 

� [-] 2 4 - 4 4 - 

Table 4: IDM parameters used in literature compared to those in this study 
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5 Discussion and conclusions 
In this paper we extended the IDM in SUMO to replicate human driver behavior. First, previously 

published IDM enhancements were introduced and discussed, as they have not yet been integrated in 
SUMO. Additional enhancements of the IDM to account for discontinuities in SUMO’s time-discrete 
simulation were presented, with a special emphasis on the drive off process. 

The drive off of the EIDM was validated using a drone dataset. The vehicle trajectories of the drone 
video were extracted using a Faster R-CNN with Reset101. The specific measurement method was 
outlined and the accuracy of the method was evaluated. The errors were determined to be negligibly 
small. 

Nevertheless, the car-following model was only evaluated with a small amount of data in a specific 
environment: Drive off procedures at a saturated junction. The model will still need to prove that it can 
realistically reproduce other driving situations. In addition, only mean and characteristic values were 
used to compare the observed data with the simulation. The parameter set in this study is not 
comprehensive enough to replicate the standard deviations and typical log-normal distributions (Jin et 
al. 2009) during drive off. A detailed parameter identification for each vehicle could lead to a better 
agreement of modeled and observed behavior. By introducing the new drive off equation, the 
parameters identifying the drive off process can be separated from those characterizing vehicle 
following situations. 

Additional variables could further increase the precision and influence of the individual driver by 
including road slope (Schulz 2013), spatial anticipation (Chen et al. 2009) or using action points 
dependent on the driving situation. Another factor to be considered are aerodynamics, which limit the 
maximal acceleration at high speeds and could explain why the IDM-parameter amax is small when 
calibrating the model using highway traffic data. 

6 Future work 
Future work includes the integration of SUMO into an Unreal Engine driving simulator 

environment. Such linking has already been performed using Unity3D (Biurrun-Quel et al. 2017). The 
ultimate objective is the integration of simulative constructed drive trains (Ebel et al. 2017) into the 
environment, as done in DYNA4 (Kaths et al. 2019) and by Riegl et al. (2019). Additional research is 
needed to investigate the positive effects of more accurate acceleration patterns on energy consumption 
and emission calculations. 

The EIDM will benefit from additional development with respect to cooperative lane changes. We 
plan to integrate the model into the current SUMO version. 
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Abstract

The high levels of air contamination and presence of different pollutants are a large 
problem in most of the cities in which road transport is the primary source of emissions. The 
governments of more than 100 countries are adopting different policies and strategies to help 
reduce and mitigate their global emissions. In terms of road transport, reductions in emissions 
could be achieved by replacing conventional vehicle technologies or by chang-ing the travel 
patterns of individuals using a private vehicle as their primary means of transportation. 
However, accurately quantifying the emissions related to the urban traffic from multiple 
possible scenarios is a very complicated task, even when appropriate tools made for this 
purpose are available. Here we apply a scientifically rigorous protocol to accurately estimate 
greenhouse and other polluting gases. We describe the methodological steps we followed to 
analyse the vast quantities of data available from different heteroge-neous sources. This data 
can aid decision-makers in planning better strategies for urban transportation. We used the 
origin-destination matrices already available for Valencia city (Spain), as well as historical 
information for their street induction-loops and the phases and times of their traffic light 
system as our input data for the traffic model. Rather than a brute-force algorithm, we used a 
fast-convergence Lagrangian algorithm model which deals with that vast quantities of 
information. Based on the elements mentioned above together with the statistics about the 
types of vehicles in the city by simulations the urban mobility city’s traffic was reconstructed 
at different times to quantify the emissions produced with a high spatial and temporal 
resolution.

1 Introduction

Interactions between the demand and supply of transport determine traffic flows on road net-
works. Vehicles consume fuel and in turn, the emissions produced by these mobile sources 
determine the concentration of pollutants in the air. Air and noise pollution have been identi-
fied as among the most critical environmental problems present in urban areas. The importance 
of environmental issues in the quality of life of the population lies in health problems related to 
pollution. These include physiological and psychological disorders and their severity depends 
on the levels and extent of exposure.
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As measures to mitigate the different environmental problems caused by urban traffic, vari-
ous strategies have been implemented (usually by city councils), starting by defining the origins 
of the discomfort the population experiences in relation to these problems. These include mod-
ifying vehicle manufacturing and circulation regulations, placing barriers around highways and 
urban centres, careful new road developments, replacement of the types of vehicles used in 
fleets, and the creation of new massive parking spaces. Nevertheless, these measures are usu-
ally based on decisions not supported by scientific data or technical criteria and so, often end 
up increasing traffic and causing mobility problems.

In this sense, our work highlights the essential role of multivariate statistics and mathemat-
ical models in the analysis of information obtained from large amounts of data. These analyses 
allow us to define the significance of the observed findings and can highlight elements that 
may not be self-evident. The knowledge achieved through this type of analysis provides public 
decision-makers with a robust methodology for quantifying emissions/pollution which can help 
them to choose appropriate urban mobility plan strategies to mitigate the impact of transport 
on the environmental quality of cities.

Nonetheless, the available data only indicates the number of detections—i.e., it tells us that 
several vehicles have passed through a section. However, the vehicle speeds, characteristics, 
and trajectories remain unknown. Thus, simulations which use extrapolation-like methods are 
required to try to leverage this data to build a complex picture of the situation and obtain 
useful information from it. This is not a simple extrapolation in the form of a graphical curve, 
it is a much more sophisticated extrapolated reconstruction based on a mathematical model.

As a use case for this methodology, we examined the CO2 emissions produced in the city of 
Valencia (Spain). Even though data related to urban traffic in this city is available, it cannot be 
extrapolated with sufficient accuracy to be able to make inferences and estimations based on it 
with any scientific rigour. Our approach creates a traffic model that uses as the input data (1) 
the origin–destination (OD) matrices already available for the city, (2) historical data from the 
induction loop detectors of the city’s streets, and (3) the city’s traffic light system regulation 
phases and times. Based on these elements, the mathematical model based in a Lagrangian 
algorithm deals with that vast quantity of information and results in a fast convergence. We 
then use the statistics about the types of vehicles in the city and by simulations of urban mobility 
the city’s traffic flow is reconstructed at different times to quantify the emissions produced.

The rest of the paper is organised as follows: a review of relative works is presented in 
section 2. Material and Methods sections present scenario components and the steps we follow 
are presented in section 3 and 4 respectively. The reached results are presented in section 5. 
The paper finalises with the “Further research” and “Conclusions” sections.

2 Related Works

Nowadays, due to climate change and the challenges facing the environment, countries need 
to find solutions that reduce global warming pollution, reduce the use of fossil fuels and focus 
on clean energy sources. These solutions could affect mobility in different ways and planners 
should know whatever those effects are. Below is presented a few works that we can find in the 
related literature. The quantification of emissions produced by the transport sector that are 
specified in the Intergovernmental Panel on Climate Change (IPCC) reports could be improved 
by the developing of sectorial emission models of atmospheric pollutants [13].

Authors in [2] present a comparison of estimated against real truth produced emissions 
through simulations. This study is based on broadcasted information by equipped vehicles 
with an special communication devices when they passed over an induction loop in an small
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scenario composed just by one intersection.

In [14] authors analyse the behaviour of all the streets in the Valencia city to determine 
based on loads of vehicles on the streets what will be journey time and their occupancy. The 
mathematical model characterises all the main roads and city streets. The model is used by 
a centralised server that receives all the requests that arrive from each car to make balanced 
traffic management and predict future occupancy. In this way, the street/road occupation is 
already known, and in high occupancy situation, all the new requests will be sent to other areas 
to avoid traffic congestion problems.

In [4] the total CO2 emissions generated in the metropolitan area of a city in Taiwan is 
analysed. Authors made a statistical analysis of the traffic volume in an entire year according to 
peak traffic hours and the development of several buildings. They obtain a prediction formula 
used to forecast the development scale of various buildings and the information of the road 
system and traffic volume is presented as hot maps.

In [9] the acquisition of an OD matrix according to the existing traffic in real–time is 
proposed. The resulted matrix is configured using a Lagrangian optimization algorithm with 
restrictions on the components of the initial matrix, using vehicular flow data at specific points 
in the road network.

However, the emission quantification’s that comes from the IPCC reports are merely a table 
extrapolation that may not be the most appropriate approach for some particular areas where 
a certain level of accuracy is needed. Regarding to the other works, first [14],[9] the issue of 
emissions is not considered. Then, [4] where emissions are obtained through a formula or model 
lack of a simulation part to counteract their results and finally, [2] where communication V2I 
does not fit the reality at least in the city under study. Thus the problem is in a certain way 
analysed without approaching it as is presented in the methodology of this document.

3 Material

3.1 Simulator

For the microsimulation we have chosen the Simulation of Urban MObility (SUMO) [12] because 
it is an open system which allows simulating the dynamics and interactions of almost all the 
elements that build mobility in a city. In addition, it has a large set of tools for the simulation’s 
scenarios creation moreover of a big a development community behind it [11]. In this work we 
have used the Eclipse SUMO 1.5.0 versions.

3.2 Traffic Network

The city of Valencia with more than 800,000 inhabitants, currently has a vehicle fleet of ap-
proximately 498,000 vehicles and road network of 300 km long. To optimize the general traffic 
conditions for all the agents involved in the urban traffic of the city (pedestrians, private vehi-
cles, collective transport, police, media, etc.), the Centre of City Traffic Management of Valencia 
carries out comprehensive traffic management.

The traffic status of the city road network is known in real-time through two information 
sources: (a) the detectors installed in the traffic lanes and (b) Closed Circuit Television (CCTV) 
images. Those source devices that communicate with the Center of City Traffic Management 
through a network of TCP/IP fibre optic communications with redundant gigabit Ethernet 
rings [7].
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3.3 Traffic Demand

Existing traffic detectors along the city provide vehicles intensity information that is recorded 
during a data integration period (currently every ten minutes). A set of detectors contributes 
to a measurement point in a given coefficient. A measuring point is associated with an urban 
road segment. The intensity at a measurement point is measured in a number of vehicles per 
hour, and it is obtained by a linear combination of the intensities of the detectors that compose 
it. The urban road segments that have a measurement point are considered as a monitored 
road segment. Thus, a monitored road segment contains the traffic information associated to 
a specific point in the urban traffic network. In addition to the traffic detectors, some video 
detectors are capable of classifying the type of vehicle that travels on the roads (information 
not considered in this study).

Valencia has about 1318 monitored road segments [10] with information intensity recorded 
every ten minutes; due to the huge amount of data, for this study, we have considered hourly 
operating data just for the year 2017.

3.4 Origin-destination matrices

In general, in countries of the European Union to collect information about the exposure to 
urban traffic mobility of the population, different surveys are often carried out with different 
periodicity since they constitute an exposure measure that is frequently used to identify the 
demand for transport and mobility in their cities [3].

In Valencian Community (Spain) in 2016 through a survey [8], the inhabitants have been 
asked to complete a description of the “travel diaries” in which their routes and trips of the day 
and weekend before the survey. It may have the disadvantage that the interviewees tend not 
to register very short journeys by not considering them as trips or simply because the people 
forget them. Anyway, from the collected information, the origin-destination matrices that 
characterize the usual mobility patterns of the population have been configured [6]. Assuming 
for the majority of the people have relatively constant mobility patterns during their daily 
lives, as well as they are consequently easy to remember. The matrices provide high temporal 
resolution (daily) information about two dimensions: the intensity of exposure and the means 
of transport for their displacement.

3.5 Traffic light system regulation

In Valencia there is more than 1,000 intersections regulated by traffic lights their approximate 
location of a large part of them can be seen in the Figure Fig:trafficLight. The city has a 
Centralized Traffic Control system that allows traffic lights to be regulated in real-time to 
adapt them to different traffic conditions. Through this system, it is possible to modify the 
green time of each access, the traffic light cycle and the synchronization between different 
crossings to avoid generate queues in the streets, thereby reduce the delay and increase the 
circulation speed. In addition Valencia has a fixed-time emergency system that would work 
automatically in case of centralized system failure [7].

However, approaching the reality problem in terms of what is happening in the city is 
difficult since factors such as: (a) intervention of traffic police officers in access streets nearby 
to educational or sports centers; (b) traffic operator decisions based on CCTV observations; (c) 
traffic light activations based on the automatic detection of vehicles on the streets or (d) by 
pedestrian push-to-walk buttons; as well as (e) automatic self-regulation of traffic lights control
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Figure 1: A part of the Traffic Lights definition in Valencia’s network.

system should be consider as system inputs for the simulations and they are normally complex
to quantify.

3.6 Lagrangian algorithm

A Lagrangian algorithm is a scalar function from which a temporal evolution of a dynamic
system can be obtained [1]. The algorithm has a multi-target approach, using as input the
initial OD matrix, and the traffic counts. The algorithm incorporates updating processes that
control the deviations of the adjusted travel matrix from a previous one. Matrices that after an
assignment stage and several repetitions of the loop reach convergence. It reproduces exactly
the observed traffic flows, and thus quickly finds a solution to the problem without requiring
excessive computational resources [9].

The initial matrix is the O-D matrix obtained from the telephone surveys of households in
the Valencian Community, and the vector of variables (Lagrange multipliers) corresponds to
the traffic restrictions at a specific time of day based on the meters. Thanks to this algorithm,
errors in the estimation of O-D matrices and the reconstruction of observed flows are minimised.

4 Methodology

Urban inventories carried out at any given time allow city decision makers and planners to
quantify the magnitude of total emissions between different means of transportation. The
inventory is also the starting point for the development of a mitigation strategy. Below, the
steps we have followed to define our methodology are described and summarised in the Figure
2.

1. Identification of the starting data

• Demand identification in urban transport

With the information provided by the sensorization (magnetic loops on the street of the
city of Valencia) corresponding to the year 2017 of all the monitored street segments,
a graph shown in Figure 3 is obtained. This, together with the number of journeys
characterised in the initial OD matrix, constitutes a measure of exposure used to identify
the demand for transport and mobility.
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Figure 2: Summary of the followed methodology.

Figure 3: The overall trend of the traffic intensity in Valencian streets for the whole 2017 by
daily hours distribution.

• Definition of the vehicle fleet and its characteristics

A customized report is configured from the database consulted in [5] with all these at-
tributes: type of vehicle, municipality of residence, brand, fuel, power, displacement,
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load, seats, antiquity – technology. By filtering and grouping the available attributes
of the studied vehicle fleet, we managed to configure a database composed of just these
attributes: vehicle typology, fuel, technological regulations, weighted relative for each of
the categorizations. This database will be affected by the corresponding emission factors
through the methodology used to obtain the total emissions of each of the pollutants
contemplated and the CO2 equivalent.

2. Design of the road network model

The network model is built using mainly the open data source offered by OpenStreetMap
(OSM). The OSM data set downloaded for the whole metropolitan area of Valencia for
the backbone of the model. Due to the city under consideration is where we live and
in the case of notice an inconsistency on the data set, it was manually corrected using
NETEDIT.

3. Zoning (districts/neighbourhoods) within an aggregate system

The partition of the study area into a set of pieces (geographical discretization) as known
as zones are necessary to characterize the mobility that is currently taking place, quantify
it and make forecasts about its possible evolution. We have taken advantage of the max-
imum pre-existing information. Thus the fundamental administrative division criterion
for establishing transport zoning in Valencia has been used here. The whole zonification
process in SUMO was made using NETEDIT with the traffic area zone (TAZ). Based on
the division by neighbourhoods and districts plus the attached zones that simplify the
metropolitan trips of the people, sixty four polygons were created as a traffic area zone.

4. Estimation of the target source matrix

Once the types of transport have been filtered, and with the zoning defined, a 64x64 table
was obtained. The table columns represent the origins “O” (where people live), and the
rows represent the destinations “D” of the displacement. The table represents the trips
that people make daily.

5. Improvement of the algorithm and the OD matrix

The proposed algorithm performs a set of operations on each of the elements of the
matrix. This approach does not show any inconvenience unless samples with a large
number of zones, districts or divisions are treated. A large number of zones increase the
dimensionality of the matrices to points where scattered matrices could be found (matrices
where a large part of the elements are null or close to zero). An improvement has been
implemented in the algorithm to increase its efficiency. To that act just on the necessary
elements after an analysis of the different components of the initial matrix.

One of the elements needed by the OD-matrix refinement program is a three-dimensional
probability matrix “p k”. The refinement matrix shows the probability that a vehicle
with a defined origin “i” and destination “j” will circulate through each of the possible
”k” sections existing in the road network. In order to obtain this final improved matrix,
various OD matrices are used as iterations that allow us to carry out statistical and
probability studies.

6. Mathematical model to refined Origin-Destination matrices

The model applied is based on an initial OD matrix and measurements of traffic flow at
specific points of the road network as in [9]. The desired matrix will generate flows that
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must have a convergence process towards a scenario that is close to real situations. The
convergence process is achieved employing mathematical models based on multivariate
statistical methods and controlled dispersion rates that characterise the variability of the
data. In this way, we can appreciate the tendency of the obtained values to converge
towards real values quantified in situ. On the other hand, these measures help us to
determine if our data are far from the expected value. They provide information as to
whether the central value ”centroid” is adequate to represent the study population. This
is useful for comparing distributions and understanding risks in decision making.

Therefore, based on this difference in the number of flows, the OD matrix is changed. If
these changes meet certain pre-established convergence conditions, we will consider that
they reproduce the current traffic with a certain error that we assume, as long as the
convergence requirements are not reached, the iteration process will continue. When this
happens, the obtained OD matrix is accepted, and the traffic load is simulated again. The
result of the simulation will be a contamination map that will be used for future analysis.
A graphical representation of this step can be seen in Figure 4.

Figure 4: Summary of the optimization process implemented in a mathematical model.

7. Treatment and analysis of results (the geolocation of emissions)

The results of emissions of the different types of pollutants are shown with (a) the max-
imum possible granularity and (b) the highest periodicity to show the potential of the
developed models with the available data. The geolocation of these emission levels by
type of pollutant is a graphic representation that allows visualising and analysing nu-
merical values in a spatial context. For a better analysis of the results, the geolocated
quantification can be studied in specific sectors and sections with disaggregation of the
different pollutants according to vehicle and fuel typology.

8. Synthesis and information preparation

From the results obtained with the developed tool, these results could be in one hand
a conveniently structured compilation of emission information. On the other hand, the
results will be offered as graphics representation that could be displayed in dashboards,
always thinking that could be a support tool for decision making.

9. Definition of new scenarios

With this tool, an infinite number of different scenarios can be considered to carry out
simulations and observe their effects on emissions. We mainly propose simulations with
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most of the traffic light control programs or patterns which the city has (approximately 27
patterns). Where each of the programs is primarily adapted to a wide variety of conditions:
weather (sun, wind, rain, cold, heat), time (day, night) and seasonal (weekdays, holidays,
holidays) and the possible combinations among them.

5 Results

One of the essential pieces of information to be able to analyse the functioning of a city’s
transport networks is to obtain the initial origin-destination matrices. These can be used to
plan improvements and simulate the mobility dynamics of the city’s citizens. In this work,
several simulations have been carried out where the number of vehicles inserted corresponds
to the number of routes and journeys made by the vehicles represented in the initial origin-
destination matrix. These values do not represent the number of physical vehicles in the city,
nor the vehicle fleet registered in the city, nor the sum of the detections in an instant of time.
Thus, when a vehicle arrives at a destination, it is removed from the simulation. Then, the log
records for each of the vehicles inserted in the scenarios proposed in the simulation are analysed.
Simulations carried out considering the average daily/hourly data for the whole year of 2017.

In each execution, redefinition of matrices is carried out by adjusting the traffic volumes
that pass through the detectors. This data serves as input for a new iterative simulation. Thus
with all the different daily hours. Simulating for each hour, and up to ten repetitions of each
hour by changing the seed. As the objective of this article is to show the effectiveness of the
methodology carried out, we show one of the graphs that will be part of a dashboard for the
users who make the decisions. In Figure 5 we can see the neighbourhoods or districts of the city
with the average daily CO2 emissions obtained after the simulation. Where the dark colours
have the lowest emissions throughout the year, and the light yellow colours have the highest.
With this graph, we confirm an expected result that the neighbourhoods/districts that are next
to the large motorways entering and leaving the city are the most affected by CO2 emissions.

In the same way that CO2 emissions have been treated, we are able to present the con-
taminant emissions among which we can highlight Nitrogen Dioxide (NO2) or the atmospheric
particulate matter with a diameter of less than 2.5 micrometers (PM2.5) both data available
at the end of a SUMO simulation.

6 Further research

As a further research we pretend:

(a) At a strategic level, to contribute to the improvement of scientific and technologi-
cal knowledge in order to meet the objectives of a low carbon economy, as set by
the European Commission for the medium and long term horizon (2030 and 2050
respectively)

(b) At the technological level, to further study and characterise the interrelationship
between transport and mobility with the Greenhouse Gases Emissions (GHG) and
other pollutants in the urban environment. This will allow us to improve the precision
and granularity of the spatial and temporal representation of the emissions.

(c) At the cooperative level, to integrate and combine efforts in research, development
and innovation in the fight against and adaptation to climate change in a continuous
multisectoral advance towards energy transition.
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Figure 5: Geolocation of the daily average CO2 emissions per sensorised square kilometer
distributed in the zonal districts in Valencia city.

7 Conclusions

Thanks to the high degree of data digitalisation in Valencia, it is possible to collect data
related to traffic in this city in real-time. By inputting this data into different mathematical
models information about the environmental impact and influence of traffic on emissions can be
obtained. SUMO microsimulation makes it possible to consider different simulation scenarios to
analyse how emissions may be altered through time by different traffic mitigation approaches.
This type of modelling also allows us to examine the interrelation between factors, variables,
sectors, and emissions, and how varying these parameters might change pollutant gas and CO2 
emissions outcomes.

Here we created a mathematical model using the large amount of information available
improve the accuracy of emissions predictions. We then compared the results obtained from our
models to those from microsimulation with SUMO in a process of convergence and validation.
Thus, the accuracy and scientific rigour of this process was greater than simple extrapolation
of values from Intergovernmental Panel on Climate Change (IPCC) reports.

Moreover, as a temporary reference product of our methodological proposal, georeferenced
emissions allow us to better understand the character and distribution of the carbon footprint
and other pollutants in Valencia. In turn, this will generate new challenges and increase oppor-
tunities for the Valencian local government to manage these problems. With this information,
both the public administration and planners can measure the impact of their mitigation plans
and adapt their approaches to climate change in order to reduce the carbon footprint of the
transport sector.
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Abstract

In this paper, we de�ne a work
ow and a toolchain to support fast mobility scenario
prototyping based on open data and open-source software. SAGA is an activity-based multi-
modal mobility scenario generator for the Simulation of Urban MObiltiy (SUMO). Starting
from an OpenStreetMap (OSM) �le, SAGA extracts the data required to build a multi-modal
scenario, and in a step-by-step fashion, generates the con�gurations needed to execute it,
including the intermediate steps required to re�ne the scenario with additional data, allowing
the iterative improvement of realism and representativeness.

The work
ow implemented, extended, and automated by SAGA was developed while
hand-crafting the Monaco SUMO Tra�c (MoST) Scenario. Based on the fast prototyping
capabilities added by SAGA, the creation of a multi-modal mobility scenario is readily
achievable, and the incremental process to �ne-tune it is supported by a work
ow instead of
being solely based on expert knowledge and experience.

Based on previous experience, the generation of the �rst working prototype of a city-scale
multi-modal mobility scenario may take months of work and expert knowledge. SAGA
automatically generates such a prototype, and all the intermediate con�guration �les are
made available for further iterative improvements.

1 Introduction

Over the last decade, the focus on sustainable development has been prioritized by interna-
tional leaders1. Sustainable development is an umbrella term that covers multiple areas, such
as responsible consumption and production, climate action, and sustainable cities and com-
munities. Moreover, with the increasing volume of transportation and mobility information
available in cities, both the research and industry communities are promoting smart cities,
smart mobility, and Intelligent Transportation Systems (ITS) as one means of achieving sus-
tainable development. These innovations have brought to light new problems that require
solving [1, 2, 3]. Although the range of issues a�icting smart mobility is quite broad, the
problem-solving methodology is straightforward. Investigators �nd a problem that needs to
be solved, and when related to large and/or complex systems, simulation tools are the �rst
option to study potential solutions. More precisely, independently of the problem at hand, the
steps to solve it are: (i) identify the problem, (ii) identify the models required to represent it,

1 https://www.un.org/sustainabledevelopment/sustainable-United Nations Sustainable Development Goals:  
development-goals/ Access: March, 2022
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(iii) build a simulation scenario representative of the problem, and (iv) analyze, implement and 
validate the solution in the simulation. With more and more cities and industries interested in 
solving smart mobility problems tailored to their own speci�c needs, overcoming the di�culty 
of building one or more scenarios in a fast and e�cient way is becoming more pressing than 
ever, given that the generation of representative mobility scenarios has been an ad-hoc process 
that requires a large amount of high-quality data, expert knowledge, and hand-tuning.

In this paper, we de�ne a work
ow and a toolchain to support fast mobility scenario pro-
totyping based on open data and open-source software, the use of which facilitate addressing 
the sustainable development challenge. The publication of data in open, free, and reusable for-
mats promotes innovation and transparency. The choice of using open-source software enables 
collaborative and public development, allowing diverse perspectives (beyond those of a single 
community) to be leveraged. OpenStreetMap (OSM) [4] is a crowd-sourced and user-generated 
collaborative project to create a free editable map of the world. All the geographic information 
is volunteered, and the aggregated geodata is the primary output of the project. Simulation of 
Urban MObiltiy (SUMO) [5] is an open-source, highly portable, microscopic, and continuous 
road tra�c simulator designed to handle large road networks. With a very active development 
team and an engaged user community, SUMO represents a viable choice as an open-source 
simulator, with an ever-expanding toolset capable of handling open data formats such as OSM.

Section 3 presents in detail the requirements for and issues encountered in building represen-
tative multi-modal mobility simulation scenarios. This is based on the observation that people 
tend to move around during the day based on the location of their activities (e.g., work, sport, 
school). Hence, a reasonable representation of the mobility in a city can be the set of journeys 
made by the population, based on their undertaking generic sequences of activities, during the 
day. Much research has been done on activity-based mobility modeling [6, 7], and it has been 
shown that disaggregated activity-based models better represent individual decision-making [8], 
improving the realism of the generated mobility compared to traditional aggregated demand 
models.

Section 4 presents SUMO Activity GenerAtion (SAGA), a user-de�ned activity-based multi-
modal mobility scenario generator for SUMO. A simulation scenario capable of handling 
activity-based mobility requires detailed information on the environment (e.g., buildings, PoIs), 
as well as the transportation infrastructure. The framework proposed in this paper extracts the 
additional environmental information available automatically, generates all the con�guration 
�les required by SUMO, and �lls the missing information with sensible default values, ready 
to be enriched with external data, if available. Starting from an OSM �le, SAGA extracts 
the data required to build a multi-modal scenario, and in a step-by-step fashion, generates all 
the additional con�gurations needed to compose the scenario (e.g., parking areas, buildings, 
Points of Interest (PoIs)), providing the sca�olding required to iteratively re�ne the scenario 
with additional external data. Figure 1 presents an overview of the SAGA operating model. 
On one side, we have the problem (application or optimization) that requires study, and on 
the other side, we have SUMO, a powerful microscopic mobility simulator, which can be quite 
cumbersome to con�gure. SAGA positions itself in between. Starting from an OSM �le, it 
extracts the data required and produces all the SUMO con�guration �les needed to run a mo-
bility simulation. Additionally, it provides sensible default values for the missing or incomplete 
information needed for the simulation, �lling the gaps while providing the structure required 
to extend the scenario with additional external data. Implemented in Python 3.7, it primar-
ily uses the con�guration tools provided by SUMO, extending them when required. SAGA 
provides both the application to generate the complete multi-modal mobility scenario and the 
isolated applications that can be used to polish and enhance each step with additional data.
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Figure 1: Overview of SAGA's interaction model.

The work
ow implemented by SAGA was developed while hand-crafting the Monaco SUMO
Tra�c (MoST) Scenario [9] (presented in Section 5) and automated to achieve e�ciency in
generating mobility scenarios of various sizes. Other tools and models available focus on mobil-
ity generation and optimization, leaving out the con�guration of the underlying transportation
infrastructure and data extraction. SAGA provides the tools to do both infrastructure and mo-
bility generation, focusing on fully con�gurable isolated steps, meant to increase the usability
with additional sources of data that may be available, enabling fast prototyping of multi-modal
mobility scenarios facilitating planning and reuse.

The structure of the paper is the following: Section 2 positions SAGA's scope and features in
comparison to related work. Multi-modal mobility modeling, and its requirements are presented
in Section 3. Section 4 is a detailed explanation of SAGA's work
ow and algorithms. Signi�cant
use-cases are presented in Section 5. A �nal consideration of SAGA and its development is
discussed in Section 6.

2 Related Work

In this section, we position SAGA relative to related work. The literature describes many
mobility simulators, ranging from open source to commercial. Among the open-source software,
we can �nd TRANSSIM [10], MATSim [11], SimMobility [12], and SUMO [5]. Because of our
focus on open-source, we do not consider commercial mobility simulators such as PVT VISSIM2,
Paramics3, and Citilabs's Cube4 further here.

2VISSIM: http://vision-traffic.ptvgroup.com/en-us/training-support/support/ptv-vissim/ Access: March, 2022
3

4

Paramics: https://www.paramics.co.uk/en/ Access: March, 2022 
Cube: https://www.citilabs.com/software/ Access: March, 2022
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TRANSSIM, MATSim, and SimMobility address a speci�c tra�c optimization problem: 
given a population generate an activity-based tra�c assignment and iterate the generation 
until an equilibrium (e.g., Wardrop, Nash) is reached. Although the simulators mentioned 
above are e�cient and powerful in their own right, their speci�city makes them less general-
purpose, 
exible, and interactive (or scriptable) than SUMO and its Tra�c Control Interface 
(TraCI).

SUMOPy5 implements an activity-based iterative optimization capability similar to TRANS-
SIM, and MATSim, and it is provided as a contributed tool for SUMO. The authors present the 
framework in [13], where they explain how the use of SUMO is suited to evaluate multi-modal 
travel plans and how the iterative optimization implemented by SUMOPy changes the trip plans 
based on the travel times experienced after each simulation run, showing that the algorithm con-
verges and an equilibrium is reached. Although the activity-based mobility generation provided 
by SUMOPy is similar to the one provided by SAGA, SUMOPy's main objective is to solve the 
tra�c assignment problem, to provide solutions similar to TRANSSIM or MATSim, and not 
to automate the scenario generation, making it not fully customizable and general-purpose.

Considering frameworks for large scale transportation simulations, we can �nd a 
exible 
automated mobility-on-demand modeling and simulation framework (AMoD), developed within 
SimMobility [14], and CityMoS [15], formerly known as SEMSim [16] a distributed architecture 
for multi-scale tra�c simulations. Although these frameworks are very extensive, they assume 
that a scenario exists, and it is already adequately implemented.

Considering Figure 1, state-of-the-art simulation frameworks focus on mobility simulators 
and mobility generation, leaving the cumbersome and complex task of generating the trans-
portation infrastructure model to the expert users. SAGA's role is to support and automate the 
complete mobility scenario generation, from the transportation infrastructure to the activity-

based mobility plans. The predecessors of SAGA are ACTIVITYGEN6 and OSMWebWizard7, 
tools already available in the SUMO toolbox. OSMWebWizard is conceptually similar to SAGA 
because it provides the sca�olding required to generate a simple mobility scenario based on ran-
dom trip de�nitions instead of OD-matrices or activity-based trip plans. SAGA builds upon 
the tools used by OSMWebWizard, extracting the additional information required to generate 
representative activity-based mobility plans. ACTIVITYGEN produces trip-based mobility 
meant to represent the concatenation of trips required to satisfy the sequence of activities in a 
personal plan. Used together with OSMWebWizard, it may produce results similar to SAGA 
after a cumbersome manual customization process, although the actual journey plan (and in-
formation connected to its sequence of activities) is not preserved. Unfortunately, the project is 
discontinued and, unlike SAGA, not able to leverage the state of the art multi-modal mobility 
models and infrastructure implemented in SUMO.

To the best of our knowledge, SAGA is the �rst fully customized activity-based multi-modal 
mobility scenario generator that explicitly focuses on the transportation infrastructure de�nition 
and extraction of additional environmental information. Its goal is to automate fast mobility 
scenario prototyping and to provide both the conceptual work
ow and the sca�olding (in terms 
of detailed con�gurations) required to enhance and tune the intended mobility scenario. SAGA

is freely available under the EPLv2 license on GitHub8, and it is included in the contributed 
tools since SUMO v1.3.0.

5

6

SUMO Wiki: SUMOPy https://sumo.dlr.de/docs/Contributed/SUMOPy.html Access: March, 2022 SUMO 
Wiki: ACTIVITYGEN https://sumo.dlr.de/docs/ACTIVITYGEN.html Access: March, 2022

7SUMO Wiki: OSMWebWizard http://sumo.sourceforge.net/userdoc/Tutorials/OSMWebWizard.html Access: 
March, 2022

8SAGA on GitHub: https://github.com/lcodeca/SUMOActivityGen Access: March, 2022
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3 Modelling Smart Mobility

As mentioned in the introduction, most of the latest research on mobility modelling is pursuing 
activity-based mobility. Nonetheless, the latest research is not addressing the requirements 
to consistently build a simulation scenario able to leverage activity-based mobility generation, 
and the con�guration of transportation infrastructure and environmental information are left 
to expert knowledge and personal experience.

In order to create realistic mobility patterns, the population is de�ned through individual 
people with daily routines. Each routine is de�ned as an activity chain, a sequence of generic 
activities used to model travelers' behaviours (such as work, school, and sport). The mobility 
plans generated by SAGA are in the form of a set of personal journey plans composed of multiple 
trips (with an associated transportation mode) used to connect the location of the activities in 
the given chain.

In the scope of this paper, a mobility simulation is composed of three main interacting 
components: (i) the vehicular mobility models, and the de�nitions of both (ii) transportation 
infrastructure and (iii) the trip plans associated with a given tra�c demand (with the associated 
activity chains). Although the vehicular mobility models described in the literature can be 
further improved and calibrated, our focus is to improve and automate the generation of the 
transportation infrastructure and the trip planning associated with the given tra�c demand 
and respective activity chains.

3.1 Activity-based Mobility Plans

Over the years, it has been shown that disaggregated activity-based models better represent 
individual decision-making [8], improving the realism of the generated mobility compared to 
traditional aggregated demand models.

There are multiple ways to generate these type of mobility traces, with increasing levels 
of complexity and 
exibility. Thinking about our daily routine, we can construct a complete 
daily plan built from simple trips consistently aggregated. For example, a person may drive 
their car from home to school, leave the kids, drive to work, and look for a parking spot. Over 
the lunch break, the person can walk to the bus stop, take the bus to a stop closer to the 
desired restaurant, and walk to it. Similar steps can be used on the way back to the o�ce, 
and, eventually, home. The complete plan is composed of multiple activities, each of them 
associated with location, starting time, and duration. The complexity of the back-and-forth 
trip linking each activity may vary, depending on the requirements and the trip feasibility. 
A multi-modal scenario generated using SAGA is suited to model the complex activity-based 
journey previously described.

Although the chains of activities may be implied by the use of Origin-Destination (OD)-
matrices built from surveys and counters, when used to generate the tra�c assignment, the 
sequences of activities are not usually explicit. The resulting mobility de�nition obtained from 
complete journey plans preserves important information on internal consistency; information 
that can be crucial during the decision-making associated with speci�c applications and opti-
mizations. The mobility produced by SAGA is in the format of personal journeys composed 
but multiple trips, where the connection between each activity and the trip (with the mode of 
transport) is explicit. This plan de�nition leverages the latest multi-modal capabilities provided 
by SUMO.
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3.2 Components of a Mobility Simulation

The transportation infrastructure represents the backbone of the simulated environment. It 
consists mainly of roads and intersections, but the presence of additional environmental infor-
mation is crucial to building a representative version of the real world.

Table 1 shows a non-exhaustive list of important features. The �rst column names the 
feature. A tick in the second column means that the feature is explicitly de�ned and modeled 
in SUMO. A tick in the third column means that, although it is not explicitly modeled in 
SUMO, it is still possible to build it using other features. The fourth and last column, if 
ticked, means that SAGA can leverage or improve the feature. The reason why SAGA does 
not leverage containers is that it is targeting mobility for people and not for goods. Similarly, 
the meaning of tra�c signs and tra�c detectors is embedded in the infrastructure and does 
not add additional information for activities. In SUMO, parking maneuvers can be partially 
modeled through delays and obstruction to tra�c. This feature, if con�gured, will change the 
resulting trip time for SAGA, but it will not otherwise a�ect the decision making. Thanks 
to SUMO's rapid development cycles, features such as taxis and bicycle stands, shared rides, 
charging stations, and consistent inter-modal mobility are planned to be supported by SAGA 
as soon as the underlying models reach stability.

Given that tra�c composition has a signi�cant impact on the resulting mobility, the sim-
ulation should be based on multi-modal mobility models (di�erent types of vehicles interact 
with each other) capable of inter-modal trips (multiple modes of transport used consistently 
during the same journey). Nonetheless, the only inter-modal trip capabilities implemented by 
SAGA are based on the public transportation infrastructure. Therefore, SAGA is capable of 
generating a journey plan that uses both buses and trains, but it is unable to generate a plan 
involving both bicycles and taxis for di�erent legs of the journey. The �nal mobility traces 
are generated starting from an OD matrix, usually containing the origin, destination, mode of 
transport, and the number of vehicles. Additionally, SAGA supports the creation of generic 
parametrized chains of activities that can be tuned with additional information, if available. 
The accuracy of all the previously mentioned information, the aggregation, and the mobility 
generation methodology determine the degree of representativeness of the resulting mobility 
scenario.

3.3 Automation Process

In principle, the generation of a general-purpose large-scale mobility simulation tailored to study 
smart mobility should be an automatable process. The automation of the scenario generation 
implies a sequence of actions that, starting from a dataset, delivers the mobility simulation 
scenario without user intervention. In reality, we must take into account the heterogeneity of 
the datasets required to build it, their accuracy, the limitations of the models involved, and the 
complexity of the interactions between the models.

In this paper, we present a framework able to provide a sca�olding infrastructure for the 
automation process based on the SUMO mobility simulator. A user that wants to use SAGA 
to generate a mobility scenario automatically can run the main application with only the OSM 
dataset of the area of interest as input. The output provided by SAGA is the multi-modal 
mobility scenario of the given area, and its representativeness depends on the quality of the 
OSM data. Given that building a mobility scenario is an iterative process, based on SAGA's 
con�gurable stages, the iterations required to obtain representative infrastructure and mobility 
can be scripted and individually tuned. As previously discussed in Section 2, independently of 
the mobility simulator chosen, the automatic generation of mobility simulations is a problem
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Table 1: List of features crucial for the activity-based mobility generation.

Explicitly de�ned Modellable with SUMO Used by SAGA

Streets ✓ ✓ ✓

Railways ✓ ✓ ✓

Waterways ✓ ✓ ✓

Bridges ✗ ✓ ✓

Over/Under passes ✗ ✓ ✓

Stairs ✗ ✗ ✗

People ✓ ✓ ✓

Vehicles ✓ ✓ ✓

Containers ✓ ✓ ✗

Intersections ✓ ✓ ✓

Tra�c signs ✗ ✓ ✗

Tra�c lights ✓ ✓ ✓

Pedestrian areas ✓ ✓ ✓

Pedestrian crossings ✓ ✓ ✓

Intersection permissions ✓ ✓ ✓

Lane permissions ✓ ✓ ✓

On-street parking ✓ ✓ ✓

Parking areas ✓ ✓ ✓

Multi-layer parking areas ✗ ✓ ✓

Parking maneuvers ✗ ✗ ✗

Land use ✗ ✓ ✓

Buildings ✓ ✓ ✓

Points of interest ✓ ✓ ✓

Public transports stops ✓ ✓ ✓

Public transports schedule ✗ ✓ ✓

Taxi stands ✗ ✓ ✗

Bicycle stands ✗ ✓ ✗

Detectors ✓ ✓ ✗

Charging stations ✓ ✓ ✗

Activities ✗ ✓ ✓

Activity chains ✗ ✓ ✓

Rerouting ✓ ✓ ✓

On-demand rides ✗ ✓ ✓

Shared rides ✓ ✓ ✗

Multi-modal trips ✓ ✓ ✓

Inter-modal trips ✓ ✓ ✗

not yet solved, and there are not many open-source tools capable of enabling this automated
generation in a fully con�gurable manner. Taking into account that complete datasets are
hard to obtain, SAGA's goal is to structure and support the process of �xing and �lling in
the inconsistent information with sensible default values. Finally, considering that mobility
simulators implement complex parametrized models (improved regularly based on the latest
research studies), and that new multi-modal features are implemented frequently, a tool such
as SAGA is required to take into account all the dependencies and to facilitate and improve
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the resulting simulations.

4 Mobility Scenario Generation Framework

SAGA is an activity-based multi-modal mobility scenario generator for SUMO. Starting from an
OSM �le, SAGA extracts data required to build a multi-modal scenario, and in a step-by-step
fashion, generates the con�gurations (e.g., parking areas, buildings, generic tra�c demands and
activities) needed to compose a simulation scenario, while providing the sca�olding required to
iteratively re�ne it with additional data to improve realism.

The OSM data format allows the de�nition of transportation and environmental features
required to generate a mobility scenario. Unfortunately, the completeness of this information
is not consistent across the dataset. SAGA extracts these data and computes sensible default
values for the missing information, providing not only a mobility simulation scenario, but also
the intermediate con�gurations required to enable the incorporation of additional sources of
data, if available.

SAGA is freely available under the EPLv2 license on GitHub9, and it is included in the
contributed tools since SUMO v1.3.0.

4.1 Requirements

With the �nal goal in mind of implementing, studying, and evaluating various mobility appli-
cations and optimizations, the scenario generation process needs to be as straightforward as
possible for the user to minimize overhead. Although the generation process still requires super-
vision, the use of a reliable automation framework provides a consistent work
ow for speeding
up the iterative re�nement of the scenario.

A mobility scenario generation framework needs to address both the static infrastructure
and mobility traces. Without a consistent and detailed transportation infrastructure, it is not
possible to generate reasonable mobility traces. In addition, the information initially available
may not be complete enough for the scenario to be representative of the problem at hand,
but the guided process can be used to integrate missing data from other sources. Speci�c
requirements identi�ed are the following: (i) the scenario generator must be fully con�gurable
and general-purpose, (ii) the work
ow must be straightforward and able to keep track of all
the interactions between features, and (iii) all the steps must be independent of each other to
allow iterative re�nement and data integration of incomplete or missing information.

The above mentioned requirements are tightly coupled with the capabilities and require-
ments of the mobility simulator. SAGA uses SUMO and its toolchain, but it implements
additional components to extract and con�gure the required environmental data automati-
cally, enabling the straightforward inclusion of the speci�c scenario components required by the
activity-based mobility generation.

4.2 Top-down Overview

Taking into account that the scenarios generated using SAGA are expected to be used to
measure and evaluate the impact of the candidate applications and optimizations on mobility
features, we analyze the requirements of the mobility components �rst and then explain the
information required to obtain them.

9SAGA on GitHub: https://github.com/lcodeca/SUMOActivityGen
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Activity-Based Mobility Generation Our primary assumption is that only partial infor-
mation on the population, the activities, and the tra�c demand (including the OD-matrix) is 
available for the mobility scenario generation. The missing data required to build the mobility 
scenario is based on parametrized numerical estimations and approximations. The automation 
of the activity-based mobility generation then requires a generic de�nition for the activities, the 
composition of the chains with their associated probabilities, and the transport modes linked 
with each chain. Each activity requires a location in order to generate the associated trip, and 
the exact sequence of activities in
uence their expected locations (detailed in Section 4.3.2). 
The locations are based on the Tra�c Assignment Zone (TAZ) de�nition (con�gured as detailed 
in Section 4.3.1). Each trip linking activities has an associated transport mode, and depending 
on the con�guration, additional requirements can be applied. For example, on-demand mobility 
services, such as taxis, do not require parking at the destination, unlike personal vehicles.

Transportation Infrastructure Generation The generation of detailed and consistent 
transportation infrastructure is required to populate the scenario with representative mobility. 
Aiming to generate a multi-modal mobility model, the primary feature to extract is the road 
topology, with all the data associated with the streets' and lanes' permissions, and the intersec-
tions' signaling and geometry. Additional transportation and environmental information on the 
public transportation infrastructure is needed. With public transportation, we mean any mode 
of transport with a schedule, a route, and prede�ned stops. Based on the city in question, it 
may be composed of buses, trains, metros, trams, and ferries. Finally, it is necessary to extract 
and generate the location and capacity of both on-street and o�-street parking areas.

Additional Environmental Features Generation Transportation infrastructure aside, 
additional environmental information is required to generate activity-based mobility. Data 
on building size and location, the associated land use, and location and type of PoIs can 
be used to complement incomplete or missing information on the tra�c demand. Reasonably, 
locations with large commercial buildings attract more people than residential areas with smaller 
buildings. Origins and destinations in the OD-matrix are based on the relative weight of 
the TAZ. In case external information is not available on the shape and location of TAZ, 
administrative boundaries are straightforward to �nd in open datasets, and they can be used 
instead.

4.3 Work
ow and Capabilities

In this section, we discuss in detail the framework and the associated work
ow available to 
guide the mobility scenario generation process and to keep track of all the requirements.

4.3.1 Iterative Scenario Generation Process

Starting from an OSM �le, SAGA generates a running multi-modal mobility scenario, including 
the con�guration �les used by SAGA's components, which can be enriched to tune both the 
transportation infrastructure and mobility traces. The representativeness of the generated 
scenario depends entirely upon the quality of the information available in the OSM �le. Figure 
2 presents all the isolated steps in the work
ow used by SAGA to generate the scenario. It 
heavily uses SUMO tools, and it provides additional tools only when necessary, in an ongoing 
e�ort to improve the SUMO toolbox, when possible.
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F i g u re 2:  O v er vi e w of t h e s c e n ari o g e n er ati o n p r o c e s s.  T h e r o u n d e d b o x e s i n gr e e n ar e t h e
t o ol s p r o vi d e d b y S U M O.  T h e s q u ar e d b o x e s i n or a n g e ar e t h e t o ol s p r o vi d e d b y S A G A.  O n
t h e ri g ht of e a c h b o x i s li st e d t h e g e n er at e d o ut p ut.

1.  T h e  O S M fil e i s p r o c e s s e d u si n g n e t c o n v e r t 1 0 t o o bt ai n (i) t h e n et w or k d e fi niti o n, (ii)
t h e p u bl ic t r a n s p ort ati o n st o p s, (iii) t h e p u bli c t r a n s p ort ati o n li n e s, a n d (i v) t h e o n- st r e et
p ar ki n g s p ot s.

2.  T h e  O S M fil e a n d t h e n e wl y g e n er at e d n et w or k d e fi niti o n i s p r o c e s s e d u si n g p o l y c o n v e r t 1 1

t o e xt r a ct all t h e e n vi r o n m e nt al g e o m et ri c al f e at u r e s a v ail a bl e ( e. g., b uil di n g s,  P oI s, a n d

1 0

1 1
S U M O  Wi ki:  N E T C O N V E R T  htt ps://s u m o. dlr. d e/ d o cs/ N E T C O N V E R T. ht ml A c c e s s:  M a r c h,  2 0 2 2  S U M O  
Wi ki:  P O L Y C O N V E R T  htt ps://s u m o. dlr. d e/ d o cs/ P O L Y C O N V E R T. ht ml A c c e s s:  M a r c h,  2 0 2 2
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administrative boundaries). These features, although cosmetic for SUMO, can be ac-
cessed at simulation time using TraCI, enriching the capabilities of the resulting mobility
scenario.

3. Based on the network �le and the public transport data extracted from OSM, we use
ptlines2flows.py12 to generate the public transportation timetable with the relevant

ow of vehicles. More precisely, each line (e.g., bus routes, trains, or other) is de�ned as
a series of vehicles (
ow) with a �xed route and scheduled stops, that repeats over time.

4. Starting from the OSM �le and the network de�nition, additional o�-street parking ar-
eas13 are extracted. In case the parking capacity is not de�ned in OSM, a parametrized
value (adjustable afterward) is used. The previously extracted de�nition for the on-street
parking is then merged with the newly generated parking area information, creating a
complete and consistent de�nition for all parking.

5. For each parking area (on-street or otherwise), SUMO recommends de�ning the possible
parking alternatives to be used by SUMO to reroute tra�c in case a parking area is full.
The de�nition of the alternatives is done using generateParkingAreaRerouters.py14.

6. The extraction of both TAZs and buildings is performed by SAGA:

(a) Using the OSM �le, the administrative boundaries15 are extracted and are used to
generate the TAZ de�nition for SUMO (as a list of streets).

(b) The TAZ are weighted based on the number of buildings, PoIs, and infrastructure
available in the area. The weight associated with a TAZ is an estimation of its poten-
tial attractiveness, and is computed based on e.g., the number of streets, buildings,
and PoIs de�ned in the TAZ, divided by the area of the TAZ itself. Unless otherwise
speci�ed, it is assumed that the more infrastructure and PoIs are available in a given
geographical area, the higher is the probability of having tra�c going through it.

(c) Each building is associated with one or more TAZs due to possible overlapping
administrative boundaries. Two possible accesses to each building are computed
based on the closest street that allows vehicles, and the closest path that allows
pedestrians. The two accesses may be the same. For each access, the weighted
probability of selecting it is computed (as an origin or destination) within the TAZ.
This probability is the area16 of the building relative to the area of the TAZ, following
the principle that (unless otherwise speci�ed) larger buildings attract more people.

7. A generic OD-matrix based on 24 hours of mobility is generated based on the weighted
TAZ. This OD-matrix is de�ned in the commonly used Amitran17 format.

12SUMO Wiki: ptlines2
ows.py https://sumo.dlr.de/docs/Tutorials/PT_from_OpenStreetMap.html Access: March, 2022

13SUMO Wiki: Parking areas https://sumo.dlr.de/docs/Simulation/ParkingArea.html Access: March, 2022

14SUMO Wiki: Parking Area Rerouters https://sumo.dlr.de/docs/Simulation/Rerouter.html#rerouting_to_an_alternative_
parking_area Access: March, 2022

15OpenStreetMap Wiki: administrative boundaries https://wiki.openstreetmap.org/wiki/Tag:boundary=administrative 
Access: March, 2022

16The use of the building's area instead of its volume generates inaccurate weights in case of geographical

areas with skyscrapers, and both large and small buildings. Although OSM allows the de�nition of the volume,

the information is missing from the majority of the buildings. On the other hand, the building's area is always

computable.
17SUMO Wiki: Amitran https://sumo.dlr.de/docs/Demand/Importing_O/D_Matrices.html#the_amitran_format

Access: March, 2022
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8. Based on all the previously extracted data, a default con�guration for the activity-based
mobility generation is created as explained in Section 4.3.2.

9. The �nal activity-based mobility composed of personal journey plans is generated using
the algorithm presented in Section 4.3.2.

10. The scenario is run using a default SUMO con�guration �le.

All the steps described above are isolated applications with precise input and output �les. Each
con�guration can be modi�ed manually to add speci�c information available for the chosen
scenario or to re�ne it. Once one con�guration is changed, all the following steps should be
re-launched to maintain consistency.

4.3.2 Activity-Based Mobility Generation in Detail

The activity-based mobility generation is parametrized through a con�guration �le and fully
scriptable. The complete mobility can be generated at once, or single slices18 can be individually
customized and tuned, leaving SUMO to merge them afterward during the simulation. The
mobility generator interacts with SUMO using the TraCI Python APIs19. In the following
paragraph, the required parameters and their implications are discussed in detail.

Input Figure 3 shows the input required by the mobility generator as described in the fol-
lowing sections:

� The SUMO �les required are (i) the network de�nition, (ii) a default de�nition of the
vehicles available, (iii) the de�nition of the parking areas, and (iv) the con�guration �le
with the public transportation available (in terms of stops and 
ows). These �les are used
to con�gure a basic SUMO simulation to be queried during the mobility generation.

� The transportation modes' behavior is customized by specifying (i) if some parking areas
cannot be used, (ii) which types of vehicle are allowed to use the parking spots, and (iii) if
the parameter associated with the mode of transport de�ned in the tra�c demand should
be used as a weight (discussed in more detail afterwards) or the probability of selecting
each given mode.

� The population is customized in terms of (i) the number of people (hence the number
of individual plans) and (ii) the TAZ de�nition (with its associated streets, weights, and
buildings). The TAZ can be aggregated and renamed for more straightforward use. When
the aggregated name is used in the tra�c demand de�nition, one of the individual TAZ
is selected using a uniform probability distribution.

� Three categories of activities can be de�ned: Home, Primary, and Secondary. All the
parameters required for each of them are de�ned by separate Gaussian distributions with
given mean and standard deviation. Home activity and Secondary activities have only
duration. The Home activity is unique and used as place-holder for the origin de�ned
in the tra�c demand. Primary activities have both start time and duration. In any
given chain, even if multiple Primary activities are de�ned, their location is unique and
associated with the destination set in the tra�c demand.

18

19

A slice of mobility is one single entry of the OD-matrix.

SUMO Wiki: TraCI Python APIs https://sumo.dlr.de/docs/TraCI/Interfacing_TraCI_from_Python.html 
Access: March, 2022
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F i g u r e 3: I n p ut r e q ui r e d b y t h e a cti vit y- b a s e d  m o bilit y g e n er at or.

• T h e t r a ffi c d e m a n d i s d e fi n e d i n sli c e s.  E a c h of t h e m r e q ui r e s t h e p er c e nt a g e of t h e
p o p ul ati o n a s s o ci at e d  wit h it, t h e  T A Z a s s o ci at e d  wit h t h e  H o m e a cti vit y ( u s e d a s ori gi n),
t h e  T A Z a s s o ci at e d  wit h t h e  P ri m ar y a cti vit y ( u s e d a s pri m ar y d e sti n ati o n), a n d t h e
di st ri b uti o n of c h ai n s of a cti viti e s.  E a c h a cti vit y c h ai n i n t h e di st ri b uti o n  m u st st art
a n d e n d  wit h t h e  H o m e a cti vit y a n d n e e d s t o c o nt ai n at l e a st o n e  P ri m ar y a cti vit y.
S e c o n d ar y a cti viti e s c a n b e ar bit r aril y i n s ert e d i n t h e c h ai n, b ut it i s n ot p o s si bl e t o h a v e
t w o S e c o n d ar y a cti viti e s o n e aft er t h e ot h er.  E a c h c h ai n  m u st d e fi n e t h e li st of  m o d e s
a v ail a bl e, a n d e a c h a v ail a bl e  m o d e  m u st b e a s s o ci at e d  wit h t h e p r o b a bilit y of c h o o si n g it
or it s c o st ( d e fi n e d i n t h e  G e n er ati o n p ar a gr a p h s u m m ari z e d i n  Fi g u r e 5 ).

S e c o n d a r y  A c ti vi t y  L o c a ti o n Fi g ur e 4 Fi g ur e s h o w s t h e d e ci si o n- m a ki n g p r o c e s s u s e d t o
s el e ct t h e l oc ati o n s f or s e c o n d ar y a cti viti e s. St arti n g f r o m t h e a s s u m pti o n t h at o nl y p arti al
i nf or m ati o n i s a v ail a bl e f or t h e t r a ffi c d e m a n d, l o c ati o n s of ori gi n a n d d e sti n ati o n ar e k n o w n,
b ut t h e l o c ati o n of all s e c o n d ar y a cti viti e s i s u n k n o w n.  We n e e d a g e n er ati v e  m o d el f or t h e
mi s si n g l o c ati o n s.  B a s e d o n [ 1 7 ] a n d  wit h o ut f u rt h er i n si g ht o n t h e s p e ci fi c ar e a, it i s r e a s o n a bl e
t o a s s u m e t h at p e o pl e t e n d t o o pti mi z e t h ei r r o uti n e, a n d s e c o n d ar y a cti viti e s t e n d t o b e cl o s e
t o h o m e, o n t h e  w a y t o t h e p ri m ar y a cti vit y ( w or k, f or e x a m pl e) or cl o s e b y it.

H e n c e, t h e p o siti o n of t h e S e c o n d ar y ( S) a cti vit y i n t h e c h ai n d et er mi n e s it s l o c ati o n r el ati v e
t o t h e  H o m e ( H) a n d t h e  Pri m ar y ( P) a cti vit y.  F or e x a m pl e, i n t h e c h ai n H −→ P −→ H −→
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F i g u re 4:  Di a gr a m s h o wi n g h o w t h e l o c ati o n f or t h e S e c o n d ar y a cti viti e s i s c h o s e n.

F i g u re  5:  O v er vi e w  of  t h e i m pl e m e nt ati o n c h oi c e s  m a d e  d u ri n g  t h e a cti vit y- b a s e d  m o bilit y
g e n er ati o n.

S  −→  H  (i n gr e e n),  t h e l o c ati o n of  S  i s c h o s e n  t o b e  wit hi n  t h e ar e a  of  t h e ci r cl e  c e nt er e d  at  H
wit h  a  p ar a m et ri z e d  r a di u s.  Si mil arl y,  i n t h e c h ai n  H  −→  P  −→  S  −→  P  −→  H  (i n or a n g e),  t h e
l o c ati o n f or S  i s wit hi n  t h e p ar a m et ri z e d  r a di u s  of  t h e ci r cl e  c e nt er e d  at  P.  Fi n all y,  i n t h e c h ai n

H  −→  P  −→  S  −→  H  (i n bl u e),  t h e l o c ati o n of  S  i s c h o s e n  wit hi n  t h e ar e a  c o v er e d  b y  a n  elli p s e
wit h  f o c u s e s i n t h e l o c ati o n s of  H  a n d  P  r e s p e cti v el y.  F oll o wi n g  t h e r ul e,  t h e p o siti o n  of  S  c a n
b e  c o m p ut e d  f or all  t h e p o s si bl e  s e q u e n c e s  st arti n g  a n d  e n di n g  i n H,  wit h  at  l e a st o n e  P,  a n d
wit h o ut  t w o c o n s e c uti v e  S s.
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Generation Figure 5 summarizes the algorithm used to generate the trip plan for one person.

1. The Home location is computed based on the given TAZ. The exact location is selected by
choosing a building based on its weighted probability, and the street accesses associated
with it are saved.

2. The location for the Primary activity is computed following the same principle as the
Home location. All the Primary activities in a single chain share this location.

3. The chain of activities associated with the plan is chosen from the distribution de�ned in
the given con�guration.

4. Following the sequence of activities, the areas of interest associated to each Secondary
activity are computed. The process required to compute the actual location is similar to
the one described for the other activities, but in this case, the area of interest, instead of
being a TAZ, follows the de�nition presented in Figure 4.

5. An estimation of the time-based sequence of locations is generated using starting times
and durations retrieved from the generic activities, where the Estimated Travel Time
(ETT) used for the transit journeys is computed by SUMO based on a generic vehicle.

6. Based on the available transportation modes de�ned for the selected activity chain, the
complete plan associated with a person is generated by composing consecutive trips.

� The trip itself is generated using the TraCI API findIntermodalRoute20 provided
by SUMO.

� In case the parameter associated with the mode is its probability, a single trans-
portation mode is chosen. In case the trip is impossible with the given mode, the
journey is discarded.

� If the parameter associated with the mode is its weight, a trip is generated for all
the given modes, their cost is multiplied by the given weight, and �nally, the best
mode (minimum cost) is selected for the trip. The default value de�ned in SUMO for
the cost of a trip is the ETT. In order to model di�erent user preferences associated
with each mode of transport, the cost is multiplied by the given weight, skewing the
selection of the best mode, if required.

� Independently of the transport mode chosen, there is no requirement for parking
associated with the Home activity. The assumption is that people have the means
to park at home.

� Each mode presents di�erent parking behaviours:

{ Bicycles are parked o�-street on arrival.

{ The vehicles listed in the con�guration �le that require parking will look for the
parking area closest to the destination, leaving SUMO at simulation time to �nd
an alternative parking area in case the given one is full.

{ On-demand vehicles have no parking requirements.

{ Other vehicles, such as emergency, have no parking requirements unless explicitly
inserted in the con�guration �le.

The algorithm described above is used to compute every journey plan for each person in the
given population.

20SUMO Wiki: �ndIntermodalRoute API https://sumo.dlr.de/docs/TraCI/Simulation_Value_Retrieval.html#command_
0x87_find_intermodal_route Access: March, 2022
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(a) MoST Scenario (b) Principality of Monaco

(c) Adlershof (DE) (d) Docklands (IE)

Figure 6: Examples of SAGA usage.

Remarks The work
ow presented above is independent of the size of the scenario in question.
The size of the scenario and the quality of the available information impact the e�ort required
to tune and generate a representative mobility scenario. Usually, the larger the scenario, the
more heterogeneous are the datasets that need to be integrated, increasing the complexity of
the problem. Nonetheless, the actual work
ow does not change, and given the isolation of each
step, they can be swapped with ad-hoc extractors and aggregators able to handle the speci�c
set of information that needs to be processed.

5 Use Case: Fast Prototyping

With SAGA, it is possible to generate the �rst prototype of a mobility scenario automatically,
where its quality depends on the input data. It can be used to identify missing or problematic
datasets, speeding up the feasibility study and planning required to build a representative
multi-modal mobility simulation of a location, being a neighborhood or an entire city.

The work
ow presented in this paper was developed while hand-crafting the MoST Scenario

[9] (Figure 6a). The MoST Scenario covers an area of approximately 70 km2 that includes three
logical areas and 20 TAZ. It provides the locations of PoIs, more than 100 parking areas, the
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shape and location for the buildings, and the elevation of buildings and streets. Buses and trains 
comprise the public transport network, with more than 150 stops and more than 20 routes. 
Based on previous experience and expert knowledge, to achieve the �rst working prototype of 
MoST Scenario, it took approximately 960 hours (one person working for six months). Only 
afterward, the iterative process of hand-tuning the multi-modal scenario could begin.

Figure 6b shows the initial scenario obtained from OSM for the city-state of Monaco and 
the surrounding French region. This prototype was built starting from the initial OSM dataset 
used for MoST Scenario but using SAGA. The automated generation of the working proto-
type required approximately four hours of computation on a standard computer (processor:

Intel R
 CoreTM i7-9750H CPU @ 2.60GHz x 12, RAM: 16 GB). The prototype presents 
plenty of problems, mostly linked to the lack of precise environmental data for the region and 
the complex 3D geometry of the infrastructure (due to the presence of mountains and sea, the 
streets are layered with bridges and tunnels). Nonetheless, it shows how a large-scale scenario 
can be rapidly generated, and the intermediate con�guration �les provided by SAGA can be 
modi�ed step-by-step to achieve a properly hand-tuned scenario representative of the mobility 
in the area.

Tuning a Multi-modal Scenario Once the prototype is built, by following the work
ow 
presented in Figure 2 (and using the intermediate con�gurations generated by SAGA) it is 
possible to �nd most of the issues that require investigating. The Table 2 lists the steps 
required to tune a multi-modal scenario. The �rst column names the tool and discusses the 
generic issues that can be found in the intermediate outputs, and the second column presents 
the solution used during the hand-tuning of MoST Scenario.

Fast Mobility Scenario Prototyping Figures 6c and 6d show two mobility scenarios we 
generated directly from OSM without changing the default parameters. Although these sce-
narios cannot be considered representative of the real area, due to the use of generic tra�c 
demand, they present an adequate starting point for a feasibility study to achieve a represen-
tative multi-modal mobility simulation.

The �rst one (Figure 6c) is based on Adlershof, a locality south of Berlin in Germany. 
The initial dataset retrieved from OSM is exceptionally detailed and almost ready to be used, 
providing an excellent example of a best-case setting for SAGA. We use this OSM dataset to 
verify SAGA's ability to extract detailed information correctly. Nonetheless, we are aware of 
multiple issues: (i) broken geometry for multi-modal intersections, (ii) on-street and o�-street 
parking area duplication, (iii) the administrative boundaries are incomplete (the area is quite 
small). We have not further investigated the existence of external sources of data to tune this 
scenario.

The second one (Figure 6d) is based on an area called Docklands in Dublin (Ireland). We 
use this OSM dataset to verify SAGA's ability to build sensible default values when correct 
and detailed information is not available. This example of left-hand driving presents plenty 
of problems. Nonetheless, thanks to the fast prototyping enabled by SAGA, the critical issues 
with intersections, interconnections for the multi-modal transportation, and missing information 
on the tram and the bus stops have been straightforward to identify. The administrative 
boundaries (and the associated TAZs) are detailed, and the geometry of both census and election 
districts are available. Information on parking areas is incomplete and we found duplication and 
inconsistencies. We started to investigate the presence of additional information to supplement 
SAGA's con�guration �les, and for the moment we are looking into the Building City Dashboard
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Table 2: Discussion on the intermediate output from SAGA and the hand-tuning required by 
MoST Scenario as a practical example.

SAGA: Generic Issues MoST Scenario

netconvert: Check the network for is-
sues with intersections, public transportation
stops and route de�nitions, location of the
on-street parking areas.

Manually changed the geometry of all the
roundabouts, updated missing routes and
stops for the buses, discarded the on-street
parking areas due to incomplete information.

polyconvert: Check the polygons for issues
with overlapping buildings and missing ad-
ministrative boundaries.

Manually moved the overlapping buildings,
but the administrative boundaries were prop-
erly tagged.

ptlines2flows.py: Check the default pa-
rameters used to generate the schedule and

ows for the public transportation.

Manually con�gured the schedule based on
the one posted on the o�cial website.

generateParkingAreasFromOSM.py: Check
the locations of the parking areas and their
capacity.

Manually removed duplicate parking areas,
and capacity updated based on external on-
line sources.

generateTAZBuildingsFromOSM.py: Check
the TAZ extracted from the administrative
boundaries. Check both the access to the
buildings and their weight.

No additional information on the TAZ was
available. Manually moved the access to
some buildings based on personal knowledge
of the area, but no additional information
from the census was available.

generateAmitranFromTAZWeights.py:
Tune the generic OD-matrix with tra�c
demand data.

Tra�c demand was not available. The OD
matrix was hand-tuned with statistical data
on average tra�c in the area.

generateDefaultsActivityGen.py: Tune
the default activities and the activity chain
distributions.

No additional data based on periodic reports
provided by Monaco, nor ad-hoc surveys
were available on the activities, the chains,
and their probability distributions.

project21, and more precisely, Dublin Dashboard22.

Remark The MoST Scenario is available to the community under GPLv3 license, and it can
be downloaded from GitHub 23. This scenario is packaged with SAGA as an example of a hand-
tuned scenario based on the work
ow previously described, and it can be used as an example
to improve the con�guration of the activity generation based on a more complex environment.

21

22

23

Building City Dashboard https://dashboards.maynoothuniversity.ie/ Access: March, 2022 Dublin 
Dashboard http://www.dublindashboard.ie/ Access: March, 2022
MoST Scenario on GitHub https://github.com/lcodeca/MoSTScenario
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6 Conclusion and Future Work

In this paper, we present the SAGA framework, a fully con�gurable multi-modal scenario 
generator with mobility based on user-de�ned activity chains for SUMO. SAGA distinguishes 
itself from the other mobility generators because it explicitly focuses not only on the activity-
based mobility generation but also on the extraction and con�guration of the transportation 
infrastructure and the environmental information required to generate the mobility. The main 
use-case considered is fast scenario prototyping, where the work
ow and toolset associated with 
SAGA support the feasibility study and planning required to generate a representative mobility 
scenario from scratch. More precisely, starting from OSM, SAGA is able to automate (i) the ex-
traction of additional infrastructure and environmental features (e.g., parking areas, buildings, 
and PoIs), (ii) the extraction of generic TAZs based on the administrative boundaries, (iii) the 
generation of a default con�guration for the tra�c demand, and (iv) based on default activity 
chains, the generation of activity-based mobility plans for people. SAGA supports multiple 
travel modes (walking, bicycles, public transport, on-demand, and user-de�ned vehicles), and 
each mode has parametrized parking requirements. Finally, the user-de�ned chain of activities 
is parametrized to be 
exible and able to represent generic daily routines. SAGA is freely avail-
able under the EPLv2 license on GitHub https://github.com/lcodeca/SUMOActivityGen, 
and it is included in the contributed tools since SUMO v1.3.0.

The future of SAGA is focused on improving the automation, and on the implementation 
of inter-modal mobility based on activity chains. The next step is to automate the extraction 
of additional infrastructure features, such as bicycle and taxi stands, going in the direction of 
a de�nition of a more complex inter-modal mobility hub. Additionally, the SUMO developers 
are adding additional features for shared rides that we intend to incorporate. Finally, it would 
be interesting to expand the parametrization of the activities, for example, by adding cate-
gories that can be directly associated with building and land use, increasing the level of tuning 
available.
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Abstract

Public transport systems in rural and peri-urban areas are in many cases characterized by
long travel times, low frequencies and irregular services. Because of this, motorized private
transport is often the only practicable mode of mobility in this regions. The use of Demand
Responsive Transport (DRT) as feeder systems to mass public transport modes presents a
great potential for improvement. This paper investigates the potential of such a system applied
to a case-study of a peri-urban area of Brunswick, Germany. For that, the current bus line was
replaced by a Bus Rapid Transit (BRT) line with DRT as feeder systems. In order to evaluate
the performance of the proposed system and provide a benchmark against the current public
transport o�er, multiple trips to the city center with the di�erent transport modes were
simulated. The agent-based microscopic simulation Eclipse SUMO (Simulation of Urban
MObility) was used as framework. The scenario of the DRT systems was simulated by SUMO
coupled to a developed dispatching algorithm. The results show the potential of the proposed
system due to the lower travel times, higher frequency and grater service area. Travel times
were even comparable with the travel times of private car-based modes, which could lead to a
potential increase in demand.
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1 Introduction

The demographic and social changes that have taken place in recent decades pose increasing
challenges to classic public transport in rural and peri-urban areas. The increasing migration
to the cities mainly by young people as well as the increasing motorization of the population
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has generated a centralization of public administration, social infrastructure and service o�ers
[38]. As a result, many supply structures in rural areas have collapsed [45].

Public transport in these areas, if provided at all, are characterized by long travel times, low
frequencies and irregular service [41]. Its main function is often reduced to school transport,
which accounts for 50 % of the demand in many districts and up to 90 % in some areas [13, 22].
The motorized private transport is often the only alternative to mobility in these regions,
because of the low density of supply and the long distances [18].

To address this problem, since 1970 di�erent demand-based forms of public transport have
been tested in rural and peri-urban areas in Germany [27]. In practice, it has been shown that
the costs of 
exible o�ers surpass the cost of classic public transport due to human resource
planning costs and generally lower vehicle capacity. This is particularly pronounced if the nec-
essary bundling and collection e�ects cannot be achieved and trips are limited to the transport
of individual passengers [8].

In recent years, technological advances and improvements in computer power and digitiza-
tion have made it possible to develop new forms of demand-based mobility, which are a booming
market and are already being used or tested in several cities worldwide. Demand Responsive
Transport (DRT) also referred to as ride-sharing services like "UberPool" and "Lyft Shared"
are an example of latter. This shared service without �xed routes seeks to bundle requests in
minimizing the number of vehicles and route lengths without compromising passenger travel
times. Resulting, according to various simulations, in a more e�cient service compared to taxi
and ride-hailing services ("Uber" or "Lyft") [7, 28, 40]. A signi�cant impact on vehicle mileage
and tra�c in general only occurs if many customers switch from individual car-based transport.
According to Feigon et al. [20], only New York City has so far published su�cient data on DRT
systems to analyze and evaluate their impact. Based on the latter data, Schaller [37] found that
in fact only 20 % of the trips are shared and that the majority of the customers switched from
non-vehicle-based modes of transport (e.g. public transport, bicycle and walking). Additionally
most of the times the service is only used by one person, which leads to an increase in tra�c
instead of the planned reduction. The acquisition of passengers from public or non-motorized
transport is a critical point, since DRT systems are not well suited for high-demand connections
[29]. Conventional high capacity public transport, such as trains, subways or Bus Rapid Transit
(BRT) are best suited for this purpose due to their higher operational e�ciency [33]. Hence,
the combination of both systems by using the DRT as a feeder system for high capacity transit
would be the �rst best solution.

The objective of this paper is to evaluate the optimization potential of public transport in
peri-urban areas through the use of DRT as feeder systems for a BRT line. This is done by
assessing the performance of the conventional and proposed public transport system using the
microscopic tra�c simulation Eclipse SUMO (Simulation of Urban MObility). As a case-study
an area near the city of Brunswick (Germany) was chosen.

The paper is organized as follows. First the case study is described in detail. Then the
adopted methodology is outline. Next, the simulation results are presented and discussed. At
last the main conclusions derived from this study are summarized.

2 Study case
The study area includes six villages located in the west of the city of Brunswick along the federal
highway B1 (Figure 1). With 250,361 inhabitants, the city of Brunswick is the second largest
city in the state of Lower Saxony. The number of inhabitants of the villages varies between
552 in Vechelade and 6,108 in Vechelde with most of the area being residential or of mixed use
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Figure 1: Study case: current and proposed public transport system

[10, 43]. Less than 10 % of the inhabitants of the villages live and work in the same place, while
48 % are working in Brunswick [23]. The short distance to the city center (about 13 km from
Vechelde) and the limited local supply of education, health care and leisure activities result in
a high number of daily trips to Brunswick.

The private vehicle constitutes the main mode of transport due to the fast and easy access
to the city along the federal highway B1 and the limited public transport o�er. The bus line
450 is the main public transport service in the area connecting most villages, with the exception
of Wahle and Lamme, with the center of Brunswick (purple line in �gure 1). The bus line 418
(green line in �gure 1) connects Lamme with the city center while Wahle currently does not have
a public transport service connection to Brunswick. Both bus services are characterized by an
indirect route through secondary streets and mixed tra�c lanes, long travel times, high bus stop
density and low frequency (30 minutes at peak times) [44]. Vechelde also has a regional train
service to Brunswick main station with a travel time of 10 minutes but with a low frequency of
1 hour [5].

The study area shows a high potential for growth and expansion due to its relatively short
distance to the city and the availability of free areas [23]. However, due to the lack of measures
to improve public transport o�er, this growth will be associated with an increase of private car
trips and its negative e�ects, such as noise and air pollution, tra�c congestion and growing
demand for parking space.

In relation to this problem, this work investigates the optimization of the current public
transport service through a BRT line with DRT as feeder systems. The BRT service was
planned to o�er a direct and fast connection from and to the city center with a frequency of
15 minutes (blue line in �gure 1). The route of the BRT line starts at the Vechelde train
station and runs along the federal highway B1 and in the urban area along a BRT corridor
with dedicated lanes to the last stop in the city center. Between Vechelde and the urban area
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the BRT line has only three stops, which were designed as mobility hubs. The location of each 
mobility hub was determined considering the bus acceleration, accessibility, safety and available 
area.

For the �rst/last mile, from the mobility hub to the respective home, three di�erent DRT 
feeder systems with a door-to-door service are proposed. Figure 1 shows the service area of the 
DRT system Vechelde in pink, Denstorf in green and Lamme in blue. The DRT feeder systems 
are designed primarily to serve the BRT line, hence trips to or from the mobility hub have 
priority and a good transfer with short waiting times should be guaranteed. The DRT system 

eet was set based on a previous study that analyzed the e�ciency of each DRT system under 
di�erent 
eet con�gurations [4]. Therefore a 
eet of 3 vehicles was adopted for the DRT system 
Vechelde and a 
eet of 2 vehicles for the DRTs Denstorf and Lamme. Each DRT vehicle has a 
capacity of 6 passengers.

In addition to the DRT feeder system, the usage of non-motorized modes as �rst/last mile 
option is contemplated. This requires a good cycling infrastructure, including safe cycle paths 
and adequate parking facilities in the mobility hubs.

2.1 Simulated scenarios
In order to compare the current with the proposed public transport system two di�erent simula-
tion scenarios were built. The Scenario 0 represents the current mobility situation in the study 
area simulating the bus lines 450 and 418. The scenario 1 simulates the proposed DRT and 
BRT systems as well as the bicycle trips for the �rst/last mile. In the following the construction 
of both scenarios and the use data is explained.

The network was generated based on an existing SUMO network from the project "Intelligent 
Mobility Application Platform" (AIM) [39]. Missing network areas and bus stops were added 
using data from c
OpenStreetMap, c
Google Maps and the transport company Braunschweiger 
Verkehrs-GmbH.

Both scenarios simulate the demand of a typical working day type Tuesday/Thursday. The 
surrounding tra�c in the sub-urban area was modeled based on the average daily tra�c volume 
from existing tra�c counters [35] and distributed spatially according to the number of inhab-
itants. The temporarily distribution was made according to data from a permanent counting 
station near Vechelde [6]. For the surrounding tra�c in the city area the existing data from 
the AIM project was used [39].

In order to analyzed the current and proposed public transport system 10 di�erent demand 
pro�les of trips with origin in the respective home and destination in the city center between 
5:30 and 20:00 were generated. First the daily demand of trips from each location to Brunswick 
were estimated. This was done with the calculation method of Bosserho� [9] based on

� the number of inhabitants in each town,

� the proportion of the O-D pair town-Brunswick, and

� the modal split of the trips.

The trips with destination in Brunswick were determined according to commuter tra�c data
from [23]. The modal split was estimated on the basis of the trip distance and the characteristics
of the transport network, taking into account several analyses of tra�c behavior [32, 21, 24].
Secondly, the daily demand was distributed temporally using a typical daily tra�c 
ow pro�le
for peri-urban areas [19]. Lastly, the spatial distribution was done by assigning a random point
in the service area to represent the respective home.
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Figure 2: Simulated daily tra�c volumes

Figure 2 shows the simulated daily tra�c volumes in the entire network. The maximum
number of vehicles in a simulation step is around 2,200. The simulated tra�c volumes proved
to be comparable with the daily tra�c volume published by the city of Brunswick [11]. The
potential decrease in tra�c due to the implementation of the proposed system will not be taken
into account.

3 Methodology

For the simulation of DRT services it is necessary to know the start time, origin and destination
of each request, as well as the capacity and location of each vehicle in the 
eet. A dispatching
algorithm then distributes the travel requests among the available vehicles. This requires the use
of a microscopic and agent-based simulation model. Most of the microscopic tra�c simulations
do not provide a link between freely operating vehicles and several passengers that are assigned
to them at di�erent times [33], requiring the development of an algorithm. The tra�c simulation
Eclipse SUMO [3] proves to be the best option in this context, since it allows the simulation
of large road networks with di�erent modes of transport on a microscopic level and its open
source license allows the implementation and testing of new algorithms. The main features
of the developed algorithm allows to simulate the DRT, which is explained in detail in the
following section.

Di�erent measurements were evaluated in order to compare the improvements between cur-
rent and proposed transport system. To assess the bus line and BRT service the travel time
between the start and end point of the route were determined. The proportion of stopping
time at bus stops and time-losses, for example due to congestion or stopping at tra�c lights,
were also analyzed. Other service parameters, such as frequency, bus stops density, capacity
and vehicle 
eet were also considered. To evaluate the service from the passenger point of view,
the travel times with the di�erent transport modes from the respective home to the city center
were evaluated.
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3.1 DRT modeling

The 
eet management of a demand responsive transportation system is often referred to as 
a Dial-A-Ride Problem (DARP) [17]. The DARP consists of designing vehicle routes and 
schedules for n requests or users that specify travel requests between an origin and destination 
point. The objective is to plan series of vehicle routes that can accommodate the largest number 
of requests under certain conditions [16]. Due to the wide and varied constrains that a DARP 
can present, there are di�erent methods and models for solving them either approximately or 
exactly.

For the present study it was assumed that all requests are known in advance and that the 
DRT vehicles start and end each trip at the respective mobility hub. On-street parking is not 
allowed while waiting for next request. The DRT service is planed as a feeder system, so the 
connection with the BRT buses must be guaranteed. Each DRT vehicle starts its trip when a 
BRT bus arrives at the mobility hub and has a maximum time of 12 minutes (BRT frequency 
minus 3 minutes for transfer) to serve the requests and be on time at the mobility hub for the 
next BRT bus. To �nd the best route for each vehicle, a static DARP will be solved. If a 
request can not be served, it will be rejected and removed, not taken in consideration for future 
trips. These model simpli�cations are possible as this study seeks to analyze the capacity and 
travel times with the system and not to simulate real situations of the service, such as waiting 
for the passenger or passenger "no-show", cancellation of requests, etc.

To solve the described DARP, an algorithm based on the exact resolution method of [2] was 
developed. The algorithm was written in Python 3 and uses the SUMO tool DUAROUTER to 
calculate the routes of each vehicle and passenger. The steps performed by the algorithm are 
explained brie
y below.

First, the algorithm loads the necessary inputs. These are the network, the mobility hub 
location, the desire pick-up time and origin/destination edge of each request as well as the 
capacity, the maximum travel time and the cost of each vehicle. The cost parameter of the 
vehicle prevents the random use of the vehicles of the 
eet by trying to use the vehicles with 
lower costs.

The second step is to generate a pairwise graph with the possible combinations between 
vehicles and requests and between two di�erent requests. The shortest route and corresponding 
travel time between the objects in a pair is calculated using DUAROUTER.

Based on the pairwise graph, all possible combinations of pairs forming a trip are searched. 
A trip is possible if the vehicle capacity is not exceeded at any time, all passengers are taken to 
their destination and the maximum travel time for each passenger and vehicle is not surpassed.

The next step is to �nd the best trip for each vehicle that minimizes the cost. This is 
done by solving an integer linear programming (ILP) using the Python tool "Pulp" [31]. The 
objective function minimizes three costs: the �rst one represents the travel time (including stop 
time for pick-up/drop-o�). To penalize the rejection of a request, a high and constant cost is 
de�ned. Finally, a small and constant cost is introduced to avoid the use of several vehicles 
when the same requests can be served at a comparable cost with fewer vehicles. There are 
two constraints to the problem: each vehicle has no more than one route and each request is 
assigned to only one vehicle or is ignored. Finally, the best routes found for each vehicle and 
request are saved as a SUMO route �le, which can be used as input for further simulations.
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4 Results and discussion
The results of the simulations for each scenario are �rst presented and then discussed. The six 
di�erent towns were grouped into three areas for an easier visualization of the results. In the 
following the results of Vechelde includes the towns of Vechelde, Vechelade and Wahle. The 
towns of Wedtlensted and Denstorf are grouped together as Denstorf and Lamme refers to the 
town with the same name.

4.1 Scenario 0: current public transport system
According to the simulation a complete trip with the bus line 450 with direction Vechelde-
Brunswick takes in average 40 minutes. The bus is only 45 % of this time in motion without 
disturbances, 32 % of the time standing at bus stops and the remaining 22 % of the time is 
driving below the ideal speed. The bus line has a frequency of 30 minutes and a round trip of 
approx. 80 minutes, which requires a 
eet of minimum three vehicles. The capacity of the bus 
line is approx. 200 passengers per hour and direction (adopting standard buses of 12 m) and 
the service area has a total of 26,347 inhabitants.

In the simulation di�erent person trips from the respective home to the city center with 
the bus line 450 or 418 in case of Lamme were analyzed. Denstorf and Lamme show similar 
results for walking time to the nearest bus stop with average 5 minutes and maximal length 
of 800 m. Vechelde (Wahle not inclueded) shows higher values with 9 minutes average and a 
maximal length of 2,250 m. These results exceed the commonly adopted values of 400 m or the 
equivalent of 5 minutes as an acceptable walking distance [34, 14, 26]. Trips to the bus stop by 
bicycle were not considered as there is no existing parking infrastructure. The travel time with 
the respective bus line to the city center is on average 33 minutes from Vechelde, 27 minutes 
from Denstorf and 24 minutes from Lamme.

In this scenario, private car trips between the respective home and the city center were also 
evaluated. The travel times vary for this mode between 14 and 17 minutes. The parking search 
time should be as well consider. This value is in average 6 minutes according to the results 
from [15], in which the time lost in searching for a parking space in 10 cities in Germany were 
analyzed.

4.2 Scenario 1: proposed public transport system
The travel time for a complete trip in direction Vechelde-Brunswick with the BRT is on average 
21 minutes. 56 % of this time the BRT bus is in motion without disturbances, 28 % of the time 
is standing at bus stops and the remaining 28 % of the time is driving below the ideal speed. For 
the adopted frequency of 15 minutes a 
eet of at least four vehicles is required. The service area 
of the proposed system comprises 43,538 inhabitants thanks to the incorporation of Wahle and 
Lamme. The BRT system was designed to operate with articulated buses and has a capacity 
of 620 passengers per hour and direction.

The use of each DRT vehicle varies signi�cantly. The DRT Vechelde uses one vehicle only 
6 % of the time, whereas two vehicles are needed 46 % of the time to cover the demand. Finally, 
the complete 
eet of three vehicles are used the 47 % of the time. In Lamme 46 % of the time 
the use of the two vehicles was mandatory. The results for the DRT Denstorf show lower 
values, with the use of the two vehicles only the 16 % of the time. These di�erences in the 
eet 
utilization arise mainly from the function of the algorithm to avoid the use of multiple vehicles, 
when similar costs with one vehicle can be achieve. According to the simulations, the DRT 
systems show a good shareability potential. The vehicles of the DRT Lamme and Vechelde
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Metric Current Proposed
system system

Frequency [min] 30 15
Travel time (one-way) [min] 40 21
Fleet size [veh] 3 4
Capacity [p/h/d] 200 620
Service area [inhab] 26,347 43,538

Table 1: Current bus line vs. BRT Figure 3: Travel time distribution for buses

transport at least four passengers more than 60% of the time. Up to 9 requests for Vechelde
and 7 requests for Denstorf and Lamme could be combined in one trip. Regarding the low
demand values of the DRT Denstorf, the system serves four or less passengers the 85% of the
time.

In the proposed public transport system a trip to the city center consists of two legs. The
�rst leg is the trip from the respective home to the mobility hub, which is made by bicycle
or with the DRT feeder service. The second leg represents the trip with the BRT line from
the mobility hub to the city center. The average cycling time varies between 4 and 6 minutes
depending on the location. Vechelde shows the longest trip with a length of 3 km and a travel
time of 10 minutes. Most bike-and-ride users are willing to travel about 2.5 km (and up to 5
km for faster modes) to a public transport stop [42, 1, 30]. However, this willingness is strongly
associated with cycling facilities and safety, which underlines the importance of investment in
cycling infrastructure. The three DRT feeder systems showed similar results. The travel time
takes on average 5 minutes and has a standard deviation of 3 minutes. The waiting time at
the mobility hub was on average 4 minutes with a 3 minutes standard deviation. All simulated
persons could transfer without problems from the DRT to the desired BRT bus. The travel
time with the BRT line is on average 17 minutes from Vechelde, 15 minutes from Denstorf and
12 minutes from Lamme with standard deviations of less than a minute.

4.3 Current vs. proposed transport system
Based on the simulation results, the BRT line shows a more e�cient service compared to the
current bus line 450. The travel time for a complete trip with direction Vechelde-Brunswick
was reduced by 52 %, from 40 to 21 minutes. This is primarily due to an important reduction
of the number of scheduled stops. This travel time improvement allows to double the frequency
with only one more vehicle in the 
eet. Thanks to the connection of Lamme and Wahle to the
BRT line the service area increased by 67 % (17,191 inhabitants). The construction of a BRT
corridor in the city center makes the system independent of congestion and other disturbances
that could cause delays. Lower travel times could be achieved by the implementation of transit
signal priority. Figure 3 and table 1 summarize the main characteristics of both public transport
lines.

The proposed transport system also includes the DRT service. The DRT simulation results
show that the entire 
eet is used only half the time. The DRT Denstorf shows, due to its low
demand values, worse results with a use of both vehicles only 16 % of the time. The decrease
of the number of vehicles (even by adopting vehicles with higher capacity) is not possible,
as the ability to combine requests and therefore the capacity of the entire service would be
strongly reduced. A possible option to improve the use of vehicles and the trips shareability
would be to group orders in 30 minute intervals instead of 15. This would, however, mean an
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important decrease in the service quality for the user. Another proposal would be to evaluate the 
performance of the service by de�ning a single service area, with a single 
eet serving all 3 hub 
stations independently. Regarding the higher operating costs due to drivers, several studies 
considered that autonomous vehicles could provide considerable cost and service advantages 
[25, 36]. However, other authors assume that these advantages will in turn be lost due to 
increased maintenance and cleaning costs of these vehicles [12].

The travel times from the respective home to the city center show important improvements. 
Figure 4 summarizes the average travel times with the di�erent transport modes depending 
on the origin of the trip. Regarding the di�culty of de�ning their values, the waiting times at 
stops and the parking search time for trips with the private car were not considered. In all three 
cases, the travel times with the proposed public transport system were signi�cantly reduced, 
being even competitive with the private car. This was possible due to the implementation of the 
BRT corridor in the urban area, allowing buses to avoid congestion. In the case of Vechelde, the 
average travel time was reduced by 45 % from 40 minutes with the bus line 450 to 22 minutes 
with the proposed system. For Denstorf the travel time reduction resulted in 33 % and for 
Lamme in 38 %. The use of the DRT system or bike for the �rst/last mile shows similar travel 
times. Although the average cycling times for Lamme and Denstorf are slightly higher than 
the walking times to the current bus stops, the overall values show an increase in the transit 
area of in
uence. The maximum walking distance recorded was 800 m, which is higher than 
the conventional willingness value of 400 m. In contrast, the registered cycling distances are up 
to 2.4 km, being lower than the range of 2.5 to 5 km associated with the willingness to cycle.

Another important di�erence between both systems is the implementation of mobility hubs. 
Due to the limited supply of services in the study area, the incorporation of service amenities 
in the mobility hubs, such as mail/courier services, ATM and kiosks, makes traveling via the
o�ered mobility services e�cient and convenient.

5 Conclusion and future work

The increase in the number of private vehicles has led to a sharp rise in tra�c and environmental
pollution as well as a lack of appropriate public space management in cities. In rural and peri-
urban areas, the private vehicle is still the main mode of tra�c. This is mainly due to ine�cient
public transport services, which are characterized by long and indirect routes, limited schedules
and low frequency. This situation could be enhanced by the implementation of DRT as a feeder
system for high capacity public transports.

In this paper the optimization potential of the public transport service in a peri-urban area
of the city of Brunswick (Germany) was analyzed. As proposal, the existing bus service was
replaced by a BRT line with DRT feeder systems. For the comparison of both public trans-
port service, simulations were conducted using the microscopic tra�c simulation SUMO. The
simulation of the DRT feeder was performed by coupling SUMO with a developed algorithm.
This determined the best vehicle routes based on the requests, the available vehicles and the
network. As metrics the average travel times on a typical Tuesday/Thursday day with the dif-
ferent transport modes were used. For that, a series of trips with origin at the respective home
and destination in the city center were generated using di�erent demand pro�les. The demand
was modeled only on the basis of demographic characteristics. To compare the current bus line
and the BRT line, the travel time between the route start and end was evaluated. Other design
parameters like capacity and frequency were also assessed.

The simulation results show the potential and advantages of the proposed public transport
system. The travel times from the respective home to the city center were on average reduced
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Figure 4: Travel times home-city center with the analyzed transport modes

by 45 % for Vechelde, 33 % for Denstorf and 38 % for Lamme. Considering the time-loss due to
searching a parking spot, the travel times with the proposed public transport are similar to the
travel times with the private car. The increase in frequency from 30 minutes to 15 minutes and
the implementation of mobility hubs with di�erent amenities (e.g. secured bike parking, parcel
lockers and kiosks) make the system more attractive for costumers. The reduction of the round
trip travel times of the BRT line allows for a frequency of 15 minutes with only 4 buses. The
construction of a BRT corridor in the urban area provide for a fast route without time-losses
due to tra�c and it can be served by multiple bus routes. Travel times could be still reduced
by integrating transit signal priority.

According to the simulations, the three adopted DRT feeder systems show low travel times
to the mobility hub and waiting times for the BRT line. This paper assumed a speci�c service
area for each DRT feeder system, so they work independent from each other. In this respect,
further analysis of the DRT feeder systems under di�erent service areas or working as a unique
system are relevant for further optimization.

The higher costs of the proposed transport system due to the bigger 
eet and the increased
mileage could be counteracted by a potential increase in ridership. This not only given because
of the larger service area by the append of two more towns, but also by a better quality of service
due to faster and comfortable connections. To asses the economic viability of the system, a
cost-bene�t analysis should be done. Therefor a detailed modeling of the demand and a mode
choice model should be developed.
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The proposed system is not intended to operate alone but to be a part of an extensive BRT 
network with DRT feeders for the city of Brunswick. In consequence a viability analysis of such 
a system network in a macro- or mesoscopic level is also recommended.
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Abstract

Vehicular Ad Hoc Networks (VANETs) are expected to be the next big step towards safer
road transport, supporting applications to exchange information between vehicles. To develop
novel applications for this area a high number of tests, considering all tra�c situations, are
demanded. However, it is unfeasible to reproduce these tests in real life, by the fact that any
failure on the applications would cause severe impacts on transport system safety and could
risk human lives. Thus, this paper presents the concept, model, and validation for InTAS, a
realistic tra�c scenario for Ingolstadt. InTAS' road topol-ogy accurately represents
Ingolstadt's real road map. Elements such as buildings, bus stops, and tra�c lights were
added to the map. Twenty tra�c lights systems were sim-ulated according to the real
program deployed on the tra�c lights. Tra�c demand was modeled based on the
activitygen  method, considering demographic data and real-tra�c information. The city's
public transport system was also simulated accordingly to bus time-tables and their routes.
The simulation step was implemented considering the best value for
device.rerouting.probability , which was de�ned by evaluating InTAS' output and real
tra�c data. The scenario was validated by comparing real-tra�c data from 24 measurement
points with InTAS' simulation results.

Keywords realistic  tra�c scenario, tra�c modelling, VANET, SUMO

1 Introduction

Vehicular Ad-hoc Networks (VANETs) have emerged as one of the most promising automotive
technologies in the last years. In a near-future, it is expected that VANETs will be a key
enabling technology for autonomous driving, road safety, hazard information service, improve-
ment of tra�c congestion issues and many other applications [20]. VANETs are cooperative
vehicular networks based on wireless communication among vehicle-to-vehicle (V2V), vehicle-
to-infrastructure (V2I), also known as Road Side Unit (RSU), and vehicle-to-everything (V2X).
Among these most apparent advances provided by VANETs, the capacity to share pertinent
information on-road situations with other vehicles and RSU in real-time must be highlighted.
This allows for a better and safer driving experience. VANET applications are mostly con-
centrated in three branches: infotainment, tra�c management, and safety [20]. Infotainment
is related to drivers' and passengers' convenience, entertainment, and their relationship with
the vehicle. In contrast, tra�c management applications focus on the vehicle's behavior, as
soon as it enters the street network. According to the safety branch, VANETs are prepared to
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deal with di�erent events and then warn the driver about an incident, as adverse weather [7], 
dangerous situation [2], impact reduction [3], a stationary vehicle [8], and others. Dealing with 
the development of novel VANET applications, especially when focusing on safety, demands 
a huge amount of tests, e.g. for analyzing and validation. Furthermore, these tests have to 
consider all possible situations by the fact that any failure on the applications would cause 
severe impacts on transport system safety and could risk human lives [20]. Moreover, testing 
technology like VANET in the real world is not only extremely expensive, but reproducing 
test cases is hardly possible. Thus, simulation tools are vital to make testing a�ordable and 
more reproducible. Complete VANET simulations require a simulation framework, containing 
at least a vehicle tra�c scenario and a wireless communication protocol implementation [22]. 
The more realistic the tra�c scenario is, the better the simulation results are. A realistic tra�c 
scenario comprises a real-world road topology including all public road categories, ranging from 
residential streets to highways. This is required to model accurate mobility over a realistic 
tra�c demand. Tra�c scenarios have been developed for the transportation community for 
a while, but their scope is not mainly on evaluating VANET simulations, which demands a 
deeper view of the mobility patterns, analyzing vehicle's position and driver's behavior, known 
as a microscopic view. Furthermore, city structures as buildings, bridges, and passages have to 
be emphasized, as they might have an impact on the communication [30]. Up to now, to the 
best of our knowledge, there are three freely available realistic tra�c scenarios for Simulation 
of Urban Mobility (SUMO): TAPAS Cologne [32], Luxembourg SUMO Tra�c [4], and Monaco 
SUMO Tra�c [5].None of the previously mentioned scenarios have modeled a city with charac-
teristics presented in Ingolstadt. This is because the city has peculiarities as a large industry 
that concentrates approximately half of work positions and operates 24 hours a day in shift 
operations. The city also detains a high income per inhabitant and an extremely low unem-
ployment rate [14]. Thus, using Ingolstadt for a new tra�c scenario, the research community 
can bene�t from a new and partly di�erent type of map. Ingolstadt is located in the state of 
Bavaria, southern Germany, with an area of 133.36 km2 and a registered population of about 
135,000 inhabitants counted in December 2018 [14]. It is ranked the �fth biggest city in the 
state and has characteristics that extremely in
uence its tra�c, e.g. it is the site of Audi AG, 
which employs approximately 44,000 workers, representing more than 43% of Ingolstadt's work 
positions [14]. Additionally, the car usage rate compared to other cities in Germany is relatively 
high [9] and a high penetration rate of new cars among the inhabitants is noticed. Additionally, 
in the near-future the city will implement a Car2X communication system [1]. Thus, this work's 
proposal is to develop a realistic tra�c scenario enclosing Ingolstadt city and enable it especially 
for the use case of V2X simulations, considering tra�c 
ow and driver's behavior. This will 
help to speed up the development of Car2X systems. Furthermore, such a simulation can be 
used in other systems such as advanced driving simulators like OpenROUTS3D [21]. Moreover, 
this scenario will be developed using SUMO, which is a powerful Open-Source simulator that 
supports large road networks. It is suitable for both macroscopic and microscopic simulations 
and provides great interaction with network simulators such as Omnet++ [18]. To introduce 
the Ingolstadt City scenario, this paper is structured as follows. Chapter 2 presents related 
work. Chapter 3 introduces the Ingolstadt Tra�c Scenario (InTAS) by explaining concept and 
model. Subsequently, Chapter 4 presents the scenario's validation. Finally, Chapter 5 concludes 
the work and presents future work.
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2 Related Works

In recent years, plenty of research work has used SUMO. Some of them were trying to create 
an accurate scenario based on real tra�c-data.

Vila Real Case Study [26] presented a tra�c scenario, where the tra�c demand consisted 
of the evaluated census and survey data provided by governmental institutions, intending to 
estimate individuals' activities. An algorithm, named synthesizer on this work, had the func-
tion to identify each region on census data and link it with a corresponding edge on SUMO. 
Unfortunately, this is a really small scenario restricted to the Portuguese census format, which 
cannot be applied to the data format provided by the City of Ingolstadt.

In 2013, a tra�c signal control scenario within a realistic tra�c simulation was presented 
[19]. This scenario covers a 9 x 7 block section of Ottawa Downtown, and its main objective was 
to evaluate the e�ectiveness of an intelligent tra�c control system based on a realistic scenario. 
The data used to generate the tra�c was based on the turn values of each intersection. This 
study presented an approach and improvement results when an adaptive signal control system 
is implemented, increasing the simulation's average speed. Nevertheless, this scenario does 
neither cover an entire city behavior, nor the public transport network.

TAPAS Cologne [32] is a scenario including the whole city of Cologne. It is based on real 
demographic data and inhabitant's daily activity. Due to its size and complexity, it demands 
high computation time and still needs additional improvements in some features, e.g. junction 
corrections, correct lane numbers per street, adjust tra�c lights position and insert public 
transport. At this scenario, tra�c demand presents a realistic behavior, and at the same time 
road topology and public transport does not re
ect the real-world equivalents, which makes it 
partly not realistic enough.

Luxembourg scenario, LuST [4], is a high detailed scenario, which brings important features 
to implement VANET simulations, e.g. buildings. It was implemented and evaluated using 
demographic data and a measurement data-set, which consists of the average speed of some 
locations. This scenario includes all public transport networks and parking lots around the city, 
providing a more realistic tra�c 
ow than for example the TAPAS Cologne scenario.

In 2017, the Monaco tra�c scenario (MOST) [5] was presented. This scenario showed land 
elevation characteristics, all public transport networks and also is multi-modal, considering not 
only vehicles but also bicycles and pedestrians. Unfortunately, this scenario covers only the 
morning peak hour and its tra�c realism is not measured, because it was not compared to real 
tra�c data.

All these previously presented tra�c scenarios were developed by applying real information. 
Although, none of them include the tra�c light system deployed by tra�c authorities in a real 
tra�c system, or have a robust validation method applying NRSME in di�erent points of the 
city. These pitfalls will be pay attention in this scenario intending to improve tra�c realism 
and mimic the Ingolstadt's tra�c. Additionally, none of the above introduced scenarios cover 
the characteristics presented in Ingolstadt city, as:

� An industrial city;

� One industry concentrating around 43% of all work positions in one spot;

� Some companies working 24 hours a day in a 3 shift operation model;

� A high rate of vehicles per inhabitants [14];

� A low unemployment rate [15];
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� A high income per inhabitant [15];

� A higher rate regarding vehicle usage when compared to other cities [15];

� Incoming tra�c represents approximately 44% of the total tra�c [13];

3 Ingolstadt Tra�c Scenario (InTAS)

The Ingolstadt Tra�c Scenario (InTAS) development consisted of four di�erent procedures:
de�nition of network topology, tra�c demand modeling, scenario simulation, and scenario eval-
uation. The objective of the �rst step was to elaborate a city map containing all important
information, e.g. road topology, buildings, parking lots, bus stops and tra�c light positions.
The second step consisted of analyzing all available real-world data and identify a realistic
tra�c demand method that �ts the data-set and creates a realistic tra�c demand. The third
step involved modifying the simulation parameters and preparation for the scenario evaluation.
Figure 1 presents a 
owchart of the developed process of InTAS.

Figure 1: InTAS Flowchart

3.1 Map Creation

This stage is the foundation of the scenario and consisted in the scenario area delimitation. The
chosen area represents 87% of city's work positions, approximately 79% of the total inhabitants,
and roughly 81% of the registered cars in Ingolstadt. However, this selection excluded the tra�c
pattern of surrounding villages. This might not be an issue as some villages are over 12 km
away from the city center, and their inner tra�c does not in
uence the main area of Ingolstadt.
Thus, instead of modeling their internal tra�c, this study took into consideration the tra�c
demand between the villages and Ingolstadt.
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Figure 2: InTAS border of the selected area [23]

After selecting the interesting area, this region was extracted from OpenStreetMap (OSM)
[23] containing all information enclosed to this area. Figure 2 shows the area selected for InTAS
in OSM.

3.1.1 Road Network

In SUMO, road networks are represented as .xml �le grouped by the instances: edges and
junctions. Edges represent road segments and junctions either correspond to intersections or
dead-end streets [18]. As the OSM source �le is presented with the .osm extension, it has to
be converted into a SUMO readable format, .xml, applying the netconvert tool.

By examining the converted data, it was observed that a great number of streets was not
representing the real-world, i.e. incorrect number of lanes, missing exclusive turn left lanes and
exclusive bus lanes. This divergence might be caused by outdated information retrieved from
OSM. Although information is frequently updated on OSM, as it is an open-source project
working on the wiki-style process, some areas are not detailed enough, and, contain only the
street segment but not the number of lanes or exclusive lanes.

Intending to develop a reliable map, which accurately represents Ingolstadt, it was necessary
to implement a method to correct all the issues. Thereby, a thorough process to compare each of
the 7,966 edges and all of the 3,341 nodes with the satellite image, on-line accessible, on Google
Street Maps [11] was undertaken. This correction were applied with the netedit tool, where
the entire map was manually inspected and validated. During the correction, all junctions were
checked to reinforce lane connections. Moreover, all bicycle lanes, sidewalks, and private streets,
as commercial shopping facilities, residential and industrial condominiums, were removed. After
the cleaning process, the total road length of the InTAS scenario is 717.13 km. In Figure 3,
partial results from this action are shown. Figure 3a is the �rst conversion result, Figure 3b is
the same road in Google Maps and Figure 3c is the �nal result after editing the area by hand.
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(a) Conversion Result (b) In Go ogle Maps [ 11 ] (c) Manually Corrected

Figure 3: Road adjustments in their three steps

P arameter Value

T otal Area 51.54 km2

Road Le ngth 717.23 km
No des 3,342
Edges 7,968
Tra�c Lights 98

Table 1: Network numbers

As the radio propagation model might di�er from tunnels, under-buildings, and under-bridge
passages, e.g. in the free space propagation [25], this paper utilizes road categories to inform
the communication simulator. Thus, it provides the categories tunnel, under.building, and
under.bridge.

Tra�c light systems also play an important roll in the city tra�c behavior [33]. Due to their
importance, they are considered for the scenario. As .osm �les contain the tra�c light positions,
netconvert assembled it together with the road network's .xml �le, assigning a hypothetical
phase length to all tra�c lights (TL). At this step, the objective was to check if all real TL were
represented on the map. To con�rm all TL positions, an up-to-date document provided by the
City of Ingolstadt, containing all locations from TL managed by them, was used. Furthermore,
all pedestrian-only TLs were removed from the map, keeping just those that control crossings
with a minimum of two streets junction, resulting in a total of 98 tra�c lights across the map.

The �nal InTAS' road network, after implementing all the corrections and adjustments, is
presented in Figure 4. Table 1 shows the information concerning to road network developed at
this stage of the development.

3.1.2 City Elements { Parking, Tra�c Lights, Buildings and Bus Stops

Due to the great number of variables that directly impact tra�c behavior it is extremely com-
plex to model the city tra�c. This section presents additional considerations for the scenario:
parking areas, tra�c lights, buildings, and bus stops.

Parking Areas. In the .osm data, 59 parking areas are represented, but not all of them were
used in this work. InTAS has focused on public parking areas and companies' parking. The
City of Ingolstadt manages a total of 13 parking areas with 5,568 parking lots. These parking
areas were tracked during an average usage at business days between Tuesday to Thursday,
from September to December 2019. This measurements were used, resulting in daily average
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Figure 4: InTAS Road Topology

usage of 4,247 public parking lots in the city. This average value was inserted in the simulation,
to know the average number of vehicles to park there. The parking areas currently closed for
construction work were considered to be always full, which partly re
ects their usage before
getting closed.

Moreover, additional �ve parking areas were considered in the simulation. Three serving
AUDI AG, one Klinikum Ingolstadt and one Technische Hochschule Ingolstadt (THI). For THI,
only the number of employees and not the students was considered. The total workers from
those three employers represent 54.52% of the total employees in the scenario, where AUDI AG
is the largest company in Ingolstadt, employing 44,526 workers, Klinikum Ingolstadt employs
3,630 and THI employs 650 workers. These areas were identi�ed in the map and assigned with
the number of employees for each one.

Tra�c Lights. When importing TLs using netconvert, a generic TL program is automati-
cally generated and assign to each tra�c light, de�ning the tra�c light cycle time, each phase
duration, states, and the tra�c light logic type.

TL state is the de�nition linked for each lane under a Tra�c Light System (TLS) operation,
i.e. assigning if the light is green, red or amber for this lane. TLS cycle is the total time necessary
for a program to run all phases. Phase duration is the time a state will be activated. The
parameter TL logic type may assume static or actuated values. A static parameter represents a
TL with consistent behavior, never changing phase durations.TL logic type was set as actuated
tra�c control, extending a phase once continuous tra�c is detected [18].

As TLS might be one of the highest in
uencing factor to tra�c behavior [31], this work
seeks to provide a realistic TLS to its junctions, therewith, to near simulation tra�c to real
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Figure 5: Extract of InTAS with its city elements

tra�c. In the scenario 20 TLS have been simulated based on the real program deployed on the
real tra�c lights. The others TLs were implemented with the automatically generated program
applying the actuated tra�c logic.

Bus Stops. InTAS also reproduces the public transport system, considering all bus lines
inside the simulation area. Yet, to provide more realistic representation, all bus stops were
imported from the .osm �le. Those stops were compared with the online available information
from local bus service company - Ingolst�adter Verkehrsgesellschaft (INVG) [16]. A total of 404
bus stops were inserted to the scenario.

Buildings. InTAS was developed to be a complete simulation environment, where tra�c be-
havior as well as VANET studies can be deployed. To encompass a higher simulation potential,
this scenario implemented all buildings represented by the .osm �le. Due to their in
uence in
the performance for an inter-vehicular wireless communication environment, when operating in
the standardized frequency, they are very important [30]. As aforementioned, the .osm data
is a resourceful database, and all information related to buildings was converted applying the
polyconvert tool. A total number of 21,756 buildings were incorporated into InTAS.

Figure 5 presents an extracted part of the Ingolstadt map, where the road network is shown
together with all city elements. In blue color, buildings are represented with their dimensions
and shapes. The gray color indicates parking lots. Bus stops are marked in green aside the
roads.

3.2 Real Tra�c Database

In interaction with the Ingolstadt Verkehrsmanagement und Geoinformation O�ce, which is a
branch of the City of Ingolstadt, an SFTP server with information from 24 tra�c measurement
points have been structured. For each point, information between September 3rd 2019 and 
December 15th of the same year, has been taken into consideration. The available data describes
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the number of vehicles which daily drove through these areas over 24 hours of the day, grouping 
the total number of vehicles in a 15 minutes time window.

For each measurement point, values for Tuesdays, Wednesdays, and Thursdays were selected. 
These values compute the heaviest tra�c days according to the Ingolstadt Verkehrsmanagement 
und Geoinformation O�ce. Among the selected days, holidays and days before the holiday were 
excluded, because the tra�c may change its characteristic at these days. Data from days that 
faced any issue have been also removed. In the end, each crossing remained with data from 
27 days1. Thereafter, the average value for each detector in each junction has been calculated. 
Computing the average value avoids choosing a day with unusual behavior, e.g. working sites 
and snowy days.

A data-set, which has been split into two sub-sets, was utilized to provide information 
for modeling and validation. One for modeling the tra�c demand and evaluate simulation 
parameters, which consisted in data from October 2019. The other sub-set has been used in 
the validation step, which took into consideration tra�c values from November 2019.

3.3 Tra�c Demand

The second step to elaborate the tra�c scenario, was the insertion of moving vehicles on the 
previously developed map. This objective, known as tra�c demand, de�nes the number of 
vehicles in the simulation, their origin and destination edges, departure time, and the path 
they will drive through to reach their destination, i.e. which are the consecutive edges between 
the start and end edges. At this point, SUMO distinguishes tra�c demand in trips and routes. 
Trips represent a general view from tra�c demand and it is a model only containing edge of 
origin, the edge of destination and departure time, i.e. the local this tra�c is originated and 
the local the destination is. In contrast, a route is an expanded view, representing, besides the 
origin and destination edges, all edges that the vehicle transits through, i.e. a path is assigned 
to the origin and destination and involves all edges during its 
ow. [18]

3.3.1 Tra�c Demand Modeling

Ingolstadt is divided into 12 districts, where each of these areas are subdivided, creating a total 
of 62 sub-districts, as shown in Figure 6, where districts are numbered from 1 up to 12 and 
sub-districts are delimited by the gray line inside the district. For each of these sub-districts, 
based on data from the City of Ingolstadt, it is known: number of inhabitants, households, 
living workers, unemployed, and number of registered vehicles. These numbers are at a high 
level of detail, providing a reliable database to model Ingolstadt's tra�c.

According to the available data, real tra�c data presented in Section 3.2 and online demo-

graphic data from the City of Ingolstadt, it has been decided to model InTAS applying the 
activitygen 2 method.

In the developed statistic �le for activitygen, mostly attributes related to general informa-
tion, parameters, population's age brackets, and schools have been calculated based on online 
demographic data provided by the City of Ingolstadt. However, parameters related to tra�c in-
formation, as incomingTraffic, outgoingTraffic, and cityGates have been modeled based 
on data-set with real tra�c numbers from October 2019.

Amongst the scenario, 38 out of 62 sub-areas have been considered laying within the InTAS 
borders. The inhabitants for these selected areas were divided into 13 age groups, ranging

1average number of days for measurement point. 
2https://sumo.dlr.de/userdoc/Demand/Activity-based_Demand_Generation.html

81

https://sumo.dlr.de/userdoc/Demand/Activity-based_Demand_Generation.html


Lobo et al. | SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

Figure 6: Districts of Ingolstadt City (Source: [12]

from 0 to above 85 years. Thereafter, the number of social numbers presented on each sub-
area was computed, intending to de�ne the number of workers that live in each region and
the total number of working positions per area. Table 2 presents the di�erence between the
total Ingolstadt demographic numbers [15] and the demographic numbers applied in InTAS. In
Table 2 attribute workers refers to the number of workers living inside the area. Based on these
numbers, a di�erence of approximately 21% related to a number of inhabitants and workers
between entire Ingolstadt and InTAS is observable. The di�erence detected for the number of
vehicles and householders is smaller and is nearly at 18% for both. However, a tinier di�erence
is noticed for work positions and unemployed, showing 13% and 7% respectively.

The di�erence between city's number and InTAS might in
uence the tra�c behavior and the
number of vehicles driving through the map. To solve this issue, the tra�c demand generated
outside the InTAS' border, concerning to Ingolstadt city, was considered as incoming tra�c
to the scenario. A de�cit between working positions and workers inside the scenario was also
observed. Therefore, the same solution, considering this as incoming tra�c, was applied.

A ttribute Ingolstadt City In TAS

Inhabitan ts 138,180 109,090
Workers 61,670 49,020
Work p ositions 102,925 89,515
Unemployed 1,219 1,138
Vehicles 97,950 80,337
House holders 69,379 57,118

Table 2: Comparison of demographic numbers between Ingolstadt and InTAS

Not only incoming tra�c is relevant for an inner tra�c city, but also outgoing tra�c.
Intending to model this phenomenon, it was important to de�ne the gates, through which
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A ttribute Value

Car rate 0.9363
Incoming tra�c 55,374
Outgoing tra�c 14,879
Car pref e r ence rate 0.5890

Table 3: Vehicle tra�c numbers for InTAS [9]

the tra�c comes and leaves the scenario area. Based on available tra�c information, a total
number of 22 points, where the tra�c can income and outgo from the scenario, have been
de�ned [24]. Moreover, it was primordial to assign the number of vehicles incoming and outgoing
through each one of this gates. With given data from the City of Ingolstadt, each gate was
de�ned with its own tra�c 
ow, representing a total number of 55,374 incoming people and
14,879 outgoing people to their work. Furthermore, the car preference rate of 0.589 has been
de�ned, representing the probability an inhabitant to uses the vehicle instead of using other
transportation means [18]. Table 3 summarizes vehicle tra�c numbers and also presents the
car rate, which describes the rate of adults that own a vehicle inside the scenario area [18].

Companies' opening and closing hours are also relevant for modelling the tra�c. This
information was assigned considering the proportion of workers that have to start and �nish
their jobs at that time. For companies that work 24 hours uninterruptedly the start and end of
shift time were considered as opening and closing times. The data provided by the city is based
on measurements of a normal business day. Thus, Tuesdays, Wednesdays or Thursdays were
selected. According to the tra�c management o�ce, these days are the busiest tra�c days and
were taken into consideration for tra�c improvements.

Children also play an important role in tra�c demand. Although most of them do not
go to work, a multitude of them is driven to kindergarten or school by their parents. To
represent this behavior in the Ingolstadt scenario, each school was de�ned, containing their
exact position on the map, the age range it covers, capacity and class hours. Thus, this step
includes children from the kindergarten age to high school age. Moreover, to include students
from both universities, Technische Hochschule Ingolstadt (THI) and Katholische Universit�at
Eichst�att-Ingolstadt (KU), a similar implementation was designed, but at this point, parents
do not drop them o�. Instead, they drive their own vehicles. Likewise the workers, but with
the universities as the �nal destination. InTAS considered 17 kindergartens, 36 schools, and 2
universities.

All structured demographic data were used to de�ne the trips, i.e. identify where people live,
work and study. The number of trips reached by this study was 333,741, considering the entire
tra�c for 24 hours of all vehicles. Although, this information was not su�cient to describe the
path each driver will take to achieve his destination. For this reason, the duarouter tool was
used, which is the application to assign an entire path between origin and destination points,
computing the routes for each vehicle.

3.3.2 Simulation of Public Transport System

Bus lines are an important factor in real-world city tra�c, as they in
uence the tra�c behavior
of all participants. Especially on one lane driving roads, when they have to stop at a bus stop.
Therefore, this work also considers the bus lines as they drive through Ingolstadt. Busses'
behavior can be represented in SUMO, where it is possible to set drivers behavior, bus routes,
and simulate busses stopping at their stations. However, simulating vehicles passing stopped

83



Lobo et al. | SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

Attribute Value
Number of lines 56
Total bus stops 404
Number of busses trips 1,620
Bus routes length 880.6 km

Table 4: Public transport numbers [16]

busses is not possible. Thus, the average time a bus spend in each stop has been set to 10
seconds [4], which approaches to the main objective.

In Section 3.1.2 it was presented how bus stops were extracted of a .osm �le and how they
were converted into a .xml �le. To represent a realistic public transport system, all bus routes
for this scenario were considered. Intending to typify bus routes, it was resorted again to INVG
public data. Thus, it was possible to feed the real busses route information to the simulation.
In total, there are 56 bus lines, where 28 are regular lines, 15 are night lines, 7 are shift lines |
running only at speci�c period | and 6 are lines that attend surrounding cities, but have their
departure or arrival in Ingolstadt. The bus lines cover a total of 880.6 km of road and compute
1,620 bus trips during the 24 hours simulation. Parameters of public transportation are shown
in Table 4.

3.4 Tra�c Flow Optimization

Implementing duarouter, the assignment performance computes the shortest path through the
network using the Djikstra [6] route-planning algorithm. At this point, duarouter de�nes the
shortest route for each vehicle, considering that they are alone on the road network. Due to
this, after loading all the vehicles in the simulation, it will lead to tra�c jams.

Seeking to mitigate this issue, an equilibrium state might be reached. For this reason,
the Gawron's [10] method to optimize the tra�c 
ow has been implemented. This method
calculates the user equilibrium for each vehicle and implement a route optimization. SUMO
provides the tool duaIterate, which iteratively tries to �nd the user equilibrium, i.e. to �nd
a route for each vehicle without reducing the travel cost [27]. As the number of iterations to
reach the equilibrium might vary, the parameters average speed, time lost, and travel time were
analyzed for InTAS.

Time loss, average speed, and average travel time are parameters which tend to converge
to a stability value when the equilibrium is reached. Figure 7 shows the result obtained after
50 iterations applying duaIterate for the parameters. It can be observed that the equilibrium
has been achieved for all parameters after 25 iterations. Figure 7a describes the average speed
presented in the scenario for each iteration, demonstrating an unexpected behavior in the initial
iterations. This behavior reduced InTAS' average speed to a minimum value of 6.15 m=s on the
3rd iteration, and only from the 6th iteration, the average speed grows up to the optimum value. 
Between 8th and 22nd iterations an oscillatory behavior is observed. Only on the iteration 25, 
the equilibrium has been reached with an average speed of 9.73 m=s.

Figure 7b exhibits the parameter time loss for each iteration. This parameter is provided by
the SUMO simulation and calculates, for each vehicle, the di�erence between the actual trip
duration and theoretical trip duration [28]. On the 9th iteration is noticed that the time loss 
reached 316.6 seconds, and decreases slower, when compared to the initial iterations, up to 308.5
seconds in the iteration 25. Figure 7c shows the average travel time for each travel in each

84



Lobo et al. | SUMO Conf Proc 1 (2020) "SUMO User Conference 2020" 

(a) Average Sp eed (b) Time Lost (c) Average Travel Time

Figure 7: InTAS Iterations

iteration, converging to 931.5 seconds on the 9th iteration. These three �gures also present that
in the �rst iterations the tra�c scenario was denser and with a low mobility pattern. However,
after iterations of duaIterate, the equilibrium state has been reached. Therefore, since all
parameters converged in the 25th iteration, it has been assumed to proceed with the further
development of InTAS.

3.5 InTAS Simulation

Simulation is the phase where scenario map �le, moving vehicles represented in route �le,
and additional �les as bus stations, buildings and detectors �les are gathered. These �les are
regulated by parameters de�ned at this step.

Simulation parameter begin and end time were set to cover 24 hours of a day, with a
step-length of 0.1 seconds. Usually, it may happen that a vehicle blocks an intersection,
which leads to a huge tra�c jam, causing an unrealistic pattern in the simulation. Avoiding
such behavior, the parameter ignore-junction-blocker allows vehicles to ignore a junction
after a speci�c time and continue their travel from there. A value of 15 seconds was set for
this feature, intending to minimize the impacts. Another setting feature is time-to-teleport,
which de�nes the maximum vehicle's waiting time in seconds on a tra�c jam before it is
teleported to a further position of its own route, intending to reduce impact created for huge
tra�c jams. For this, the parameter was set to the default value presented by SUMO, which
is 300 seconds. In the simulation settings, it is also possible to de�ne the routing algorithm
and vehicle following model. As vehicle following model, the Krauss model [17] was de�ned,
which models the reaction times and human behavior during the drive, introducing a stochastic
component, e.g. the driver's behavior when changing lanes. Table 5 summarizes the simulation
parameters used by InTAS.

Another feature presented in the simulation phase in SUMO is the parameter named
device.rerouting.probability, which allows vehicles to change their routes during the sim-
ulation. In real-world tra�c, some drivers may change their path, due to the knowledge they
have about the city tra�c. To address this behavior, this parameter was applied to this sce-
nario. To calculate the best rate for device.rerouting.probability, an algorithm has been
developed to search the optimum value.

3.5.1 De�ning InTAS Best Rerouting Probability

SUMO has a variety of simulation parameters, which in
uences the tra�c behavior. As each city
has its characteristics, each parameter may change from city to city. Among these parameters,
there is the device.rerouting.probability representing the probability of a vehicle to have
a rerouting device. Vehicles equipped with this device may compute a new route as soon they
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Parameter Value
begin 0 seconds
end 86,400 seconds
step-length 0.1 second
ignore-junction-blocker 15 seconds
time-to-teleport 300 seconds
default.carfollowmodel Krauss
routing-algorithm Dijkstra
device.rerouting.probability 0.82
device.rerouting.period 300 seconds

Table 5: Simulation Parameters

come across an unexpected situation, like a tra�c jam that can increase the time cost to reach
the destination.

Changes to the extreme on this parameter will lead the tra�c behavior to two distinguishes
performances. Setting it to null represents that all vehicles will drive through the same roads -
edges. The performance noticed is that the tra�c jams will increase until SUMO crashes due
to hardware limitations to deal with the high number of vehicles running in the simulation.
Another issue faced at this point is that with more vehicles in the simulation they could not
reach their destination, and that is the reason why the number of vehicles keeps growing. On
the other hand, setting device.rerouting.probability to 1.00 will provide a large tra�c
capillarity. That will force vehicles to use roads that are not often used and will reduce the
number of vehicles using the main roads, inducing an unrealistic pattern.

Intending to �nd the best value for device.rerouting.probability that �ts for InTAs,
an algorithm to iterate this parameter from 0.00 to 1.00 with an iteration-step of 0.01 has
been developed. The algorithm has compared the total number of cars driving through each
measurement point presented in the data-set with its respective value in the simulation applying
Normalized Root Mean Square Error (NRMSE),

NRMSE =

qPN
n=1(xr;n�xs;n)2

N

�x
(1)

where xr;n represents point-values for the �rst sample, n and xs;n represents the values for
the second sample at the same time-window. N represents the total number of samples. x�
represents the mean value of the measured data. Based on the equation 1, it is possible to infer
that lower the NRMSE value, lower the error between the series.

Figure 8 shows the behavior of error rates obtained by the simulations, where the
error is higher for low values, decreases over the iteration until reaches the lower er-
ror value, and raises again until the end of the iterations. The best value reached for
device.rerouting.probability, which presents the lower error rate, is the simulation with
0.82 of probability with an NRMSE, i.e. an error rate of 0.3343. This value was considered for
validation analysis presented in Section 4 and as the �nal value for this parameter in InTAS.

3.5.2 InTAS Behavior

Figure 9 depicts InTAS's tra�c behavior. Where the �rst peak starts right before 4:00, rep-
resenting the 
ow for the beginning of the �rst shift gathered with the end of the night shift.
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Figure 8: Device Rerouting Probability Evaluation

Tra�c is still increasing until around 6:25 and remains in the morning peak up to 8:12 with
approximately 2,500 vehicles on the streets. The morning peak time is a bit before when most
o�ces start their activities and is also correlated with students. After reaching the morning
peak, the tra�c behavior starts decreasing until 10:25, when the lowest number of vehicles
driving around the scenario after the morning peak is observed. This valley computes 1,795
vehicles on the simulation. After this time the number of vehicles grows until 12:24, where a
peak in this growth behavior is notice. This noon peak lasts from 12:24 up to 13:42, which
can represent people going for lunch and the �nish of morning classes. After lunchtime peak
the number of vehicles still growing, representing the end of the �rst shift and the beginning of
the second shift. The phenomenon slightly increases the number of running vehicles until the
afternoon peak around 16:47, which presents the highest number of running vehicles for InTAS,
with 2,965 in total. Afterward, the number of vehicles decreases until the end of the day, with
a slight peak from 20:14 to 21:05, representing the end of the second shift and the beginning of
the third shift.

4 InTAS Validation

The validation of the InTAS scenario was done based on the data-set presented in Section 3.2,
considering the detector values from November 2019. The comparison between all detectors is
depicted in Figure 10, where the blue line represents the trace resulting from the simulation,
and the red line shows the values from the data-set. The mismatch calculated applying NRMSE
brings a rate of 0.33 for the scenario. In the Simulation Trace (ST), a large number of vehicles are
observed from 0:00 until 5:06 when compared with the Real Trace (RT). The RT trace exceeds
ST from 5:06 to 22:52. After this time, a lower mismatch between the traces is observed.
Around 17:00 the highest peak is detected, and thereafter the number of vehicles in both traces
reduces. Starting at 22:52 both traces have a similar behavior until the end of the day.

Intending to enrich the analysis and to understand the tra�c behavior, an absolute error
has been calculated. This error considers the absolute di�erence for each of the time samples,
comparing simulation and real values. Figure 11a shows the absolute error behavior during
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Figure 9: Running Vehicles for InTAS

Figure 10: Traces Comparison

the day, and it is possible to imply that the highest error is computed between 15:30 and 17:00
in the afternoon. At this time, a higher number of vehicles is computed, and the simulation did
not follow the same behavior presented on the data-set. The lowest errors occur at the time
when traces cross to each other, and during the period from 0:00 to 3:30, between 8:45 and
9:30, and after 22:15.

Although Figure 11a shows that the highest absolute error occurs between 15:30 and 17:00
in the afternoon, it is necessary to measure the in
uence caused by the absolute error values.
Therefore, an analysis comparing the NRMSE for each time window is depicted in Figure 11b.
As can be seen, the highest absolute error is between 15:30 and 17:00, with an NRMSE of
about 0.45, which is 27.3% higher than the scenario's NRMSE. The error presented between
1:45 and 4:30 in the morning has a larger impact, even that it has a smaller absolute error,
when compared with other periods of the day.
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(a) Absolute Error (b) NRMSE

Figure 11: Error Analysis

(a) B est Case (b) Worst Case

Figure 12: Best and Worst Crossings Evaluation

4.1 Crossing Evaluation

A total number of 24 measurement points were compared, and no pattern to describe the error
has been observed. Due to this, the intersections with the highest error and the one with the
lowest error were deeper analyzed.

The best point is the junction between the arterial road Westliche Ringstrasse and the way
Probierlweg. This junction is a three-way intersection, where approximately 18,414 vehicles
drive daily. Four vehicle detectors were implemented in this junction. All detectors are placed
on Westliche Ringstrasse, three in the north direction, and one detector in the south direction.
Figure 12a shows the di�erent behavior from the ST and RT, where it is observed that both
traces are close with few mismatches periods.

The highest NRMSE has been observed on an intersection between the arterial roads
N�ordliche Ringstra�e and the street Eckstallerstra�e. Five detectors are thus in place. Fig-
ure 12b shows the behavior of this intersection, where it is possible to evaluate that the mis-
match of both traces is relevant. The RT shows that in this crossing a large number of vehicles
drive through during the day. Analyzing ST, it is observed that in the simulation this junction
is not used as frequently by the drivers as one would expect.
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5 Conclusion and Future Work

This paper introduced InTAS, the Ingolstadt Tra�c Scenario for SUMO. This tra�c scenario 
is the �rst SUMO-based scenario using programs close to the deployed in the real tra�c light 
system, and not only standard programs provided by SUMO. Tra�c light programs' lengths 
and phases for twenty crossings were provided by the City of Ingolstadt and simulated into the 
scenario, where approximately 87,500 vehicles daily drive. InTAS represents the road network of 
Ingolstadt, due to the work to correct all the streets based on the information on-line available 
on satellite view from Google Maps. Tra�c modeling took into consideration where people 
live and where they spend their daily activities, like work, school, and spare time. All these 
features establish an environment for simulations, seeking a real-world representation, and can 
cooperate with all kinds of vehicular simulations, e.g. C-ITS and VANETs. Furthermore, soon, 
this scenario will represent one of the �rst cities on Germany where the Car2X communication 
system is available [1]. However, InTAS is the �rst realistic tra�c scenario for SUMO analyzing 
a City with this feature. InTAS presents the public transport network, simulating 56 bus lines 
running over 1,620 daily trips and covering 880.6 km of routes length. A total of 21,756 buildings 
were inserted aiming to create an environment for network simulations, allowing e�ects such as 
signal-fading and shadow areas.

Ingolstadt Scenario has been modeled and validated using real tra�c information from 24 
measurement points. A data-set was elaborated based on the information from each junction. 
This data-set computed the average number of vehicles driving through the crossing for an entire 
day. Detectors to count the vehicle's number are placed on all lanes from each intersection. An 
algorithm was implemented to reach the best device.rerouting.probability value, comparing the 
simulation output and the vehicle's number from October of 2019. To validate the simulation 
output, virtual detectors were placed on the simulation as close as they are in the real world. 
The detectors' output was compared with the real data-set, based on November of 2019, creating 
tra�c traces to be analyzed. The �rst analysis compared the total number of vehicles for all 
detectors, presenting an NRMSE of 0.33. Thereafter, the NRMSE for each intersection was 
evaluated, and the best and worst-case were deeper discussed.

The main issue faced on this research was the mismatch between the real and simulation-
traces. This error might be due to, the tra�c demand modeling method took into consideration 
the average values for the parameters population and workPositions for each of Ingolstadt's 
sub-area. When the average value is implemented, it implies particular errors. Hence, it 
is possible to model demographic data with more details, considering smaller regions inside 
the sub-areas and as this information is not available online, it is necessary to strengthen 
the relationship with the City of Ingolstadt to get this data. The other point is the time-base 
between demographic data and tra�c data. Demographic data was published by the authorities 
considering the year 2018. On the other hand, real tra�c used to validate InTAS were collected 
between August and December 2019. Even though the time between the demographic data and 
tra�c is only eight months, it might change the tra�c numbers and add errors.

Furthermore, a �tness function for weighting SUMO parameters, the relevant VANETs 
features, and tra�c realism could be implemented. This function can evaluate the impact 
on tra�c realism considering all of SUMO's parameters and lead to a better �t, decreasing 
the error value. Among the solutions approaches to de�ne the optimum value is Arti�cial 
Intelligence [29], as Genetic Algorithm to �nd the best �t.

Following the tradition of SUMO, the InTAS scenario is freely available for the research 
community at https://github.com/silaslobo/InTAS.
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Abstract
New mobility concepts such as shared, autonomous, electric vehicle (SAEV) fleets raise 

questions to the vehicles’ technical design. Compared to privately owned human driven cars, 
SAEVs are expected to exhibit different load profiles that entail the need for newly 
dimensioned powertrain and battery components. Since vehicle architecture is very sensitive 
to operating characteristics, detailed SAEV driving cycles are crucial for requirement 
engineering. As real world measurements reach their limit with new mobility concepts, this 
contribution seeks to evaluate three different traffic simulation approaches in their ability to 
model detailed SAEV driving profiles. (i) The mesoscopic traffic simulation framework MATSim 
is analyzed as it is predestined for large-scale fleet simulation and allows the tracking of 
individual vehicles. (ii) To improve driving dynamics, MATSim’s simplified velocity profiles 
are enhanced with real-world driving cycles. (iii) A sequential tool-coupling of MATSim with 
the microscopic traffic simulation tool SUMO is pursued. All three approaches are compared 
and evaluated by means of a comprehensive test case study. The simulation results are 
compared in terms of driving dynamics and energy related key performance indicators (KPI) 
and then benchmarked against real driving cycles. The sequential tool-coupling approach 
shows the greatest potential to generate reliable SAEV driving profiles.

1 Introduction

SAEV load profiles a nd t echnical r equirements a re e xpected t o  d iffer f undamentally f rom conven-
tional private cars. While the latter feature (a) small daily mileages, (b) long times of non-use,
(c) high driving ranges and (d) have access to a dense refueling infrastructure, SAEV operating
characteristics are rather opposite when used for urban passenger transport. Higher daily
mileages and shorter (battery-limited) driving ranges entail the need for frequent recharging.
This, however, is counteracted economically by the request for little idling times and technically
by long charging durations within a comparatively thin network of charging stations. As the
complexity of vehicle development increases, detailed SAEV driving profiles b ecome m ore and
more important for virtual prototype testing. For this purpose, they need to meet the following
key requirements: (KR1) The profiles n eed t o  m i rror t he v ehicles’ m ovement throughout
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entire metropolitan areas for 24 hours accounting for all range and charging constraints as 
well as for different routing, dispatching and pricing strategies. (KR2) They need to provide 
information on the vehicles’ states such as idling, relocating, charging or occupied to enable 
optimal climate control or battery preconditioning. (KR3) The driving cycles must be accurate 
enough to derive reasonable velocity profiles t hat r eflect fo r au tonomous dr iving, ro ad  congestion 
and diverse transport infrastructures. (KR4) Depending on the road network’s topography or 
the driving cycle’s purpose, further time-series such as altitude or occupancy profiles a re a l so of 
interest. To the authors’ best knowledge, the problem of deriving representative SAEV driving 
profiles t hat m eet a ll a bove s tated r equirements h as n ot b een t ackled b y t he s cientific community 
yet. There are many publications that deal with conventional driving cycle generation, the 
modeling of autonomous driving behavior or large-scale SA(E)V fleet s i mulation. H owever, no 
holistic approach is known that combines all three areas.

For the automotive industry driving cycles play a major role in state-of-the-art emission 
modeling, performance prediction and virtual prototype testing. Driving cycles most commonly 
designate second-by-second time-velocity profiles and can b e distinguished in m o dal and transient 
cycles. Modal cycles are highly simplified a nd c onsist o f d ifferent i dling, s traight a cceleration and 
steady speed phases. They often feature unrealistic dynamics in the transition zones [1, 9, 24]. 
Transient cycles in contrast, reflect r e a l-life d r i ving b e h avior u n d er o n - road c o n ditions [12]. 
A common technique to derive new driving cycles comprises four steps: route choice, data 
collection, data clustering and cycle generation [1, 40, 43]. Route choice involves selecting 
the route on which data are to be collected. The driving data are gathered by means of on-board 
measurement, GPS-tracking and/or chase car method. As stated in [43], on-road measurements 
reflect t he s elected r oute m ost a ccurately b ut f eature a  s trong b ias d ue t o  u nusual congestion 
pattern which entails the need for repetitive measurements. The chase car method is less 
cost-intensive and involves randomly following target vehicles by imitating their driving behavior. 
This approach, however, comes at the price of route choice. The collected profiles a r e  often 
decomposed into micro trips1 which are clustered according to traffic condition, vehicle type or 
other KPI. Common trip clustering techniques are k-means cluster algorithms [15, 41] or hybrid 
approaches of k-means and support vector machine (SVM) clustering [43]. Despite their validity, 
cluster methods often require large computational resources [1]. The final c y c le i s  typically 
constructed from a pool of available micro trips [1, 40, 43]. The idea of the micro-trip-based 
methodology is to find t hose m icro t rips t hat r eflect th e di versity of  re al  wo rld dr iving well 
enough but in a more compressed manner to be practical and cost effective [1, 40]. Generally, the 
micro trips are selected by algorithms based on predefined p e rformance m e a sures. Alternatively, 
Monte Carlo engines serve to generate multiple candidate cycles by randomly picking several 
micro trips and determining their KPI. The best fit i n  p e rformance i s  t hen fi nally chosen.

Another statistical approach consists in using real world driving databases to generate 
synthetic driving cycles by means of Markov chain processes. As done in [18, 35, 36], the 
measured velocity profiles s erve t o  c onstruct a  t ransition p robability m atrix o f  a  M arkov chain. 
At this, each matrix element corresponds to a certain state (denoted by current velocity and 
acceleration) and within each state, the transition probabilities to jump from one state to 
another are stored. Yet another data-driven approach of driving cycle deduction is referred 
to as route information mapping. A new concept of defining a utomotive d r iving c ycles is 
introduced in [12] by stressing the need to incorporate external conditions such as weather, traffic 
and terrain data. This is also done in [16] by joining data on slope, road curvature and speed

1 A micro trip denotes a trip between two idling phases.
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limit with traffic information and driver models to form a control problem that is numerically 
solved to generate velocity profiles. H owever, p rerequisites f or s uch d ata-driven a pproaches are 
(a) large databases of GPS-tracked driving cycles, (b) detailed maps and/or (c) access to traffic 
information.

As all previous methods rely on measured or historical data, they are not suited to deduce 
driving cycles for future autonomous vehicles. Autonomous driving behavior is often ap-
proached by applying filter o r  s moothing t echniques o n  h uman d riven p rofiles [2 , 19 , 28 ]. In 
this context, the smoothing approach is justified by k inetosis p r e vention2 o n t he o ne h and a nd by 
the vehicle’s improved perception on the other hand. Advanced sensors and car2x-communication 
will enable autonomous vehicles (AVs) to respond more smoothly to ambient traffic conditions. 
However, smoothing techniques tend to annihilate idling times and cannot reflect f or platooning 
effects or connected driving in a methodologically sound manner.

As conventional approaches to deduce representative driving cycles reach their limit with new 
mobility concepts, microscopic traffic simulation became increasingly popular in this regard. 
Microscopic frameworks have been used for cost-optimized driving cycle deduction [1] and to 
assess the impact of automated driving on fuel consumption [10, 21, 37]. In [21], the capability of 
VISSIM3 to model real world driving cycles is evaluated. Compared to human-driven cycles, the 
simulated profiles fi t we ll  in  ae rodynamic sp ee d bu t po or  in  ac ce le ration: hu man dr ivers te nd  to 
have higher acceleration rates at lower speeds and the simulation neglects stochastic oscillations 
around the target velocity. Similar conclusions are drawn in [1] which combines microscopic traffic 
simulation and micro-trip-based methods to deduce representative driving cycles. According to 
the authors, default parameters from micro-simulation produce unrealistic driving behavior: 
simulated velocity profiles a r e  t o o  a g g ressive a s  t h e ir g r adients a r e  o f t en s e t  t o  t h e  vehicle’s 
maximum capability. This is also evidenced in [37] by emphasizing that the driving cycles’ 
quality is directly tied to a well calibrated traffic model. Due to the same reason, the relevance 
of microscopic traffic models for estimating the impact of traffic strategies on fuel consumption 
is questioned in [10]. The authors pinpoint the fact that microscopic traffic simulation 
models have a validation problem when driving dynamics are concerned: even though 
they produce detailed velocity profiles, m icroscopic t raffic m odels a re u sually d esigned t o  meet 
macroscopic objectives such as signal timing or transportation planning. Consequently they are 
calibrated by traffic flow parameters l ike s peed, density or queue l ength rather than instantaneous 
speed and acceleration [10, 37]. Thus, speed profiles a re o ften t oo s implified an d th erefore might 
not be applicable for environmental studies or requirement engineering. However, even though 
microscopic traffic simulation tools have weaknesses in capturing human driving behavior, they 
are likely to cope well enough with fully automated driving as fewer stochastic terms are involved.

There is plenty of literature dealing with the acceptance, simulation and impact of 
autonomous vehicle fleets. For one t hing, AV fleets ar e expected to improve ne twork capacity 
due to connected driving and improved safety [34]. Then again, AVs may also increase traffic 
volumes due to induced travel demand arising from improved travel comfort, additional empty 
rides and smaller vessel sizes in contrast to public transport means [22]. Due to their disruptive 
character, AV fleet s imulations h ave b e en a nalyzed f rom m any d ifferent p e r spectives. I n  this 
context, especially the mesoscopic Multi-Agent Transport Simulation framework4 (MATSim) [20]

2 To ensure the passenger’s well being, the lateral and longitudinal acceleration is limited. 
3 https://www.ptvgroup.com/de/loesungen/produkte/ptv-vissim/
4 https://www.matsim.org/
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is well established. In [4] and [14], for example, the city-wide replacement of private cars 
with shared autonomous vehicle (SAV) fleets i s  s imulated f or B erlin a nd A u s tin. B oth studies 
conclude that each SAV could potentially replace ten privately owned cars. Further contributions 
evaluate the impact of different SAV pricing schemes on mode choice [23, 27] or deal with SAV 
electrification and i ts implication f or charging i nfrastructure p lanning [ 5, 8 , 29, 4 2 ]. The influence 
of routing and dispatching algorithms on taxi services are extensively discussed in [7, 31, 32]. 
However, even though MATSim has its strong points in large-scale fleet s imulation, mesoscopic 
traffic simulation tools generally lack the necessary level of detail to simulate reasonable dynamics 
of individual vehicles [38].

To conclude, there are numerous publications dedicated to partial solutions but as those 
approaches are often too narrow in their objective, they either lose viability or lack feasibility 
in a broader context. This contribution seeks to elaborate an overall concept to deduce rep-
resentative 24h SAEV driving cycles that meet all above stated key requirements. 
To this end, three different traffic simulation approaches are evaluated and discussed. To gain 
deeper insights in terms of large-scale feasibility, the methods are applied to a set of test cases. 
To reduce modeling effort, several simplifications a r e  m a d e: t h e  p r e-study h a s  n o  fl ee t character 
yet, nor does it reflect f or a utonomous d r iving b e h avior. T hese l imits, h owever, d o  n ot affect 
this study’s validity: The main objective at this stage is to quantify the approaches’ suitability 
by means of different evaluation criteria, such as (a) their ability to model detailed driving 
dynamics, (b) their capability to simulate large-scale areas and (c) the approaches’ feasibility in 
terms of data availability and automation capacity (KR5).

2 Methodological approach
This section serves to outline each of the three simulation approaches in more detail as their 
understanding is essential for the test case analysis in Section 3.

2.1 MATSim’s capabilities and limits in drive cycle deduction
MATSim is a open-source framework for large-scale, agent-based traffic simulation. Its traffic 
assignment relies upon a co-evolutionary algorithm where so-called agents optimize their daily 
activity schedules in an iterative fashion by varying their initial departure time, transport mode 
or route choice to maximize their personal benefit. A t  t his, t hey c ompete w i th o ther a gents for 
space-time resources in the transportation network until a quasi equilibrium state is reached5. 
MATSim allows the deduction of vehicle trajectories and status profiles b y  d e s ign. E very action 
an agent performs – such as entering or leaving a certain road segment (link) – is recorded. 
Based on this information, daily status and speed profiles c an e asily b e  d erived a s  exemplarily 
shown in Figure 1. However, as MATSim uses a simplified q ueue m odel t o  a pproximate traffic 
dynamics, the framework does not provide any reasonable information on a vehicle’s position 
on a link itself. Only average link-speeds can be extracted. The queue model further leads 
to limitations in congestion modeling [3] as the tool’s primary purpose is to simulate large 
scenarios in decent time which requires simplifications i n  t raffic a nd d r iving d y n amics. A s  the 
understanding of those shortcomings is essential for this work, a brief recap of MATSim’s traffic 
dynamics is given next. MATSim relies on the discrete cell transmission model (CTM) [11] and 
the queuing model described in [17]. In the CTM, the length of the homogeneous network cells

5 For more information on the user equilibrium, replanning process or plan scoring please refer to [20].
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Figure 1: Status (top panel) and average link speed profile (bottom) for a chosen MATSim car

is defined by the distance a vehicle travels in the time step T at free-flow velocity. As defined in
Equation 1, the number of vehicles ni(t+ T ) in a cell i depends on the number of cars ni(t) in
that cell at the previous time step and the difference of inflowing and outflowing vehicles.

ni(t+ T ) = ni(t) + Yi�1(t)� Yi(t) (1)

Here, the vehicles’ movement Yi�1 into the cell i is limited by three restrictions as depicted in
Equation 2, where the flow capacity Qi represents the maximum number of vehicles allowed to
enter a cell and the storage capacity Ni the cell’s capacity to store vehicles.

Yi�1 = min

8><>:
ni�1

Qi � T with n;N;Q 2 N
Ni � ni

(2)

With the improved queue model by [17], the road network is represented by so-called links
of different length instead of homogeneous cells. Additionally, priority queues are introduced in
MATSim that sort vehicles on a link according to their order of entrance or earliest exit time.

Under certain conditions MATSim’s queue model leads to false congestion patterns and
therefore misleading vehicle dynamics especially on short links or in sample runs6. The flow
capacity basically acts like a batch system: A flow capacity of 600 cars/h means that only every
sixth second a vehicle is allowed to leave a link. Otherwise the exit is blocked. Consequently,
newly arriving vehicles queue up on the link and wait for their turn to leave which sometimes
leads to unrealistic long passing times. Consider, for example, two subsequent vehicles on a 15m
link: even with a free flow velocity of 50 km/h the rear car would need at least 6 s to pass 15m
as the exit is blocked this long by the first vehicle. The stucktime parameter7 complicates this
even further as it temporarily allows a car surplus on a link: 10% sample runs reveal vehicle

6 Sample runs increase computational performance, as only a subset of agents is simulated. In a 10% run for
example, each simulated vehicle gets the weight of ten and therefore occupies a net-space of 75m on the network
(the default vehicle length in a 100% sample is 7.5m) [20]. To preserve traffic dynamics, the flow and storage
capacities are adjusted accordingly and multiplied by a factor f f,s = 0:1.

7 To counteract gridlocks, the stucktime parameter has been introduced to bypass the storage capacity
constraint in case the first vehicle in the queue is stuck too long. In doing so, a minimal flow even under very
congested traffic conditions is maintained [20].
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queues of 300 m length on a single link 10 m long. At this, the second vehicle needs at least 1 min 
to pass the link, the third a minimum of 2 min and the third even 3 min8. Technically, even 
four vehicles of weight 100 (which sum up to a queue of 3 km) can be enforced to stand on a 
single short link without throwing an error. It has to be stressed at this point, that under those 
circumstances the queues do not line up on upstream links, which hinders MATSim to model 
spatial congestion patterns in detail (even though they might be correct on a pure temporal 
level as the flow c apacity h as i t ’s m ethodical legitimacy).
To conclude, short links act as temporary vehicle sinks, storing too many vehicles which otherwise 
would have spilled back in upstream links. Consequently, the average link-speed profiles are 
faulty under congested traffic conditions as they often show average link speeds near zero on 
short links but nearly free flow v elocities o n  l inks p r ior t o  t hose e rror-prone s hort links.

2.2 MATSim drive cycle enrichment with real-world driving profiles
To improve driving dynamics, MATSim’s average link speed profiles a re e nhanced w ith synthetic 
and real-world driving cycles. For this, five d i fferent d r i ving c y c les a r e  c hosen t h at m i r ror a 
wide range of driving maneuvers and road types. All together, they account for a total driving 
time of 228 min. The cycles’ normalized velocity and acceleration distributions are given in 
Figure 2. As the names suggest, the CADC cycles9 for urban, road and motorway predominately 
represent slow (< 60 km/h), medium (< 100 km/h) and high velocities (< 150 km/h). The DS
urban cycle10 provides further driving data for slower velocity, whereas the mixed FKFS cycle11
covers a wide range of velocities up to 150 km/h. As to the acceleration rates, all driving cycles
exhibit a rather similar behavior. Solely, DS urban features a more conservative driving style.

The drive cycle enrichment is performed as follows: First, the velocity profile of a chosen
MATSim vehicle is calculated and aligned with the trajectory’s legal speed limit. Next, the
simulated profile as well as all synthetic drive cycles are cut into 1min-segments whose average
and maximum speeds are determined. By enhancing the profile minute-wise (rather than
link-wise) some of MATSim’s deficient inter-link dynamics are compensated. In a first rough0 50 100 150
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Figure 2: Normalized velocity (left) and acceleration distribution (right) of the considered drive
cycles. All distributions are normalized to their local maximum and flattened by moving average.

8Given a nominal flow capacity of 600 cars/h which corresponds to 60 cars/h in a 10% sample run. 
9Common Artemis Driving Cycles (CADC): https://dieselnet.com/standards/cycles/artemis.php 
10The DS urban is a RB-internal cycle through Stuttgart city used for load collective deduction.
11The FKFS cycle was conceived by the Research Institute of Automotive Engineering and Vehicle 
Engines  Stuttgart as representative driving cycle for the Stuttgart region.
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Figure 3: Exemplary representation of an enriched velocity profile without improvement measures.
The red dashed lines indicate the transition of two consecutive 1min-segments.

approach, an algorithm goes through all MATSim segments and identifies the CADC/DS/FKFS
segment with the lowest discrepancy in average speed without bothering about unrealistic
driving dynamics in the transition zones. In case the maximum speed limit of the MATSim
segment is lower than the corresponding tabulated one, the segment with the next best fit in
average speed is chosen. This prevents congested motorway cycles from being mixed into urban
MATSim profiles. Figure 3 displays the outcome of this approach. At this, the orange and
blue line represent MATSim’s simplified and enriched profile respectively. As expected, the
latter looks more realistic, but still features unrealistic acceleration rates between consecutive
segments that require further improvement: (i) As discussed in Section 2.1, MATSim often
features velocities near zero on short links. As those are hard to match with real driving cycles,
the average speed of those 1 min-segments is set to zero if vseg < 0:5 km/h. (ii) To make up for
the lost distance, the chosen synthetic driving cycles are allowed to exceed MATSim’s speed
limit by 20%. This is further justified by the fact that real world drivers tend to overspeed as
well. (iii) Moreover, acceleration rates in the transition zones are limited to realistic values. If
the acceleration exceeds 5 m/s2, the identified CADC/DS/FKFS segment is discarded and a
better one is iteratively chosen. The so generated profile is considered acceptable if the daily
traveled distance of both profiles vraw(t) and venr(t) have a relative error of less than 5%. The
relative error eday, rel

veh is calculated as follows

eday, rel
veh =

���� NP
n=1

TR
t=1

venr, veh(n; t)dt
�
�

NTR
t=1

vraw, veh(t)dt
���

NTR
t=1

vraw, veh(t)dt

(3)

where veh is the vehicle’s identification number, N the maximum of 1440 1 min-segments per
day and T the total of 60 s per minute.

2.3 Microscopic drive cycles from sequential tool-coupling
Another approach to enhance MATSim’s speed profiles consists in subjecting the simulated
vehicle trajectories to an additional microscopic traffic simulation. In this context, Simulation
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of Urban Mobility (SUMO)[30] constitutes a rather natural choice as it is the most popular 
open-source microscopic traffic simulation framework12. SUMO is well established in the fields 
of traffic management, traffic light evaluation and (in recent years) the simulation of vehicular 
communications. It provides many interfaces that allow external applications to interfere online 
with the traffic simulation. In this work, the Traffic Control Interface (TraCI) is used to retrieve 
and instantaneously manipulate object attributes.

Network generation To build a SUMO network based on an existing MATSim model, 
the geographical area of interest is independently imported from OpenStreetMap with SUMO 
NETCONVERT 13. Network differences in MATSim and SUMO are exemplarily depicted in 
Figure 4 for the Bergheimer Steige in Stuttgart. In MATSim, networks can be imported via 
the OsmNetworkReader with varying degree of resolution, e.g. rather simple networks with 
reduced number of links (4b) or more complex ones which account more accurately for curved 
road shapes (4c)14. In general, it can be noted that MATSim paths (regardless of their import 
resolution) already account for corrective measures for road geometry and altitude differences. 
Consequently, the path lengths fit r ather well i n d irect c omparison w ith G o ogleMaps. SUMO 
networks in contrast, feature the most sophisticated network design but additional length gains 
by altitude differences are not projected to the 2-dimensional network by default. In our work, 
those data are loaded from an additional elevation model.

Travel demand transfer MATSim-SUMO The travel demand in our SUMO simulation 
comes entirely from MATSim. For that purpose, all MATSim links bordering a chosen test case 
are identified. N ext, a ll v ehicles p assing t hose l inks a re r ecorded d uring MATSim simulation 
with (i) vehicleID, (ii) vehicle route and (iii) time of test case entrance and exit. In case of a 
MATSim sample run, the travel demand in SUMO is upscaled accordingly by injecting cloned 
vehicles. To prevent severe gridlocks in SUMO, a random time offset (sampled from a Gaussian 
distribution) is added to the network entering time of the cloned cars. Having all departure

Figure 4: Network differences based on the Bergheimer Steige test case as defined in Section 3.

12 https://sumo.dlr.de/docs/index.html
13 In principle, SUMO networks can also be imported from MATSim. This proceeding, however, proved not 

beneficial for our purpose as MATSim discards some network information which is required in SUMO.
14 This network, however, behaved poorly in our simulation, as it has too many short links where the artefacts 

discussed in Section 2.1 occur.
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times settled, the linkIDs from MATSim are translated into corresponding edgeIDs in SUMO to 
write the final t rips-file fo r SUMO si mu lation. Fi nally, al l ve hi cle tr ip s in  SUMO ar e converted 
in vehicle routes by DUAROUTER. Due to the small test case sizes in this work (see Sect. 3), 
the SUMO routes match with those in MATSim.

Microscopic traffic dynamics Traffic dynamics in SUMO are realized by car-following 
models (such as Krauss [26] or Intelligent Driver Model (IDM) [39]) and lane-change models 
(such as LC2013 [13]). In this contribution we use the default Krauss-model according to which 
the vehicles drive as fast as possible while maintaining a perfect safety distance to the leading 
car. The safe speed is computed as follows [25]:

vsafe(t) = vl(t) +
g(t) + vl(t)�

v
b + �

(4)

where vl(t) represents the speed of the leading vehicle, g(t) the gap to the leader, � the reaction
time, b the maximum deceleration of the follower and v the mean velocity of following and
leading vehicle. As vsafe may exceed the legal speed limit of the road or surpass the vehicle’s
capability, the actual targeted velocity is limited to the minimum of those three. On top of that,
a driver imperfection � has been introduced in SUMO that causes random deceleration to model
speed fluctuations that lead to spontaneous jams at high traffic densities. Furthermore, each
vehicle draws an individually chosen speedFactor from a normal distribution to represent a
wider variety of human driving styles, e.g. drivers that notoriously stay above or below the legal
speed limit. Figure 5 displays an exemplary velocity profile extracted from SUMO simulation
by also providing information on the current speed limit and the vehicle’s elevation profile.

Figure 5: Elevation (top panel) and velocity profile (bottom) for an exemplary vehicle.

3 Test case analysis
This section evaluates all approaches elaborated in Section 2 in their ability to deduce reasonable
velocity profiles. The test case analysis relies on an existing MATSim model for the Stuttgart
region. Following an approach similar to [6], the MATSim model has been built (by RB)
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on the basis of a mobiTopp [33] travel demand model for the Stuttgart region provided by 
the Verband Region Stuttgart as part of a research collaboration. In total three different test 
cases were identified t hat d iffer i n r oad t ype, n etwork t opology a nd r ight o f w ay r u les: ( i) The 
Bergheimer Steige features no crossroads but sharp turns and road gradients up to 15 %. This 
test case seeks to analyze to what extent slope and curves influence v ehicle s peed i n simulation.
(ii) The Motorway A8 (Kreuz Stuttgart to AS Stuttgart Möhringen) allows the analysis of traffic
dynamics on motorways. (iii) The Kräherwald test case (leading from Kräherwald/junction
Zeppelinstraße to University of Stuttgart) is of mixed inner-city and highway character and is
part of the FKFS cycle as illustrated in Figure 6 (center and right panel).

Figure 6: The right plot illustrates the FKFS circuit. Here, the grey rectangle borders the
actual Kräherwald test case whose zoomed trajectory is given at center. To the left, the spatial
velocity profiles of 22 measured FKFS cycles are provided for the Kräherwald test case.

All test cases are simulated in MATSim and SUMO for one day. For each test case,
driving cycles are deduced by means of (a) pure MATSim simulation, (b) enhanced MATSim
simulation with real driving cycles and (c) sequential MATSim-SUMO tool-coupling. The driving
cycles are then compared based on aggregated dynamics such as velocity and acceleration
distributions, overall traveled time and distance as well as average congestion ratio and energy
consumption (Sec. 3.1). As further evaluation criteria serve the accuracy of time- and space-
dependent velocity profiles (Sec. 3.1 and 3.2) as well as the simulation approaches’ large-
scale feasibility and automation capability (Sec. 3.3). Energy related KPI are derived from
vehicle simulation in GT-Suite15. For this purpose, the following vehicle specifications have
been used: vehicle mass (including battery and powertrain components) m = 1545 kg, constant
tire rolling resistance cR = 0:011, vehicle front area Af = 2:2m2, vehicle air resistance coefficient
cW = 0:27, road friction coefficient cfric = 1, battery capacity Ebat = 60 kWh and engine power
Peng = 200 kW. Driving dynamics and energy related KPI are additionally compared to 22
measured and GPS-tracked FKFS cycles for the Kräherwald test case16. To ensure comparability,
the measured velocity profiles are equally passed to GT-Suite simulation.

15 https://www.gtisoft.com/gt-suite/gt-suite-overview/
    16 All data were gathered by the Research Institute of Automotive Engineering and Vehicle Engines 
Stuttgart based on a contract research "Bordnetzmessungen am Elektrofahrzeug (cZero)"  with the Robert 
Bosch GmbH.
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3.1 KPI comparison
The following assessments refer to Table 1 which summarizes for each test case and simulation 
approach the most important aggregated KPI. For each test case, only a sample of simulated 
vehicles have been tracked microscopically. The exact numbers of tracked and simulated vehicles 
are indicated within the table as well.

Aggregated vehicle dynamics and energy related KPI In general, the average traveled 
distance of all tracked vehicles is similar in all simulation scenarios. Differences mainly arise 
due to different network designs and import functionalities. Every time a road attribute changes 
in OSM both MATSim and SUMO create a new link/edge. In contrast to SUMO, MATSim links 
are represented by straight lines only. In case this straight line deviates strongly from the actual 
road shape, MATSim inserts artificial n odes t o p reserve t he n etwork g e ometry. B y consequence, 
one SUMO edge often represents several MATSim links which leads to longer SUMO distances 
especially in small test cases like ours. The calculated distances of the enriched scenario are 
purely artificial a s t hey d o n ot c orrespond t o t he a ctual t arget t r ajectories. N evertheless, they 
are reasonable enough considered the little effort it took to implement the enrichment procedure. 
Solely the Motorway A8 test case reveals discrepancies in traveled distance higher than the 
desired 5 % error margin. This however, is not the fault of the enhancement method itself. Those 
imperfections are caused by an insufficient number of available fast-driving 1 min-segments in 
Section 2.2 which also lead to low average velocities and energy consumptions. The validity 
of the enrichment procedure is therefore directly tied to a wide range of underlying measured 
driving cycles.
The average travel time, velocity and energy consumption are strongly congestion 

dependent. As the approaches base on different traffic dynamics (queue vs. car-following model) 
and network attributes (node vs. signaled intersection), the same ego-vehicle is differently 
delayed throughout the network which leads to different traffic conditions. Naturally, this affects 
average travel time, velocity and energy consumption. The inconsistencies in congestion modeling

Table 1: Aggregated KPI comparsion for all three test case
(no. of tracked/simulated ego-vehicles)
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9) average traveled distance in km 5.5 5.4 5.7

average traveled time in min 7.8 8.2 6.6
average congestion rate 0.82 0.76 0.85
average velocity in km/h 52 48 53
average energy consumption in kWh/100km 11.8 12.4 15.6
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Figure 7: Inconsistencies in congestion modeling in MATSim and SUMO for all three test cases 
illustrated as log-log plot where each dot represents a tracked vehicle (left) and congestion ratio 
histograms (right). A congestion ratio of one corresponds to free-flow driving conditions.

are further illustrated in Figure 7 on the left, where the congestion ratio for both MATSim and 
SUMO are compared. At this, each dot represents a tracked vehicle. The congestion ratio is 
defined as the ratio of actual travel t ime and the f ree-flow travel time simulated in  MATSim. A 
congestion ratio of one corresponds to free-flow driving conditions, whereas a  ratio near zero 
signifies a  b locked r oad17. A  p erfect match would theoretically r esult i n a  d iagonal l ine. As 
depicted in Figure 7 this is seldom the case and needs to be investigated further. The histograms 
on the right show that the traffic conditions in MATSim are often too optimistic (presumably 
on links where the spatial queue did not propagate due to the artefacts discussed in Section 2.1) 
or way too pessimistic (presumably on short links).
When comparing the speed and acceleration distributions of all simulations, considerable 
differences in all approaches become apparent. Figure 8 displays the normalized velocity and 
acceleration histograms of all 359 tracked vehicles for the Bergheimer Steige test case. As 
expected, pure MATSim simulation exhibits unrealistic driving dynamics as it only accounts for 
average link speeds with no oscillations around the target velocity. Consequently the acceleration 
rate is predominately zero. In between two links however, the acceleration may jump from zero 
to an value predefined by the next l ink’s speed l imit. The enriched profiles feature more realistic 
driving dynamics, but as will be shown in Section 3.2, they are only as good as MATSim’s 
capability to model spatial congestion patterns (which is limited at the moment). SUMO, 
in contrast, features more bell-shaped distributions (around local maxima) which, however, 
have not been validated yet. In the enriched MATSim and SUMO simulation the maximal 
acceleration is limited by design to �� m/s� absolute. However, compared to real-world driving, 
the acceleration rates in SUMO are distributed too perfectly as equally stated in [1, 21, 37].

17As SUMO allows overspeeding (here: up to 20 %) and as SUMO link lengths do not match those of MATSim 
perfectly, congestion ratios greater one may result.
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Figure 8: Normalized velocity (left) and acceleration distributions (right) for 359 tracked vehicles
within the Bergheimer Steige test case with a temporal resolution of d� � � s. The red dashed
lines represent the mean values.
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Figure 9: Time-dependent speed profile of a chosen vehicle of the Bergheimer Steige test case as
simulated by the different simulation approaches.

Time-dependent speed profiles In Figure 9 the time-dependent velocity profiles for the
same vehicle are shown. Even though the starting times are identical for all scenarios for the
chosen vehicle18, the car is differently delayed due to discrepancies in traffic conditions, network
distances, traffic signals and right-of-way rules. Whereas MATSim’s velocity profile is rather
steplike due to the average link speed, SUMO shows strong oscillations around the target velocity
(possibly arising from the driver imperfection �). However, compared to real world driving,
SUMO’s oscillation amplitude seems too homogeneous and the frequency too high-frequent.
This may be solved by a better parametrized car-following model, but as our approach aims at
autonomous driving (AD) applications in future no further effort was put into this task.

18This might not always be the case. If strong congestion occurs on a vehicle’s departure link, the moment of
network entering can be delayed artificially.
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3.2 Comparison against GPS-tracked FKFS cycles
In this section, the simulated driving cycles for the Kräherwald test case are compared against 
22 measured FKFS cycles to assess the quality of the simulated results. To do so, only the part 
of the FKFS cycle is considered that overlaps with the Kräherwald test case as displayed in the 
right panel of Figure 6.

Space-dependent speed profiles A l l  s i mulated ( i n  S U MO o n l y) a n d  m e a sured driving 
cycles of the Kräherwald test case are spatially compared in Figure 10 top panels. The bottom 
panels provide additional information on the vehicles’ minimum, mean and maximum velocity 
at each location of the test case. As indicated in Figure 6, the trajectory undergoes first four 
successive traffic lights, becomes then a west-heading highway and is finally m erged i nto another 
arterial road before turning abruptly south. Those characteristic become clearly visible in the 
both data sets in the form of sudden drops in velocity. In contrast to the FKFS data (that 
unfortunately reflect f ree-flow dr iv ing co nditions on ly), th e SU MO  si mulation on  th e ri ght side 
exhibits some congestion during the day which leads to longer waiting queues in front of the 
traffic signals and especially when both arterial roads meet. Moreover, in real life locals tend 
to anticipate upcoming speed limit changes and adjust their velocity accordingly before the 
actual traffic sign occurs . This is especially true when the speed limit rises. In our simulation, 
however, the rise and fall of the speed limit is rather step-like. In the context of autonomous 
driving this simplification i s  n ot n ecessarily d isadvantageous a s  f uture AVs m ight a dapt t o  speed 
limits in a similar manner.

Figure 10: Stacked velocity-space profiles for 22 measured FKFS cycles ( left) and 444 simulated 
SUMO vehicles (right) for the Kräherwald test case.

Aggregated vehicle dynamics For further plausibility checks, only those vehicles from 
the traffic simulation are benchmarked with FKFS data that exhibit similar traffic conditions. 
Unfortunately all measured cycles feature free-flow d riving c onditions, c onsequently no con-
clusions to the partly or fully congested state can be drawn. Table 2 summarizes selected 
aggregated KPI for a chosen, simulated vehicle and compares them with three different FKFS 
vehicles. Generally, all listed KPI match rather well for the non congested state regardless of 
the driving cycle deduction approach. A slightly different picture emerges when regarding the 
velocity distribution under free-flow driving conditions. As evidenced in Figure 11 on the
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Table 2: FKFS benchmarking for a chosen simulated vehicle for the non-congested state.

KPI simulated cycles via FKFS cycles
for the non-congested state MATSim enriched SUMO car 1 car 2 car 3
distance in m 5489 5460 5698 5951 5955 5942
average velocity in m/s 16.4 15.2 15.6 15.0 14.5 17.2
travel time in min 5.6 6.0 6.1 6.6 6.9 5.8
energy consumption in kWh/100km 20.1 18.3 18.8 18.8 22.0 19.6
congestion ratio 0.95 0.88 0.9 0.87 0.84 0.99
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Figure 11: Probability density (left) and cumulative velocity distribution function (right).

left side, real world drivers (represented by the FKFS cycles) tend to drive faster than those
simulated in SUMO. Whereas the SUMO simulation exhibits velocity peaks around 45 and
75 km/h, the measured data reach their local maxima around 62 and 82 km/h. Beyond that,
the SUMO simulation features many velocities near zero which are not present in the measured
data. Simulated vehicles obviously stand a higher chance to hit at least one of the four traffic
lights. This also shows as an offset in the cumulative velocity distribution in the right panel
of Figure 11: Whereas the graph gradients of SUMO and FKFS match rather well, SUMO’s
cumulative velocity distribution is shifted considerably more to lower velocities due to the traffic
light downtimes. As further expected, MATSim’s velocity distribution correlates poorly with
the corresponding FKFS data due to the simplified queuing model. The enrichment technique
compensates some of those shortcomings, but follows MATSim’s trend still too closely. Using a
larger sample of measured driving cycles for the enrichment, will likely lead to more realistic
velocity distributions.

At this point, however, it has to be emphasized that the simulated driving cycles cannot be
validated with the measured FKFS cycles for two reasons: (i) The 22 measured drive cycles are
statistically not significant enough to represent the driving behavior of the Kräherwald test case
during one day. (ii) To validate single profiles, the ego-vehicle’s exact environment (e.g ambient
traffic and traffic signals) needs to be modeled as encountered during measurement campaign.
Unfortunately, neither MATSim nor SUMO are capable to model surrounding vehicles in such a
manner. Furthermore, radar and LIDAR data are required to collect necessary data.
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3.3 Discussion and implications for final c o ncept choice

This section summarizes all quantitative results of the preceding sections, places them into the 
context of the key requirements postulated in Section 1 and complements them with qualitative 
remarks on the approaches’ large-scale feasibility and automation capability.

With respect to city-wide SAEV fleet simulation (KR1), MATSim has advantage over SUMO 
in scalability and computational performance on the one hand and existing fleet simulation 
functionalities on the other hand. The enrichment and tool-coupling approach also benefit from 
MATSim’s capabilities in this regard, as the modeled fleet c onstraints a s  w ell a s  t he i mpact of 
different dispatching and routing algorithms do equally reflect i n  t hose s o l utions. R egarding indi-
vidual vehicle states (KR2), MATSim and SUMO prove equally capable. Provided minute-wise 
drive cycle enhancement, the enrichment procedure should fare well in this regard as well since 
downtime phases are not altered considerably. Larger enrichment segments, however, increase 
the chance of annihilating idling periods or inserting additional ones.
The approaches’ capability to derive reasonable velocity profiles ( KR3) h as e xtensively been 
analyzed in the previous section. Given similar traffic conditions, aggregated trip statistics (e.g. 
average velocity, traveled distance and time) are well captured by each approach. However, as 
highlighted in Subsection 3.1, even for a given ego-vehicle the traffic conditions differ considerably 
between the different approaches due differences in traffic dynamics and network interpretation. 
A central task in future work therefore relates to the model calibration in terms of (real-world-
observed) congestion patterns. Unfortunately, MATSim (and therefore the enrichment approach 
as well) has some shortcomings in spatial congestion modeling. Another deficit o f  M ATSim is 
its incapability to model realistic velocity and acceleration profiles d ue t o  i ts s implified queuing 
model. A satisfying solution that solely relies on MATSim without further enhancement is 
therefore not conceivable. The velocity profiles o btained f rom t he e nrichment p rocedure closely 
resemble real world measurements. However, it is not straight forward to transfer this approach 
to autonomous driving applications, since it depends on measurements as input data. A major 
drawback for the enrichment approach is therefore its missing sensibility to different driving

Table 3: Approaches’ suitability to model detailed SAEV driving profiles
(Xsuitable, o limited suitability, - not suitable, * no statement possible)

pure enriched pure MATSim-SUMO
key requirements MATSim MATSim SUMO tool-coupling

KR1: large-scale, multi-modal SAEV fleet
simulation with sensitivity to: X X - X
- range & charging constraints X X o X
- dispatching, routing & pricing strategies X X o X

KR2: vehicle states X X X X
KR3: realistic velocity profiles with sensitivity to:

- human/ autonomous driving -/- X/o o/* o/*
- congestion rates o o X X
- transport infrastructures o - X X

KR4: further time series such as
- height/ occupancy profiles o/X -/o o/* o/X

KR5: feasibility in terms of:
- data availability X o o o
- robustness against critical error X X - -
- automation capability X X o o
- computational resources X X o X
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styles or platooning effects. SUMO in contrast, enables the deduction of detailed drive cycles 
whose drive dynamics prove too artificial t o  r eflect fo r hu man dr iv ing, bu t ma y be  reasonable 
enough for autonomous driving. In contrast to MATSim, SUMO provides many features to 
tweak driving dynamics in a methodological manner. Another strong point of SUMO is that 
the simulated vehicles react sensitive to diverse transport infrastructures and are able to mimic 
different driving maneuvers such as stop&go-patterns or zip merging. Unfortunately, SUMO 
does not account for reduced velocities in narrow curves. Nanoscopic traffic simulation tools 
such as CarMaker19 would be required to address these kind of topics. The same applies for 
road gradients: road slope can technically be modeled in each simulation scenario (KR4) but 
requires access to accurate height data. These data, however, relate to the Earth’s surface 
only and consequently produce invalid results for road tunnels. And even with slope modeled, 
the latter has so far no impact on the vehicles’ driving behavior. Slope only influences energy 
consumption in a subsequent vehicle simulation. Nonetheless it has to be emphasized at this 
point, that numerous car-following models exist for SUMO. Some may address those issues 
already. At this point, those options have not been adequately tested nor investigated yet.

Apart from those quantitative KPI, all simulation approaches differ considerably in practical 
feasibility and automation capability (KR5). With regard to the key requirements KR1-KR4, 
the MATSim-SUMO tool-coupling approach seems to be the most promising solution to deduce 
representative SAEV drive cycles as summarized in Table 3. However, its automation capability 
remains questionable due to the high effort in setting-up the network. SUMO networks are 
very detailed and therefore require additional data which OSM does not provide, e.g. detailed 
elevation information, traffic light positions and control. SUMO’s autogenerated networks are 
sometimes misleading as the underlying OSM attributes are non-existing or error-prone and/or 
the data are too complex to be interpreted correctly by the default import functionalities. This 
is shown by (a) faulty turning lanes, (b) poorly guessed traffic light positions, (c) poorly joined 
complex junctions and (d) uncoordinated traffic light initialization. Manual editing represents a 
most time consuming task. A further serious drawback for all SUMO related approaches is their 
proneness to artificial d e a dlocks. T hose g r idlocks a re c reated f or e xample b y  t wo i mpeding cars, 
where the left likes to turn right and vice versa. Those gridlocks do not naturally resolve in 
SUMO, but can only be counteracted by enabling further options such as time to teleport or 
ignoring junction blockers. However, those options do not help if the ego-vehicle selected for drive 
cycle derivation is affected, as this vehicle then cannot complete its daily trajectory. MATSim in 
contrast, encounters no data-availability or automation problems due to its simplified network 
representation. Taken all pros and cons into consideration, the MATSim-SUMO tool-coupling 
seems most promising despite its automation challenges.

4 Conclusion
This contribution presents different approaches to simulate 24h driving cycles for SAEVs. The 
approaches are evaluated for a set of test cases. From this, a sequential tool-coupling of meso-
and microscopic traffic simulation was found to be most promising with respect to the key 
requirements defined i n  S ection 1 .  S AEV d r iving p rofiles ar e de rived as  fo ll ow s: De pending on 
different fleet c onfigurations an d pr ic ing co ncepts, SA EV  fle ets  are  imp lemented and  simulated 
in MATSim on a large-scale, multi-modal network. Based on the simulation results, all SAEV 
trajectories are analyzed with respect to their daily use patterns, such as driven distance,

19 https://ipg-automotive.com/de/produkte-services/simulation-software/carmaker/
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operating time or number of served trips. Next, representative fleet v ehicles a re automatically 
identified a nd p ost-processed t o b e  s imulated i n S UMO. To t his e nd, t he t ime-dependent travel 
demand of all roads in close proximity to the actual target trajectory is recorded in MATSim 
and transfered to the SUMO model. To reduce network setup effort, only the trajectories of 
the chosen vehicles (and their close neighborhood) are modeled in SUMO. Besides, each vehicle 
tagged as SAEV in MATSim simulation is featured with autonomous driving characteristics in 
SUMO. The ego-vehicle’s speed profile i s t hen d erived f rom S UMO simulation.

At present, this tool-coupling approach works for test cases only as the procedure involves 
manual network matching and cleaning efforts. Its application to city-wide scenarios necessitates 
tool-chain automation which, however, constitutes a most challenging task. Further research is 
therefore required to implement the tool-chain in such a way that – starting from an existing, 
calibrated MATSim model – the SUMO model is setup, simulated and evaluated without further 
human intervention. To this end, the following aspects are addressed in future work:
(a) Dealing with inconsistencies in MATSim and SUMO. A sequential tool-coupling requires
aligning both frameworks in (i) network representation, (ii) route choice, (iii) traffic dynamics
on a macroscopic level and (iv) traffic performance. Otherwise, the travel demand transfer
from MATSim to SUMO leads to severe gridlocks in the more congestion-prone microscopic
traffic simulation and SAEVs cannot serve their appointed customers in time. Consequently, the
frameworks’ discrepancies need to be analyzed in more detail to derive alignment measures.
(b) Automated network modeling in SUMO. To solve the bottleneck of tool-chain automation,
methods and algorithms need to be elaborated to solve network cleaning, traffic light location
and control issues in an automated fashion. As time-dependent traffic volumes on all intersection
are known from MATSim simulation, approaches are elaborated that (i) detect and eliminate
artificial bottlenecks in the SUMO network that fail to handle the appointed traffic flow and (ii)
mirror the decision makings of an actual traffic planner to initialize traffic lights.
(c) Automated travel demand transfer. Another obstacle for tool-chain automation represents
the travel demand transfer from MATSim to SUMO simulation. This issue is solved by a robust
network matching concept with dynamic meso-micro borders.
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Abstract: When following a vehicle, drivers change their acceleration at so called action-points 
(AP), and keep it constant in between them. By investigating a large data-set of car-following 
data, the state- and time-distributions of the APs is analyzed. In the state-space spanned by 
speed-difference and distance to the lead vehicle, this distribution of APs is mostly proportional 
to the distribution of all data-points, with small deviations from this. Therefore, the APs are not 
concentrated around certain thresholds as is claimed by psycho-physical car-following models. 
Instead, small distances indicate a slightly higher probability of finding an AP than is the case 
for large distances. A SUMO simulation with SUMO’s implementation of the Wiedemann model 
confirms this view: the AP’s of the Wiedemann model follow a completely different distribution 
than the empirical ones.
Keywords: Car following, action points, driver modelling

Introduction

Car-following (CF) models are around since the early 1950ies [1], and they had been developed 
ever since. They had their first hype in the early 1960ies [2], [3] where especially models that use 
a description based on differential equations (ODE – ordinary differential equations, DDE –
delayed differential equations, or even stochastic SDE – stochastic differential equations) have 
been used. Also during this time, the first action-point (AP) based models had been introduced 
[4], [5]. Already this early work assumed that the APs are related to perception thresholds of the 
human driver, with the idea that by crossing such a threshold, an appropriate action is triggered. 
E.g., very small speed differences �v to the vehicle in front are impossible to recognize by a
human driver, once this speed difference crosses a critical value �vc(g) (which depends on
distance g, with larger distances making it more difficult to recognize a certain speed-difference).
The AP-models have then been introduced in a much more refined form in the psycho-physical
models [6], [7] that are being used in microscopic software packages (e.g. VISSIM). The reaction
is then measurable by a fast change in the acceleration a(t), where it is assumed that
acceleration is constant when no AP is active.

When looking at car-following trajectory data such as those collected by Naturalistic Driving 
Studies (NDS) [8], [9], [10], [11], [12], [13], where data are typically resolved with a time-step size 
of �t = 0:1 s, and from the fact that vehicles are heavy objects it is clear that acceleration cannot 
truly jump. For driver assistant systems, as well as in recommendations about comfort-able rides 
in public transit vehicles, typically there is a limit in the jerk j of the vehicle. The jerk is the time-
derivative of the acceleration, i.e. j = da(t)=dt, and this is typically limited to values smaller than j
jj � 2:5 m=s3. This is also true for the data-set used in this work. However, when analyzing these 
data it is not too difficult to find times where acceleration changes fast, and
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times where it is constant. So, it seems that human drivers do have the habit of ”do nothing” as
long as possible, and then change to what is needed to avoid a collision, or to avoid falling back
to far behind.

The second important point is that the perception thresholds are most likely not precise curves
�v(g) in (�v; g)-space. They have to be understood in a probabilistic sense, where the proba-
bility to issue such an AP changes with the distance to this line, and the actual line e.g. marking
the point where with certainty such an AP is issued.

Surprisingly, there is little work found by the author related to the details of these thresholds,
and they are often ignored by most of the scientific literature on car-following. So, one may
wonder, whether they are important at all. Not to be mis-understood: there is not the shadow
of a doubt that human perception is limited, despite the fact, that the visual system of humans
is capable of truly astonishingly feats. And therefore, perception threshold do exist. But it is
quite another question whether they are needed to describe car-following behavior, and to what
extend the behavior of human drivers is constrained by them. The driving style chosen by them
might avoid them completely, and therefore be ignorant of these thresholds.

Let us note in passing, that the AP’s also occur in the other output of a human driver, that is
the steering. To the knowledge of these authors, this is not a very well researched area (see
[14] for an example).

The data-analysis

The data used here are from the German project simTD [10]. This project was not a NDS in
the strict sense, its goal was to look into car-to-car communication. For this purpose, about 100
cars had been instrumented with communication devices, and these devices collected anything
that could be collected from the CAN-bus of the vehicles, together with the proper geo-location
and GPS-time. So, some of the vehicles recorded the distance and speed-difference to the
lead vehicle, some of them recorded the gas-pedal (throttle �(t)) and brake-pedal usage, and
all of them recorded the speeds v(t), accelerations (lateral, as well as longitudinal a(t)), and
GPS positions as well as the speeds from the GPS, together with a measure of the GPS error.
The recording was asynchronous and in different time granularity, it ranged from �t = 1 s for
the GPS readings, most variables had �t = 0:1 s, to even shorter intervals for the acceleration
data (�t = 0:01 s). With the exception of the GPS-data, these data have been enforced for the
following analysis to a common time-step size of �t = 0:1 s. If more than one value appeared
in such a time-interval, only the average had been recorded together with a number telling how
many values had been averaged.

The data had been collected in four months from September 2012 to December 2012 by
about 1,000 volunteers who drove these vehicles around according to a certain protocol that
was invented to maximize what can be learned from car-to-car communication. So, although
the drivers where aware that they had been recorded, it was not done to look at their driving
behavior.

To identify APs in the data set, several approaches had been tested (using the acceleration
a(t), the throttle position �(t), or the speeds v(t)). It turns out, that the speed data v(t) of
each vehicle yield the clearest signal to find the APs, a result that has also been reported in
[15]. Identification of APs has been done, then, by applying the Ramer-Douglas-Peucker (RDP)
[16], [17] and the Visvalingam-Whyatt (VW) [18] algorithm to the time-series ft; v(t)gt�0. These
algorithms have each one parameter that determines the degree of simplication to the time-
series, and these have been chosen by try-and-error – there are no objective criteria that can
be used here. (These algorithms have been invented originally to simplify geographical objects;
there the goal is to eliminate detail but still keep the visual appearance e.g. of a coast line intact
and recognizable.) The analysis has been done with the Python library simplification [19]. The
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Fi g ur e 1. A s h ort pi e c e of t h e a s p e e d ti m e- s eri e s v (t) (i n gr a y), t o g et h er wit h t h e r e s ult s of t h e
t w o si m pli fi c ati o n al g orit h m s d e s cri b e d i n t h e t e xt. R D P i s i n r e d, V W i n gr e e n.

N ot e, t h at n ot all dri vi n g m a n e u v er s all o w f or t h e pr o p er a s si g n m e nt of A P s. E s p e ci all y p eri-
o d s of str o n g a c c el er ati o n a n d d e c el er ati o n oft e n ar e m or e v ol atil e, wit h a c c el er ati o n c h a n gi n g
f a st er t h a n i s vi si bl e i n t h e s e d at a. H o w e v er, c ar-f oll o wi n g p eri o d s t y pi c all y h a v e s m all a c c el er-
ati o n s, a n d i n t h e s e c a s e s t h e m et h o d s e e m s t o w or k v er y w ell.

Di stri b uti o n of t h e ti m e i nt er v al s b et w e e n A P s

Fr o m s u c h a di vi si o n, t h e di stri b uti o n of ti m e- diff er e n c e s δ t b et w e e n s u b s e q u e nt A P s c a n b e
c o m p ut e d a s w ell, s e e Fi g ur e 2 f or t h e r e s ult. N ot e, t h at d u e t o h ol e s i n t h e d at a, s o m e A P s
mi g ht h a v e b e e n mi s s e d. T h e di stri b uti o n i s c o m p ati bl e wit h a l o g- n or m al di stri b uti o n. T h e t w o
m a xi m a ar e ar o u n d a v al u e of 1 .5 s , w hil e t h e m e a n v al u e s ar e a b o ut 3 s .

C ar-f oll o wi n g

S o f ar, all d at a h a v e b e e n u s e d f or t h e a n al y si s t o st at e s o m e b a si c f a ct s a b o ut t h e A P s. N o w,
a cl o a s er l o o k at c ar-f oll o wi n g e pi s o d e s ar e p erf or m e d. C ar-f oll o wi n g i s i d e nti fi e d a s f oll o w s.
Fir st of all, t h er e s h o ul d b e a d at a- p oi nt t h at h a s b ot h di st a n c e a n d s p e e d- diff er e n c e t o t h e
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Fi g ur e 2. Pr o b a bilit y d e n sit y p (δ t ) of t h e ti m e- diff er e n c e δ t b et w e e n s u b s e q u e nt A P s. R e d li n e
i s f or t h e R D P, gr e e n li n e f or t h e V W al g orit h m. D at a ar e c ut- off at t e n s e c o n d s.

v e hi cl e i n fr o nt. T o gi v e a n e sti m at e, t hi s i s t h e c a s e f or a b o ut 2 5 % of t h e d at a. A d diti o n al t e st s
h a v e b e e n a p pli e d t o cl e a n t h e d at a. T h e m o st i m p ort a nt of t h e m i s t o c h e c k f or a d y n a mi c
c o n si st e n c y. N ot e g (t) a s t h e g a p at ti m e t, a n d g (t + ∆ t) t h e g a p at a ( s m all) ti m e- st e p ∆ t l at er.
T h e s p e e d- diff er e n c e i s n a m e d ∆ v (t) = V (t) − v (t), w h er e V (t) i s t h e s p e e d of t h e l e a di n g
v e hi cl e. T h e n:

g (t + ∆ t) = g (t) + ∆t∆ v (t) + O (( ∆t) 2 ) ( 1)

T h e si z e of t h e O -t er m i s t h e diff er e n c e b et w e e n t h e a c c el er ati o n of t h e l e a d a n d t h e f oll o wi n g
c ar, m ulti pli e d b y t h e s q u ar e of t h e ti m e- st e p si z e. B y a s s u mi n g ” n or m al” a c c el er ati o n s of
2 .5 m / s 2 a n d a ti m e- st e p si z e ∆ t = 0 .1 s , t h e e x p e ct e d err or h er e i s of t h e or d er of 0 .0 5 m . S o,
t h e g a p err or ε g :

ε g = g (t + ∆ t) − (g (t) + ∆t∆ v (t)) ( 2)

c a n b e u s e d t o filt er o ut b a d d at a- p oi nt s . T h e s a m e c a n b e d o n e wit h t h e s p e e d a n d a c c el er-
ati o n b y d e fi ni n g a s p e e d err or ε v :

ε v = v (t + ∆ t) − (v (t) + ∆t a(t)) ( 3)

B y s etti n g a li mit of 1 m f or t h e g a p- err or a n d 0. 2 5 m/ s f or t h e s p e e d- err or (t h e i nt er q u artil e
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distance for the gap-error is of the order 0.2 m, and 0.05 m/s for the speed-error), about 25%
of the data gets eliminated.

The remaining data are now being used to search for a difference between the distribution of
the APs in the CF-plane (�v; g) and the distribution of all the data. This is done by sampling
the data into two histograms h(�v; g) and H(�v; g) for the APs and all the remaining data.
There are several means how two distributions can be compared. Here, a method is chosen
that bears a strong resemblance with the well-known �2-test. It works as follows: let hij be
the histogram sampled from the APs by a particular tesselation of the CF-plane, and Hij the
histogram for all the data-points, using the same tesselation of the CF-plane. Then, each bin
in the AP-histogram is related to the same bin in the full histogram. The simplest assumption
one may have is that the AP-histogram is just a down-scaled version of the full histogram, i.e. it
is expected, that the AP histogram can be computed by the multiplication of the full histogram
with an empirically defined factor, which for the data here turned out to be around f = 0:05:

ĥij = f Hij (4)

Then, the Pearson residuum �ij can be defined:

�ij =
hij � ĥij√

ĥij

: (5)

Clearly, the sum over �2
ij is just the �2 value. However, in the context here, more can be

learned than the simple fact that these two distributions are different: by plotting �(�v; g) as
function of (�v; g), the Figure 3 is found.

The result in Figure 3 displays no one-dimensional lines where the AP-distribution would have
been larger. In general, the difference between the two distributions is weak, but it displays a
clear pattern. For large distances, the AP density is smaller than what can be expected on the
basis of Equation (5), while for smaller distances, drivers issue more APs. There is a slight
asymmetry between positive and negative �v, which is as expected: negative values of �v
belong to the dangerous area where the vehicle is approaching. However, the difference itself
is weak, values of j�j � 2 correspond to a 5% error probability.

Note the unequal tiling of the plane: this has been chosen so that roughly the same number
of data-points fall into each box in �v as well as in g-direction. It improves the statistics, at
the expense of the accuracy in the location of the boxes. Small boxes corresponds to a large
probability to find the system there, and in fact, that maximum of the p()-distribution is around
20m. About 1.4M data-point had been used to compute this diagram, about 5% of those have
been labelled as APs.

Running SUMO with Wiedemann’s model

To use SUMO [22] to generate similar data, the following set-up has been used. A large rect-
angle of a one-lane road has been built with netedit, with changing speed limits to sample from
different car-following regimes. Altogether six vehicles had been put to this network, at the start
of the simulation they were at a standstill. The first (lead) vehicle was a SUMO default vehicle
that drove with constant speed. Its speed-factor had been set to 0.5, so that is drives with half
of the speed-limits on the four edges, i.e. at 35; 30; 25, and 20m=s. The five following cars were
configured as

<vType id="followVIS" length="4.61" maxSpeed="70.0" minGap = "1.0">

<carFollowing-Wiedemann accel="1.8" decel="4.5" sigma="0.9"/>
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Figure 3. Distribution of the difference between the AP distribution and the distribution of the
full frequency distribution p(∆v, g). Note, that this plot is roughly divided into two
areas: for large distances, less APs are issued, while for short distances, more APs
are needed.

</vType>

SUMO’s own deterministic AP mechanism default.action-step-length value="0.1" had
been set to the step-size of 0.1 s, to be close to the empirical data. The data had been sampled
from the simulation by using a netstate dump netstate-dump value="wiedemannAP.xml" and
subsequently analyzed with R [20]. AP’s have been found by searching for points where the
acceleration of the vehicle has changed by more than 0.1m/s2, the acceleration itself has been
computed from the (recorded) speed by a simple difference scheme a(t) = (v(t)−v(t−∆t))/∆t.
All the data from the five following cars had been used and analyzed together, as had been done
with the simTD data. This yields the results in Figure 4.

The results in Figure 4 demonstrate that there is a strong difference between the APs gener-
ated by the Wiedemann model, and the APs identified in the empirical analysis. Nevertheless,
these results are completely in line with what to expect from Wiedemann’s model of the AP
distribution: they are lined up in a scattered manner along the perception thresholds as defined
in the Wiedemann model.

Conclusions

These results indicate, that human car-following is not controlled in any manner by perception
thresholds. Similar results have also been found in [23] and [24]. The statistical analysis above
demonstrates, that APs in fact have a non-trivial distribution: they are issued more often when
the situation is dangerous, but the effect is not a very strong one.
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Figure 4. Distribution of the difference between the AP distribution and the distribution of the
full frequency distribution p(∆v, g) for the Wiedemann model, together with the AP’s
themselves.

There is still a (small) loop-hole in this analysis for the existence of perception thresholds: to
gain statistical power, all the data for all the drivers have been put together, in this case these
had been 96 drivers. The data from just one driver are not enough to find those patterns, since
they do not happen that often, they are roughly 5% of the total amount of car-following data.
So, an experimental design that would look explicitely for those thresholds would try to collect
long car-following data from just one driver. However, we think it is highly unlikely for such an
approach to succeed, since the distribution of APs found in the simTD data is so completely
different from the one from the simulation with Wiedemann’s model.

If this result holds true, it might be asked why do the thresholds do not play a prominent role.
One of the answers comes from the average time between two APs of 1. . . 3 seconds. Drivers
correct their driving style much more often than what would be needed by the thresholds. There-
fore, they do not take care of the thresholds. In addition, especially when in car-following, drivers
are typically relaxed, at least this can be concluded when looking at the accelerations that are
realized in this mode. And this means, that they are also not fully concentrated, and it might be
assumed that their perception error is larger, too. And again, this would lead to a smoothing out
of any threshold.

Let us finally note that this does not mean that the Wiedemann model is a bad model. On
average, the acceleration function a(∆v, g, v) of this model does still the correct things. It indi-
cates, however, that this model has a feature (the perception thresholds) that cannot be found
in the simTD data. However, some papers have seen these thresholds (at least we have found
this reference [25], but we remember to have seen others) and the associated increase in APs
issued at these thresholds. It can only be speculated what has been seen in these data, and
as mentioned already, it might well be that with a more careful preparation of the car-following
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works

Congestion does not uniquely appear in the domain of vehicle tra�c, it is also present in
computer networks as well. There are numerous solutions which aim to prevent or handle
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Abstract

Tra�c congestions cause many environmental, economic and health issues. If we are unable to 
completely get rid of them, the least we shall try to do is to move them outside of residential areas.

In this paper, a novel signal coordination method is proposed, which aims to mitigate tra�c congestions. The 
proposed algorithm is based on the explicit congestion noti�cation protocol, which is well-known from the 
domain of computer networking.

Our method was tested under Eclipse SUMO. Results show that the proposed algorithm successfully limits the 
tra�c density and the tra�c �ow to a certain level.

1 Congestion Problem � A Local Perspective
Nowadays, as the number and the size of the road vehicles are rapidly increasing, even more 
frequent and longer tra�c congestions are formed. Therefore, we might encounter heavy tra�c 
in areas where they can cause even more harm than on main roads or highways.

For example in residential areas or near hospitals vast amount of pollution, noise and vibra-
tion, coming from the vehicles, can cause health issues. In areas near nursery and elementary 
schools they can also pose a safety risk. Moreover, the modern city planning is about to ban 
vehicles from historical city centers as well. The aforementioned areas usually build up of small, 
narrow, sometimes even dangerously steep roads with many right-hand-rule intersections.

These examples show that it would be really bene�cial to avoid heavy tra�c to reach speci�c 
parts of our cities. Of course, this means there might be areas where the congestions will be 
even bigger than today, but it might be possible to handle the increased tra�c more e�ciently 
there (by e.g., variable speed limits, bi-directional lanes on highways and so on), than in the 
regions mentioned above.

In this paper, we propose a novel tra�c signal coordination method which is capable of 
restraining heavy tra�c from reaching a certain area, which ensures that the density of the 
vehicles is kept below a critical level, therefore resulting in mitigation of congestion on residential 
road networks.

2 ECN Protocol and its Adaptation to Urban Tra�c Net-
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the congestion in computer networks. Our idea is that some of these algorithms might be 
applicable to achieve our goal, mentioned above. This conjecture is based on the insight that 
these protocols prevent packages from being send with too high transmission rate, therefore the 
network can handle the incoming messages with ease.

Moreover, many other elements are similar in computer networking and the road tra�c do-
main. The networks themselves, for example, are built up of nodes (routers vs. intersections), 
which might be even capable of actively managing the �ow of packets or vehicles in the network. 
The message packets and the vehicles also form a quantum stream, which contains unique enti-
ties with a space between them. The major di�erence is that vehicles have physical dimensions
too, therefore some protocols of computer networks cannot be applied in the domain of road networks.1

One of the well-known congestion avoidance algorithms in computer networking is called 
Exponential Backo�. The basic idea behind the exponential backo� is that in case of a collision 
(which roughly means that a congestion is forming in the network) the transmitters have to 
wait for a random time between 0 and 2c µs to resend their messages, where c stands for the 
number of unsuccessful transmissions. Obviously, this protocol cannot be applied in the domain 
of road tra�c.2

Another example of congestion reduction in computer networks is called Sliding Window 
Protocol. This protocol limits the number of packets that can be transmitted at any given time, 
and as a result it prevents forming congestions. Unfortunately, this protocol might also cut 
platoons into half, however, platooning is proved to be really bene�cial in the tra�c domain. 
Hence, this method is unsuitable for our purposes.

The algorithm which can be easily applied in road tra�c and computer network domains as 
well, is called the Explicit Congestion Noti�cation (ECN) protocol [1]. The main idea behind it 
is that the routers (or in our case the tra�c light controllers) can sense somehow the formation 
of a congestion. If it happens, the routers inform the corresponding transmitters about this 
fact (let us call these piece of information an ECN-signal). If an ECN-signal has been received, 
the transmission level shall be reduced toward the sender of the ECN-signal.

3 Percepting and Mitigating Congestion

3.1 Overview of ECN-based Tra�c Signal Coordination
Intelligent tra�c light controllers can be modeled as intelligent agents, which can communicate 
with each other. Let us call them judges, for convenience, and the ones running the ECN-
protocol then will be called ECN-judges. These communicating judges form a layer in a multi-
agent intelligent system (another layers are the communication between vehicle agents and 
the communication between vehicle platoons and the intersection judges). In our research, we 
suppose that the communication is free from errors, and the agents themselves are cooperative, 
trustworthy and bona-�de.

We assume that an ECN-judge can sense somehow the formation of a congestion, and can 
inform its topological neighbors upstream about this fact by sending out an ECN-signal. If 
an ECN-signal arrives, the ECN-judge can alter its program accordingly, hence reduces its 
throughput towards the forming congestion. In any other case, judge should control the tra�c

1I.e., these protocols use some operations, e.g., dropping or reorder packets, which take advantage of the
non-material existence of data.

2Most of the people would be really angry, if they were unable to go out from their garages for a long time,
because some nearby intersections cannot receive any more vehicles at the moment.
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By solving this IP problem, a signal plan can be obtained.

3.4 Periodic Recalculation of Signal Plans

In order to ensure the periodic working of an ECN-judge, signal plans shall be recalculated
every now and then. Let us call the time between two recalculations as phase time (T ). This
time naturally depends on the number of the vehicles which currently receive a green light (Nv).
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like an actuated tra�c light controller, since it has been proved that actuated tra�c lights are 
one of the best ways [2] to optimize the �ow of the tra�c.

The tricky part is, that the state-space of a single intersection is enormous, regarding the 
incoming tra�c demand, the received ECN-signals and some traditional expectations (e.g. to 
be fair). Therefore, it seems to be impossible to store an appropriate TLS-program for every 
situation, see Appendix A. Consequently, signal plans should be generated in real-time. In the 
following sections, the components of the proposed system are described in detail.

3.2 Sensing the Formation of a Congestion

Detecting the formation of a tra�c congestion is a really challenging task. Our research did 
not focus on this particular problem, therefore we used here a simple solution.

By analyzing the data, which is supported by the loop detectors, the maximum tra�c �ow 
can be found on a speci�c edge. This tra�c �ow value corresponds to a particular level of 
occupancy of the given edge.

Above this occupancy level, we suppose the tra�c �ow will decrease, meaning that a con-
gestion is forming. Therefore, we shall avoid reaching this point, by limiting the occupancy 
level to 90% of what corresponds to the maximum �ow.

In this way, the occupancy limit is set for all edges (tra�c lanes) entering into an intersection 
that is controlled by an ECN-judge. Every now and then (i.e. ca. every 15 s) the ECN-judge 
calculates the occupancy levels (as the moving average in consecutive time windows) along these 
edges, and if somewhere the set limit is reached, an ECN-signal with congestion noti�cation is 
sent out. If the occupancy level falls below the limit, the ECN-signal informs the other judges 
that the congestion along this particular edge has been dissolved.

3.3 Generating a Signal Plan

ECN judges have to generate signal plans online. These signal plans are based on a simple round 
robin scheduling, resulting in a fair schedule for all directions. The phase times are adaptively 
set, and the plans are also in�uenced by the congestion state of the neighboring intersections, 
coupled to the intersection which is governed by an ECN-judge.

Computation of a simple signal phase when generating a tra�c light system program (TLS-
program) can be formalized as an integer programming problem (IP). Its goal is to maximize 
the number of directions which may receive a green light. The matrix of constraints de�ning 
the problem is composed from the so-called con�ict matrix of the given intersection, describing 
which directions cannot receive a green light simultaneously, due to the risk of accidents. The 
other part of the constraint matrix are the so-called additional constraints. Here the logic of 
the scheduling can be de�ned as well as the desirable reaction to the incoming ECN messages 
(i.e., describing which direction need or may not receive a green light at the moment). These 
components shall be set in accordance to the actual tra�c and ECN-noti�cations.

125



T =
Nv · 1, 5 s+ 5 s, if Nv ≤ 23

40 s otherwise
(1)

4 Extending Eclipse SUMO

4.1 Previously Developed MAS System

In our previous works [3, 4], a cooperative multi-agent system has already been implemented
by extending Eclipse SUMO [5]. This system consists of connected autonomous vehicles, the
so-called smart cars and intelligent tra�c light controllers (judges), which, nevertheless, were
not connected to each other. The smart cars and the judges were able to communicate with
each other. When the smart cars approached an intersection, they requested permission from
the corresponding judge to pass through. The judges used simple scheduling algorithm to �nd
out when this permission shall be granted.

In that earlier system, smart cars, which are following closely each other and have exactly
the same trajectories, can form groups, so-called platoons, before entering an intersection. Such
platooning method can somewhat improve the tra�c �ow by reducing the impact of changing
lanes. Another bene�t of this method is that only the leader of a platoon needs to exchange
messages with the judges, as every other member of a platoon has to follow the vehicle ahead
of it. The reduction of the exchanged messages can signi�cantly improve the performance of
the system by lowering the computational demand on the side of the judges.

The interface between the intelligent agent system extension and the base core of Eclipse
SUMO was provided by the mechanism of a device. Another modi�ed component was the
SL2015 lane change model. This modi�ed LC-model ensures that vehicles, which are forming
a platoon, can change lanes together.

As a part of our current research, the ECN-judges were integrated into this ecosystem. Since
the earlier system had been created by modifying some of the SUMO's C++ source-code, the
new ECN-judges were also implemented by directly using it and the original codes of SUMO.

4.2 Integrating ECN-judges

In the previous system, an abstract class of intelligent judges had already been de�ned, therefore
ECN-judge was implemented as a child of that abstract class. The abstract judge class uses
the concept of con�ict classes. A con�ict class is a group of vehicles which can pass through
an intersection simultaneously, which means they are equivalent, and can be treated, from a
scheduling-theory point of view, as a large single entity.

Unfortunately, con�ict classes are not entirely bene�cial when TLS-programs are generated
in real-time, because we cannot really di�erentiate vehicles into more than two classes: one
class for those vehicles which currently receive a green light, and another class for those which
do not receive a green light in a given moment. Hence, an ECN-judge has to change con�ict
classes of the vehicles when it switches phases, by e.g. removing them from the class which
receives a green light and moving them to the class which currently receives a red light. By this
method, the ECN-judges can be integrated into our previously proposed multi-agent system
(see Figure 1).

One of the most important issues was to obtain the occupancy state of those edges
(lanes) which join to the intersection which is controlled by an ECN-judge. To solve this
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Using this parameter the phase time is calculated using equation (1).
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Figure 1: Overview of the extended multi-agent system, based on Eclipse SUMO. SUMO's core
functions are interfaced by the two components colored as orange. The parts of the intelligent
agent system are colored green. The MIP-solver of Ortools is an external library, developed by
Google and capable of solving our integer programming problem.

problem, SUMO's TraCI library was used. This library contains functions (speci�cally the
libsumo::Edge::getLastStepOccupancy function) which return the current occupancy state
of a given lane. The ECN-judges use this value when calculating whether a congestion is about
to form.

The ECN-signals are transmitted as a broadcast message between the judges. As a con-
�guration input, every ECN-judge knows its topological neighbors, therefore when one of its
neighbors sends an ECN-signal, indicating a congestion, the phase plans can be changed ac-
cordingly. This modi�ed TLS-program will forcibly reduce the throughput towards the forming
congestion.

The last problem was to integrate the IP-solver component into the extended Eclipse SUMO-
based platform. The used solver is the OR-Tools Mixed-Integer Programming toolkit developed
by Google. Technically it was simple to add this package, because OR-Tools also use Cmake

build system. The performance of this toolkit seem to be convincing. As Table 1 shows, our
intelligent system can run almost exactly as fast as the original SUMO code.

Simulator Scale 1 Scale 2 Scale 5 Scale 10

Original SUMO 2841.80 1460.32 200.98 77.06
MAS SUMO 2797.78 1367.88 207.66 67.53

Table 1: Comparison of the performance of the original and the extended version of SUMO.
Real time factors, provided by SUMO, regarding the scaling of the original tra�c demand.
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Figure 2: Simulated network of BAH-intersection (left). The central part of the intersection
(right) (source: http://osm.org/#map=17/47.486/19.025).

5 Experiments

5.1 The Test-Scenario

Since banning vehicles with old combustion engines from historic city centers is a hot topic nowa-
days, we applied our system to a major intersection of Budapest, called the BAH-intersection3

(see Figure 2). To the South of this intersection the M1 and M7 highways terminate, which
presumably handle heavy tra�c much more easily, than the area to the North from BAH, which
is the historical town of Buda, or the residential areas at the eastern and western sides4 of this
intersection. Therefore, our presumption is that applying ECN-judges in this intersection would
be bene�cial in order to mitigate congestions in the inner-part of the city.

The BAH-intersection and the main roads of its surrounding were fed into Eclipse SUMO [5].
At BAH-intersection, three main roads and two smaller streets intersect at three di�erent
junction, topologically close to each other. Moreover, since most of the left turns are prohibited,
they also form a bottleneck in the simulated network. For these reasons, ECN-judges shall be
placed at these junctions, connected to each other (see Figure 3).

The simulated tra�c demand was like a typical workday morning situation (in our measure-
ments, we refer to this case as Scale 1 5). For higher demands, the number of inputted vehicles
of this original situation were upscaled by a factor of 2, 3,. . . 10.

3The abbreviation of BAH stands for the three biggest roads which intersect at this point of the city:
Budaörsi road, Alkotás street and Hegyalja road.

4There is even a natural reserve (Sashegy � Eagle Hill) on the western part of BAH intersection.
5As exact values are currently not available from the Road Agency of Budapest, an estimated number of

vehicles were used in our simulations. In the morning, the majority of the tra�c is coming from the highways
which terminate in the Budaörsi road. Signi�cant tra�c comes from the Jagelló and Hegyalja roads as well.
The most vehicles want to go East on the Hegyalja road, because it drives to one of the bridges over the
Danube. Alkotás road is a North-South corridor of the Buda-side, used by about the same amount of vehicles
in both directions. About 40% of the tra�c in our simulations went on the Hegyalja street Eastbound, and
about 20% left the city on Budaörsi street, Southbound. Budaörsi street and Alkotás street (in both directions)
handle about another 25% of the tra�c. The other 15% of our tra�c is randomly distributed among other,
not-so-typical routes.
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Figure 3: The connected ECN judges. The junctions which are colored as orange are controlled
by ECN-judges, which are connected to each other.

5.2 Simulations and their Results

Two di�erent situations were simulated. In the �rst situation, every tra�c light was controlled
by an ECN-judge (but only the central three were connected, practically speaking, the others
were functioning as simple actuated tra�c lights). In the second case, only three central,
connected judges were of ECN-type, the others were running a simple Round-Robin scheduler.
This allows us to compare the e�ect of the ECN-judges in itself, instead of comparing the results
of the intelligent multi-agent system to the results of the traditional system.

From our previous measurements [3,4], the tra�c �ow and density values were known, and
provide us with a basis for the comparison of the ECN-judge system to the unconnected, yet
multi-agent system based solutions (Round Robin (RR) based, practically behaving like an
actuated, phase-skipping tra�c light) and to the traditional solutions as well. We compared
cases when all the tra�c controllers were ECN-judges (ECN-only) (much like RR, but instead
of scheduling phases they schedule directions). In the case of ECN-mixed only the three inter-
section controllers shown on Figure 3 were ECN-type, every other intersections were RR-type.

As the results show (see Table 2 and Figure 4), at low demand levels (at Scale 1 and Scale 2),
all of the tested solutions can provide roughly the same results. Then comes a point (around
Scale 4), from where the ECN-judges can restrain the density of the tra�c, which also means
that the tra�c �ow is limited. As we scaled the tra�c demand to higher levels (Scale 8 and
Scale 10), throughput of both the traditional and the simple Round-Robin based intelligent
solution started to degrade. On the other hand, the ECN-judges were able to stabilize the
tra�c density and the tra�c �ow at a certain level, almost regardless of the actual load.

Scale 1 Scale 2 Scale 4 Scale 8 Scale 10

D Q D Q D Q D Q D Q
Traditional 22.5 1319 45.0 2617 89.2 4577 137.1 3713 138.4 1098
RR-only 24.4 1267 44.9 2477 NA NA 139.2 3352 144.7 1287
ECN-only 22.4 1211 44.8 2079 59.3 1987 77.2 2849 78.5 2750
ECN-mixed 22.4 1274 44.9 2120 71.3 2500 83.4 2957 102.8 3782

Table 2: Macroscopic parameters obtained from simulations with di�erent systems. D stands
for vehicle density in [ veh.km ] and Q stands for tra�c �ow in [ veh.h ] Unfortunately, the simulation
with only Round-Robin judges, due to a yet unknown reason, did not provide an output for
Scale 4.
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Figure 4: The macroscopic fundamental diagram, provided by the di�erent types of systems.
Systems with ECN-judges lack the degrading side of the diagram.

As we found out, that ECN-mixed case behaves slightly better than the ECN-only case, we
conducted our measurements with the ECN-mixed setup.

Our expectation might be that the travel time through the congestion-protected edges is
signi�cantly increased. This in�uences the route-decisions of the vehicles, resulting in decreased
tra�c in this particular area. Thus, on alternative routes, the number of vehicles will be
increased accordingly. To analyze the consequences, the average travel times of every vehicle
�ow were measured as a function of the number of inserted vehicles. As these empirical functions
seem to be linear (above a given amount of vehicles), simple linear regressions was �tted to the
data points. The equation of these straight line, depicted in Figure 5 can be used to analyze
the e�ects of the ECN judges on the user equilibrium.

Using the departDelay and the departPos parameters of Eclipse SUMO, the increased
probability of congestion on the incoming highways can be assessed6, see Figure 6. The depar-
ture delay somehow re�ects how much time it takes to turn on a particular edge (the greater
number means more time to wait for a �hole�, which means a denser tra�c). Moreover, the
departure position re�ects how long the congestion gets on the highways (the greater number
represents a longer tra�c jam). Surprisingly, we can see, the ECN judges create less dense
tra�c outside of the system perimeter, and in most cases, the length of the congestion is about
the same as the traditional tra�c control would be used.

Congestions dissolve periodically inside the ECN judge system. When a congestion has just
dissolved, the newly incoming vehicles will �nd really light tra�c on the roads, therefore they

6For this measurement, length of the Budaörsi street was increased to 5000 m, to model the incoming
highways.
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Finally, we did not treat pairing congestion alleviation with route deviation [16,17], or multi-
objective problems [31]. We assumed that congestion is the primary problem, and every other 
problem (related to health, safety and economics) will be almost automatically resolved, once 
congestions are removed from the city limits.

7 Conclusions

The obtained results can be interpreted that the ECN-judges e�ectively realize a tra�c signal 
coordination. The aim of this signal coordination, however, di�ers from the traditional aim of 
trying to maximize the capacity of the road network. On the contrary, ECN-judges limit the 
throughput of the network.

Within these constraints, the system can work as a simple controlled road network with 
actuated tra�c lights. If the tra�c demand reaches a certain level, this limit will not be 
exceeded. Naturally, this policy permits to form congestions on the perimeter of the system 
(i.e. outside of a city), but also ensures that the tra�c will be continuous within.

Such reduced tra�c would be really bene�cial for the residents of a city. The lack of 
extensive congestions will result in a healthier environment with less pollution, vibration and 
noise. Road safety will also be increased, therefore bike-riding or riding a scooter would become 
a more attractive alternative means of transportation.

In the future, a control algorithm shall be developed, which allows to set the tra�c limitation 
to a desired number of vehicles. As far as we know, it strongly depends on the sensing of the congestion-forming.
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A State Space of an ECN Judge

To understand the di�erence between the required amount of memory of a simple phase-skipping
tra�c light and an ECN-based tra�c light, let us suppose that we have a grid-like road network,
see Figure 7. Every intersection is equipped with the same type of tra�c controller. Now, let us
focus on a simple junction of this network. This junction is believed to be a plain, four-legged
intersection.

If this junction is equipped with phase-skipping tra�c lights, at least 4, but at most 8 phases
are enough to provide safe passing through for every vehicle. Our actions can be to skip 0, 1, 2,
or even 3 phases. This gives us the possibility to choose 0, 1, 2, or 3 phases out of four. Using
the well-known formula this means that we have

(
4
0

)
+
(
4
1

)
+
(
4
2

)
+
(
4
3

)
= 15 choices. Generally,

Equation (2) gives the number of choices, which an n-legged intersection can provide. Note
that the number of states, in this case, is proportional to 2n.

n�1∑
k=0

(
n

k

)
= 2n − 1 (2)

Now, let us consider the case of an ECN judge. As all tra�c controllers in the road network
are ECN-based, every direction can be restricted. However, it does not necessarily mean that
a phase shall be skipped. It is much more alike a supplementary green light of a traditional
system, which allows turning right, even in the time when the main lamp shows red. Therefore,
not only the phases but all the directions have to be represented in the state space.

Directions can be modeled as a (directed) graph of which nodes are the incoming and
outgoing streets. The edges of the graph represent the connections between every street. As

a complete graph, with n nodes, has n(n�1)
2 edges, we have the option to choose directions

�randomly� from this amount of possibilities. Analogously to the case of a phase-skipping
tra�c light, Equation (3) shows the required size of the state space. As we can see, it is
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Figure 7: ECN judges controls directions, instead of phases. It means, storing its program
requires exponentially more memory than a simple phase-skipping program.

proportional to 2
n(n−1)

2 which is an exponential growth compared to the traditional case.

n�1∑
k=0

(n(n�1)
2

k

)
= 2

n(n−1)
2 − 1 (3)

The controlling algorithm is likely to be realized by two components. One component is a
Look-Up Table, LUT, and the other one is a component that searches in this LUT for proper
con�guration of the �tra�c lamps�. Searching itself can be implemented powerfully, but the size
of the LUT cannot be smaller than the actual size of the state space. It means, even a four-
legged intersection would require a 63-sized LUT (compared to a phase-skipping controller's
requirement of a 15-sized LUT). If we have a greater intersection, with �ve legs, these numbers
will be 1023 and 31, respectively. An even bigger, six-legged intersection with ECN judges will
require a LUT capable of storing 32767 entries, meanwhile, a phase-skipping system would use
only 63 entries.
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