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Abstract

Until recently, SUMO users could not model the behavior of a ring-and-barrier traffic signal via
existing signal types, which left North American SUMO users without the direct ability to capture
traffic dynamics of their local networks. This work presents the meth-ods, implementation
overview, and validation of a ‘dual-ring’ NEMA style traffic controller which has recently been added
to the main SUMO code base. A brief explanation of the ‘dual-ring’ implementation is also
provided as context for those new to this type of traffic controller. The foundation for this work was
presented at the SUMO User Conference 2021 by researchers at the US Department of Energy’s
National Renewable Energy Laboratory, but was not integrated into SUMO code base at the time.
Following the initial inclusion of the controller to SUMO, the authors began validation of the SUMO
controller against an Econolite software-in-the-loop (SIL) traffic signal controller configured with
actual setup parameters from controllers in a real-world three-intersection corridor in Tuscaloosa,
Al-abama, USA. This paper documents the process of adding new features to the controller code as
well as validating their implementation through simulation-based and automated grey-box testing is
presented in this paper. Key features such as fully-actuated operation, various timing offset plans,
proper next-phase fit algorithms and more, have been added and validated against this SIL system.
Though not an exhaustive demonstration of fea-tures, this work is intended make more users aware
of this extension of SUMO capabilities.

1 Introduction

Prior to Wang, Li and Jones’s presentation at the 2021 SUMO User’s Conference, SUMO could
not capture the dynamic behavior of a standard traffic si gnal in  No rth America [7 , 4] . Users
that wanted to model a network with ‘dual-ring’ traffic signals had to  either sacrifice speed by
building a custom SIL simulation or sacrifice accuracy by approximating the dual-ring controller
in limited capacity through the existing SUMO traffic si gnal controller ty pes. The remaining
alternative for prospective SUMO users was to forgo it altogether in favor PTV Vissim, which
has a built-in dual-ring controller module, as well as an add-on package for software-in-loop
simulation with an Econolite traffic signal controller [2 ]. It is clear that a native implementation
of the control logic within SUMO’s core code base would be desirable for many current and
potential future users.

Enabled by the open-source model of SUMO, the integration of the dual-ring controller
into SUMO’s main branch allowed for the extension of its capabilities. In both literature and
practice, there are several terms used synonymously for the ring-and-barrier signal controller.
Two such terms that will be used throughout this paper are ”dual-ring controller” or ”NEMA-
type controller”, which is a reference to the National Electrical Manufacturing Association
(NEMA) Standards to which the controllers adhere. When testing the controller against an
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Econolite software-in-the-loop (SIL) controller, it became clear that the code from [7] would
have to be extended to capture the broad range of behavior possible for NEMA-based traffic
signal controllers. This paper aims to describe the process of extending the ring-and-barrier
controller presented in [7] to model additional operation modes. First a brief explanation of
the dual-ring controller is presented. This is followed by a description of the test setup /
environment which was aided by a SIL traffic signal controller. Finally, the results of validation
are presented along with a summary of current features of the NEMA type controller within
SUMO code base along with known features that may be added in the future.

2 Background

2.1 NEMA Dual-Ring Controller

Traffic signals in the United States adhere to the NEMA Standards, which enforce a concept of
rings and barriers on the traffic signal switching logic. For succinctness, only a standard, four-
way intersection is discussed below; however, the same logic can be applied to any intersection
configuration.

Under NEMA standards, a phase is used to represent a certain movement at the intersec-
tion. A phase is named by a number which is usually between 1 and 8. Conventionally, the
even numbers represent the through movements and the odd numbers represent the left-turn
movements. The right-turn movements usually share the same phase numbers as the associated
through movements. Figure 1 shows standard phase numbering for a four-way intersection. As
foundation of the control logic, there are typically two barriers, which represent the separation
between serving ‘side’ or ‘main/major’ streets [6]. The main side of the barrier is denoted as
the side that serves the most traffic volume.

Using the intersection in Figure 1 as reference, the dual-ring phase diagram can be drawn as
Figure 2. The top row in the figure comprises one ring, phases {1, 2, 3, 4}), and the bottom the
other, phases {5, 6, 7, 8}. The horizontal axis in the dual-ring diagram represents cycle-time
and the barriers are denoted by the double vertical grey lines. They must not be crossed unless
both rings move across the barrier at the same time. On either side of a barrier, the top ring
may be served with any combination of the bottom ring. For example, phases {[1, 5], [1, 6],
[2, 5], [2, 6]} are all potential combinations on the mainline side of the barrier. In the same
manner, phases {[3, 7], [3, 8], [4, 7], [4, 8]} are all valid for the side street barrier. Intuitively, it is
clear that control should not serve both main and side streets simultaneously for safety reasons

Figure 1: Typical phase numbering for a four-way intersection. Adapted from [5].
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Figure 2: Typical ring-and-barrier diagram for the intersection in Figure 1. Adapted from [5].

and thus the barrier crossings must be synchronized between the two rings. In determining
transitions, vehicle detectors are used in combination with a minimum and maximum time that
a given phase should be served, though maximum time can be extended in certain situations.

All the phase combinations presented are valid, but the NEMA controller does constrain
the transitions between states, and it depends on various manufacturer-specific settings as well
as operation mode. Two of the most common operation modes are ‘coordinated’ and ‘free’
operation.

The goal of coordination is to synchronize multiple intersections, which will ideally minimize
vehicle stops on the mainline roads. Coordination happens by enforcing a cycle length on the
NEMA controller. The coordinated phases must be served at a regular interval equal to the
cycle length, though the specifics of when and how to return to this coordinated state can
vary. Figure 3 displays a ring-and-barrier diagram for the intersection in Figure 1, with added
coordination annotations. It is important to note that Figure 3 is drawn with all phases at
their maximum duration. In coordinated mode, each phase has a maximum and a minimum
duration. Whether it lasts for the maximum, minimum or somewhere in between depends on
the vehicle extension timer, which will be explained below. The cycle length is equal to the
sum of each phase’s maximum duration plus its transition time (yellow and red time) per ring,
however it is often the case that the side street phases are not served for their maximum time.
If this happens, the additional cycle time is returned to the coordinated phases and they are
actually served longer than their ‘maximum’ duration. In this example, phases 2 & 6 are the
coordinated phases (i.e. main road through movements).

The differences between three common NEMA controller conventions are displayed in the
bubble callouts [5]. The ring-and-barrier diagram in Figure 3 has a leading left turn on the
mainline street, meaning that phase 1 is served in conjunction with phase 6 (one of the coordi-
nated phases) before phase 2 turns green. This is a more complex example than Figure 2, but it
is helpful in illustrating the different offset types. For example, TS1 style-offsets designate the
offset reference point (0 cycle time) as the time when both coordinated phases must be green,
so the offset reference point in Figure 3 is not until phase 2 turns green as well. A TS2-syle
offset designates the start of the coordinated cycle as the point when the first phase should be
green. In the case of Figure 3 below, the first coordinated phase is 6. A Type-170 style offset
sets 0 cycle time as the beginning of yellow on the earliest coordinated phase to end.

Having the offset reference point at the beginning of yellow makes the coordination easy to
identify in the field. In the case of TS1 and TS2, the offset is referenced to the start of green,
but only when all phases have been served their maximum allotted time. In the case when all
phases haven’t been served their maximum duration, the controller will return to green on the
coordinated phases before the offset point. In TS2-style controllers, the coordinated phases can
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Figure 3: Dual-ring diagram for intersection in Figure 1 displaying the 3 different t ypes of
coordination with a 100 second cycle length. Adapted from [5].

also ‘rest in green’ if there are no vehicles detected on the side streets, which further obfuscates
the coordination. While this discussion is not comprehensive, it provides some context to the
motivation for including options for each style of offset.

As alluded to above, the non-coordinated phases may vary in duration and occurrence
depending on controller settings. If phase skipping is possible, the controller can go directly
from [2, 5] to [4, 8] if there is not a vehicle detected on either the 3 or the 7 phases’ actuating
detector. If phase skipping is disabled, the controller must progress from [2, 5], to [3, 7] for
at least the minimum green time and then finally [ 4, 8 ]. T he d uration o f non-coordinated
phases can vary between the minimum and maximum green time, depending each phase’s
vehicle extension timers. Vehicle extension timers are also referred to as passage gap or passage
timers. They serve to extend a phase past its minimum green time. When a phase is active and
a vehicle crosses it’s actuating detector, the duration of the phase is extended by the extension
timer amount, as long as the addition of the extension timer to current phase duration will be
greater than the minimum phase green time and less than the maximum time.

When the NEMA traffic signal controller is used at a stand-alone intersection or where traffic
is sparse, traffic engineers will often use the controller in  ‘fully-actuated’ or  ‘free’ op eration. It
varies only slightly from coordinated operation, with the main difference being there is no cycle
length. There is also more variation allowed in phase transition, as well as the phases which
are typically coordinated ([2, 6] in case of Figure 1) being actuated. When there is infrequent
traffic on  th e si de-streets, a tr affic sign al in f ree  oper ation will  ”res t-in-green” on designated
phases (typically the mainline straight). In free operation and assuming that [2, 6] has been
served for at least its minimum time, a transition from [2, 6] to [2, 5] or [1,5] is always valid,
which is not the case in coordinated operation. During coordinated operation, a transition from
[2, 6] to [1, 5] will have to wait until the possibility of serving [3, 7] or [4, 8] is exhausted. Put
another way, [1, 5] cannot be served in coordinated mode unless the latest possible start time
of the prior phases in the sequence has past.

The target of the initial development by Wang, Li and Jones was a coordinated, Type-170
Dual-Ring traffic si gnal [7 ]. As  th is co ntroller wa s ap plied to  ot her si mulation ne tworks, it
became apparent that certain dual-ring settings and operation modes were missing. The term
‘ring and barrier’ traffic li ght de scribes on ly th e co re of  ea ch tr affic light cont roller, and does
not necessarily capture the additional functionality that each controller manufacture bundles
with the core logic.
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3 Methods

3.1 SUMO Integration

At a high level, the NEMA logic was incorporated into SUMO as a subclass of the SUMO
MSSimpleTrafficLightLogic class, and is called NEMAController. The code is located at
src/microsim/traffic lights/NEMAController.cpp relative to the SUMO repository. The
NEMAController logic fundamentally operates as a state machine, with the numbered phases
being the state space. There are sets of transition conditions, depending on the mode of
operation. Further details on the code layout are omitted for brevity.

A SUMO user indicates that a traffic light should utilize the NEMA logic by providing
type="NEMA" in the traffic light configuration file. Indicating the traffic light is of type NEMA
gives the user access to the NEMA controller settings. A typical configuration is displayed in
the code block below. Information about detectors, cycle length (if coordinated), ring mapping,
barrier phases, specific minimum/maximum and transition timing for each phase, and more.
More details of features of the NEMA controller implementation in SUMO are provided in
Section 5. There is also further explanation of the configuration parameters on the NEMA
page of SUMO’s website.

<tlLogic id="2881" offset="0" programID="NEMA" type="NEMA" offset="10">
<param key="detector-length" value="20"/>
<param key="detector-length-leftTurnLane" value="10"/>
<param key="total-cycle-length" value="130"/>
<param key="ring1" value="3,4,1,2"/>
<param key="ring2" value="7,8,5,6"/>
<param key="barrierPhases" value="4,8"/>
<param key="coordinate-mode" value="true"/>
<param key="barrier2Phases" value="2,6"/>
<param key="minRecall" value="2,6"/>
<param key="maxRecall" value=""/>
<param key="whetherOutputState" value="true"/>
<param key="fixForceOff" value="false"/>
<phase duration="99" minDur="5" maxDur="25" vehext="2" yellow="3" red="2" name="3" state="rrrrrrrrGrrr"/>
<phase duration="99" minDur="5" maxDur="25" vehext="2" yellow="3" red="2" name="7" state="rrGrrrrrrrrr"/>
<phase duration="99" minDur="5" maxDur="30" vehext="2" yellow="3" red="2" name="4" state="GGrrrrrrrrrr"/>
<phase duration="99" minDur="5" maxDur="30" vehext="2" yellow="3" red="2" name="8" state="rrrrrrGGrrrr"/>
<phase duration="99" minDur="5" maxDur="20" vehext="2" yellow="3" red="2" name="1" state="rrrrrGrrrrrr"/>
<phase duration="99" minDur="5" maxDur="20" vehext="2" yellow="3" red="2" name="5" state="rrrrrrrrrrrG"/>
<phase duration="99" minDur="5" maxDur="35" vehext="2" yellow="3" red="2" name="2" state="rrrrrrrrrGGr"/>
<phase duration="99" minDur="5" maxDur="35" vehext="2" yellow="3" red="2" name="6" state="rrrGGrrrrrrr"/>

</tlLogic>

3.2 SIL Setup

Both the development and validation of the SUMO NEMA dual-ring controller were aided
by Econolite’s EOS virtual controller. The virtual controller emulates a Econolite Cobalt or
ATC controller running the Econolite EOS signal control software. Using the virtual controller
running on local PC, configurations used by real intersections could be loaded into the virtual
controller and importantly - confidently used as a ground truth.

To compare the behavior of the SUMO controller vs. Econolite, a software-in-the-loop (SIL)
simulation framework was developed that coupled the Econolite EOS to SUMO. Similar to [1],
the SIL framework is a Python program that maps detector calls in SUMO to the Econolite EOS
and the traffic light state in the Econolite EOS to SUMO. Figure 4 depicts the SIL framework
in more detail.

Communication between the Econolite EOS and the python script uses RFC 6455, also
known as a websocket. The Econolite EOS broadcasts its traffic light state at a regular interval
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Figure 4: Schematic of the SIL framework.

and the message queue must be consumed quickly to ensure that the most up-to-date infor-
mation is used. The Econolite EOS has both a pause and a ‘step’ feature, which allows the
middleman python script to keep SUMO and the Econolite in sync.

The framework is scaleable to multi-intersection networks by running multiple instances of
the Econolite EOS software. Care must be taken as the Econolite EOS defaults to using the host
computers date-time and must be configured to match the real-world time that the simulation
begins. The Econolite EOS’s settings can be configured v ia t he P ython s cript, w hich sends
websocket messages that match user inputs on the Econolite EOS GUI. Both date and time are
important, as the EOS can have different day plans (similar to the ‘Wochenschaltautomatik’ is
SUMO’s traffic li ght lo gic). Further in formation about the Econolite implementation specifics
can be shared upon request.

Developing the SIL framework and using it as a ground-truth against the SUMO NEMA
controller was essential to enable building the additional features referenced in this paper. Sig-
nificant time was spent investigating the various Econolite EOS settings and their corresponding
responses to simulation traffic. Without coupling the Econolite EOS to the simulation, it would
have been difficult to  capture the true behavior of  many of  the features implemented and per-
haps several other features such as cross-phase switching or locking detectors would have gone
unnoticed. Again, an overview of currently features and remaining features to be implemented
are provided in Section 5.

3.3 Test Description

Validation tests for the SUMO implementation of the NEMA controller were split into two dif-
ferent categories: realistic, simulation based tests and automated fuzz testing. The simulation-
based tests show that the state machine transitions adhered to NEMA switching logic, or more
specifically t he E conolite E OS s witching l ogic. Fuzz t esting w as u sed t o s end a  b arrage of
random detector call combinations at the NEMA controller, with the intention of breaking the
logic if bugs were present.

3.4 Simulation-Based Tests
For the simulation-based tests, a calibrated SUMO network representing a three intersection
corridor of Tuscaloosa, Alabama was utilized. This was advantageous as the authors had
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access to the physical controllers in the network, and so were able to download and copy the
configurations to the virtual controllers introduced in Section 3.2. The simulation encapsulated
traffic from 7AM to 9AM on a representative work day where real-world detector logs allow for
generating simulated traffic volumes at appropriate volume per hour at all network edges.

Figure 5 shows the SUMO model of the target network overlaid on geo-located satellite
images. Each of the three intersections in the network have a different layout. The left-most
is a three-way intersection, whereas the other two are four-way intersections. The two four-
way intersections were specifically selected to test various scenarios, as each receives different
volumes on its non-coordinated (side-street) phases from shopping centers and residential areas.

Ultimately, the goal of the simulation-based tests was to match the NEMA controller’s phase
and duration to that of the SIL controller exactly. The initial efforts sparked the inclusion of
many new features to the Dual-Ring controller in SUMO and the testing was highly iterative.
As the controller in SUMO matured, comparison on a multi-intersection network scale became
possible. The results are presented in Section 4.

In the early stages the development and validation cycle, a one intersection cutout of the
three intersection network was used to drive development. Figure 5 shows this one-intersection
cutout as the intersection inside of the white-dashed box. The traffic signals impact traffic flow
and thus comparing the SIL behavior to the SUMO-native traffic lights in a multi-intersection
network is difficult unless the traffic signals operate in a very similar manner. The development
of the NEMA controller was accompanied by SUMO test cases which are available in the SUMO
repository, with the relative path being /tests/sumo/basic/tls/NEMA. Each feature added to
the NEMA controller in SUMO has a corresponding test case that subsequent changes can be
compared against, preventing regression. SUMO’s documentation provides information on how
to run each test.

3.5 Fuzz Testing

The NEMA traffic light agent interacts with the larger SUMO simulation in two fundamental
ways: detector states and simulation time. Because the simulation time is intrinsically tied to
the progress of the simulation, the behavior of the traffic light at any particular time is easy to
analyze. On the other hand, when the NEMA traffic light has some level of actuation, different
combinations and durations of detector calls are what trigger state transitions. Adding addi-

Figure 5: SUMO model of the simulated network including three intersections. Initial develop-
ment was completed with the outlined sub-network.

Schrader et al.  | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

7

https://github.com/eclipse/sumo/tree/main/tests/sumo/basic/tls/NEMA
https://sumo.dlr.de/docs/Developer/Tests.html


tional features to the NEMA controller during the iterative design process scaled the complexity
of the state transition logic. Though the simulation-based NEMA tests described in Section 3.4
give an idea of how the controllers perform under common traffic situations, they cover only a
subset of potential traffic situations. To combat the lack of test coverage, a modified method
of functional grey-box testing was employed.

There are numerous methods of grey-box testing utilized during software development. One
such method is all-pairs testing, but considering the combinatorial detector state space quickly
makes a comprehensive detector sweep unmanageable. In the same way, analyzing only ‘critical’
detector situations was considered, but designing such a test would likely been subject to the
same logical issues that the code could contain. As such, an approach similar to a comprehensive
detector sweep was employed, except the detectors on/off times and combinations were chosen
at random. In software testing, this approach is sometimes referred to as targeted fuzz-testing,
where automated tests generate random inputs to find software bugs and vulnerabilities [3, 8].

The automated detector tests were implemented using TraCI and a newly built API to
override detector calls in SUMO. Prior to running the simulation, a set of randomly generated
detector ‘on’ (corresponding to 1 vehicle on the detector) and ‘off’ (0 vehicles on the detector)
times for each detector in the network were generated by iteratively sampling from a uniform
distribution. Equations 1 and 2 below show how a series of detector calls was generated.
Starting with the detector off (Off[0] = 0), then generating first on time (On[0]), then the
second off time (Off[1]), and so on.

On[i] =
i∑

k=0

U(0, N ] + Off[k], for i = 0, 1, . . .Off[i] ≥ T (1)

Off[i] =

i∑
k=1

U(0, N ] + On[k − 1], for i = 1, 2, . . .Off[i] ≥ T (2)

U(0, N ] represents a sample of a uniform distribution between 0 and N (the cycle length).
Off and On represent vectors of simulation times where the detector should turn off and on
respectively. The summation continues until the calculated detector off time is greater than the
specified simulation time.

Assertions were added to the NEMALogic code to forcefully highlight bugs in the logic. In
fully-actuated tests, there were two basic assertions:

• Active phases must be on the same side of the barrier, i.e. in Figure 2, phases 2 & 7
should never be served together.

• Each phase must last at least as long as it’s minimum time.

In coordinated mode, an additional assertion was added which ensured that:

• The coordinated phases must be green at the start of their coordinated period.

This pass-fail logic was then applied to the tests in the SUMO repository, which include
various intersection layouts as well as combinations of configuration s ettings. The fuzz testing
was also applied to a single intersection cut-out of the network presented in Section 3.4. It
should be noted that proper testing would also sweep all combinations of user configurations.
While the authors have such tests planned, the results are not included in this paper.
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4 Validation

This section includes validation results of the SUMO NEMA Controller. Results are pre-
sented broken down into the two primary operation modes (coordinated and free) and for both
simulation-based and the grey-box fuzz testing.

4.1 Coordinated Operation

The NEMA controller was developed and extended with all operation modes in mind, but
the main target was coordinated mode. Coordination is favored by traffic engineers where
there are several intersections that are close together and is the operation mode utilized by the
target simulation network in the field. Coordination is enabled in the SUMO NEMA controller
by passing <param key="coordinate-mode" value="true"/> in the traffic light configuration
file.

4.1.1 Simulation-Based Testing

In the real network presented in Section 3.4, the three intersections operate almost exclusively
in coordinated mode, with a 20 second offset between each controller. Figure 6 presents the
result of controller development: identical response to traffic as a time history of the active
green/yellow phases and coresponding detector calls for both controllers. The SUMO con-
troller’s behavior is shown above the phase on the y-axis, and the Econolite SIL controller is
below. The dark vertical lines show the configured controller’s cycle reference-point, which is a
TS2 style offset. The offset type can be set via <param key="cabinetType" value="TS2"/>

parameter in the traffic light configuration file.
In Figure 6, there are several side street phase progressions that occur. At 3250 seconds into

the simulation, the controller progresses from [2, 6] to [3, 8] and back to [2, 6], which indicates
light traffic on the side street. At 3700 seconds, the controller goes from [2, 6] to [3, 7], then to
[3, 8], then [2, 5] and finally [2, 6]. This progression shows the ”green transfer” functionality,
as phase 3 stays green going from [3, 7] to [3, 8]. There are no detector calls on either phases
3 or 4 during this transition, so the controller behavior is to leave the existing phase (3) green.
Phase 1 is never served explicitly in this simulation period, but by analyzing the detector calls
in Figure 6 it is clear that there were no detector calls on phase 1 during transition periods.

Figure 6: Visual comparison of SUMO NEMA Logic vs. Econolite in the presence of the same
traffic demand. SUMO behavior is displayed slightly above the phase number and Econolite
EOS below. Detector calls are shown as black crosses when their duration is less than one
second and as a horizontal black line when longer than 1 second.
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While it was unreasonable to present a plot comparing all phases of all intersections, the test
will be added to SUMO as a test case, meaning that the results can be reproduced and analyzed
by all SUMO users.

In addition to looking at all 8 phases of a single intersection, it was important to verify that
all three NEMA controllers in the SUMO simulation worked together in coordinated mode. The
effects of coordination are frequently viewed through the use of space-time diagrams, which show
the effect of multiple traffic signals on traffic flow. Figure 7 presents the space-time diagrams of
two simulations: one with SUMO NEMA controllers and one with SIL traffic signal controllers.
In both Figure 7b & Figure 7a the eastbound (EB) vehicles are shown as the solid black lines
and westbound (WB) as dashed. Only phase 6 of each of the three intersections is plotted, with
the color of the horizontal line corresponding to the three intersections’ light state. The light
states are plotted at the distance each intersection is from the EB network edge.

The benefits of coordination on traffic flow are clear, with traffic progressing with constant
velocity through the network during periods of all green. Comparing the two sub-figures reveals
little to no difference, which gives the authors confidence that TS2-style offsets and coordina-
tion is working as expected in the SUMO NEMA controller. In fact, the two simulations are
indistinguishable in the period analyzed.

4.1.2 Fuzz Testing

Fuzz testing the controller in coordinated mode surfaced several bugs in the logic that have
been addressed. As an example, the algorithm which computes whether a phase will ‘fit’ inside
of the cycle time was incomplete. This becomes important with phase-skipping functionality.

(a)

(b)

Figure 7: Space-time diagram of SUMO traffic lights (a) and the Econolite traffic lights in SIL
(b) described in Section 3.4. The space-time diagrams are virtually identical.
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In addition to the phase fit algorithm, certain combinations of detector calls during a yellow to
red transition were found to cause the controller to ‘reverse’ away from a barrier, meaning that
in Figure 2, phase 8 was transitioning to 7, which should not happen in coordinated mode.

4.2 Free Operation

In free mode, the controller has more freedom than in coordinated mode, thus the SIL controller
and SUMO NEMA controller diverge more frequently, especially when the divergence of one is
propagated through the three intersections of the network under study.

4.2.1 Simulation-Based Testing

An example of differences between the SIL controller and SUMO during simulation testing of
free operation can be seen in Figure 8. As with Figure 6, the SUMO NEMA controller phases
have been plotted above the phase number and Econolite SIL below. In the first half of plotted
simulation time (3500 - 3800s), some of their behavior looks quite different such as during
the period encircled with the red-dashed overlay. Inspection of the detector calls inside of the
overlay reveal that vehicles cross the phase 6 detector in the SIL simulation around 3740 seconds
into simulation, which extends the [2, 6] phases. Those vehicles do not cross the detector in
the SUMO-native simulation, which is likely due to a difference in the upstream behavior of a
different traffic signal.

Because of a limitation in the SIL controller implementation, there is a one simulation step
delay on detector calls. This lag between SUMO detectors and what the SIL controller sees leads
to differences in the vehicle extension timer and then ultimately the phase length. Knowing the
limitations of the SIL setups and the degrees of freedom that a free dual-ring controller has,
the authors are confident that SUMO is capturing the behavior of the SIL controller correctly.

4.2.2 Fuzz Testing

As in Section 4.1.2, fuzz testing the controller in free mode also surfaced bugs. For example,
combinations of detector calls that occurred during a transition from [2, 5] to [1, 6] could
ultimately lead to the barrier being crossed by one ring and not the other. The bug was since
fixed by enforcing stricter logic on barrier cross transitions.

Figure 8: Visual comparison of SUMO NEMA Logic vs. Econolite for a select period of the
simulation. The phase are not identical, but the behavior in response to detector calls is.
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4.3 Simulation Speed

Preserving SUMO’s standalone simulation speed was one of the main goals of integrating the
NEMA controller into SUMO. As discussed, there were SIL alternatives, but SIL simulations are
slower and more resource intensive. Table 1 presents a comparison of simulation real-time factor
for the two options, which is the equivalent to simulated time

computation time . The two columns (1 Intersection

and 3 Intersections) represent the simulations discussed in Section 3.4. Each simulation was
ran with a 0.1 second step length for and lasted 6900 seconds. The route file and random seed
was the same for each 1 Intersection and 3 Intersection simulation.

Table 1: Comparison of simulation real time factor for the SIL and SUMO-native NEMA
methods.

Network Size

Controller Method 1 Intersection 3 Intersections

SIL With EOS 31.5 21.6

SUMO NEMA 205.2 180.0

While it’s not a comprehensive simulation speed test, the brief comparison of the Econolite
SIL simulation presented in Section 3.2 against the built-in NEMA controller makes the speed
penalty of the SIL implementation clear. With three intersections, the standalone SUMO
simulation has a real-time factor of 180.0, which is roughly 8.5x faster than the same SIL
simulation. The one intersection simulation is 6.5x faster in standalone mode. The ratio
between SUMO-standalone real-time factor and the SIL real-time factor will continue to increase
as intersections are added to the simulation network.

5 Conclusions and Future Work

As this paper has shown, the authors have attempted generality in their implementation of
the NEMA controller. Care was taken to test against multiple configurations and intersection
layouts. At the same time, the only virtual traffic signal controller available to  the authors was
the Econolite EOS and thus there is potential that the SUMO integration is ‘overfit’ t o the
Econolite EOS traffic signal controller software.

Table 2 presents some of the features implemented, as well as features that may be useful
for other users but have not been implemented yet.

The authors are hopeful that the SUMO community will see the newly-integrated controller
as a big step forward for North American users and will be willing to contribute to the code-base
or reach out to the authors when they see a missing feature. In addition to the features not
included in Table 2, one of largest outstanding tasks at the time of writing is to incorporate
the NEMA controller configuration into netedit.
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Table 2: Coverage of NEMA-type controller settings

Feature Included Notes

Green Rest Econolite Implementation

Green Transfer Econolite Implementation

Fully-actuated

Latching Detectors Basic Implementation

Cross-phase Switching Econolite-style Implementation

Detector Delay

Detector Lock-In Time

Phase Recall Min/Max Recall. Detector Recall Missing

Fix/Float Force Off Bool on/off, not per phase

Dual Entry

Red Revert

Type-170 Offset

TS1 Offset

TS2 Offset
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Abstract

Traditional methods for traffic signal control at an urban intersection are not effective in
controlling traffic flow for dynamic traffic demand which leads to negative environmental,
psychological and financial impacts for all parties involved. Urban traffic management is a
complex problem with multiple factors affecting the control of traffic flow. With recent
advancements in machine learning (ML), especially reinforcement learning (RL), there is
potential to solve this problem. The idea is to allow an agent to learn optimal behaviour to
maximise specific metrics through trial and error. In this paper we apply two RL algorithms,
one policy-based, the other value-based, to solve this problem in simulation. For the simulation,
we use an open-source traffic simulator, Simulation of Urban MObility (SUMO), packaged as an
OpenAI Gym environment [3, 9]. We trained the agents on different traffic patterns on a
simulated intersection [24]. We compare the performance of the resultant policies to traditional
approaches such as the Webster and vehicle actuated (VA) methods. We also examine and
contrast the policies learned by the RL agents and evaluate how well they generalise to different
traffic patterns.
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1 Introduction

Traffic li ght in tersections ar e re sponsible fo r di recting la rge vo lumes of  tr affic flow,  making
their optimal control critical. Negative environmental, psychological, and financial impacts are
associated with traffic bu ild up , re sulting fr om in efficient cont rol [14]. Curr ently, traffic lights
predominantly use control methods which require resource intensive configuration[18, 1 5]. This
configuration r equires a  l arge a mount o f e ngineering h ours, m aking t hese s ystems c ostly to
implement and maintain [5].

To improve financial viability, we propose a  low-cost control system that can obtain similar
or improved functionality in an automated manner. This system is implemented using an RL
agent that can be trained in a simulated environment, thereby removing the need for costly con-
figurations. Practically, implemented systems predominantly control a  single i ntersection. Our
approach is trained and tested on a single intersection, providing a low maintenance alternative
to current solutions.

The promise of using RL for the application of traffic light control has been demonstrated in
previous research predominantly utilising Deep Q-learning [24, 1, 8]. There has been emergent
research into using proximal policy optimisation (PPO) due to its ease of implementation and
encouraging results [12]. The main focus of this paper is to directly compare Deep Q-learning
and PPO on the traffic li ght op timisation ap plication. A comprehensive comparison is  com-
pleted by evaluating the method’s policy performance, not only in terms of average performance,
but also the robustness of the chosen strategy.

For direct comparison to current implementations, our achieved results are compared to
traditionally used methods on a simulated intersection. These traditional methods include a
gap-based actuated setup, a time-loss actuated setup, and a fixed-time approach which makes
use of the Webster equation [17, 2].

2 Related work

Traffic signal timing optimisation is  a complex task which necessitates a high level of  expertise
in the industry. Many methods varying in complexity have been developed for this application.
Despite much work on the development of these methods, even more sophisticated methods
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struggle to accurately predict traffic operation at intersections. This difficulty is due to a wide
variety of influencing factors.

A commonality across methods is the evaluation of the model’s performance. The perfor-
mance can be quantified by using either a performance index or a measure of the level of service.
These are generally calculated using metrics such as number of vehicle stops at the intersection,
vehicle delay etc.

Traditionally used methods can be split into two types: actuated and fixed-time approaches.
Both methods have limitations: actuated approaches perform best at isolated intersections and
fixed-time approaches are unable to dynamically respond to unexpected increases in traffic.
These limitations have opened up new research branches into adaptive methods and RL which,
whilst still new, show much promise for this application.

2.1 Fixed-time control

There are several methods for controlling the timing of traffic signals which require manual
configuration. Fixed-time methods fall into this category where cycle stages of the different
traffic light phases are set ahead of time and once set their operation will not deviate. In order
to set the cycle stages different evaluations can be used, the most common one is based on an
equation developed by Webster [22]. His formula can be used to calculate the optimal cycle
length that would minimise the total delay at an intersection

Co =
1.5 · L+ 5

1−
∑

Yi
, (1)

where Co is the optimum cycle length in seconds, L is the total lost time per cycle in seconds,
and Yi is the volume/saturation flow ratio per critical movement in stage i.

Webster further elaborates on the fact that the equation’s proposed cycle lengths have some
leeway. Cycle lengths chosen within the range of 0.75Co to 1.50Co should not significantly
increase the delay. Although robust to small deviations in the cycle length, this equation is
very sensitive to the accuracy of the metrics of lost time and saturation flow given to the
equation. It further is unable to account for pedestrian traffic.

2.2 Vehicle-actuated control

Vehicle-actuated approaches allow for deviation in their response based on how many vehicles
are detected as well as pedestrian buttons pushed [20]. This deviation in cycle times allows for a
more tailored approach to current traffic patterns. When at an isolated intersection where traffic
follows a more sporadic pattern, vehicle-actuated control can provide considerable reductions
in delay when compared to fixed-time approaches [13]. This is due to the fact that fixed-time
approaches cannot readily adapt to the randomness in vehicle arrivals.

To implement such an approach, first a fixed-time approach is established; the actuated
control strategy can then extend the set cycle times if there are queues at the receiving green
lanes. If these queues were cut off too soon by a red light, the overflow of vehicles would have
to be discharged at the next green light, causing delays. The queues can be established by
measuring the gap between vehicles, if there is a long gap between vehicles it is an indication
that the queue has been discharged.
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2.3 Reinforcement learning

Adaptive controllers, for example split cycle offset optimisation technique (SCOOT) and Sydney
coordinated adaptive traffic (S CATS), ha ve be en sh own to  im prove up on ac tuated methods,
however the difficulty of the initial manual tuning process still remains resource consuming and
costly [6, 10, 18]. Both the advancements in computational methods and amount of traffic data
stored have made reinforcement learning (RL) a feasible solution to the problem. Since RL can
be trained in a simulated environment, it removes the initial costly barrier.

RL has the ability to learn optimal control in dynamic and uncertain environments [19]. This
ability makes it well suited to the traffic light optimisation problem which needs to dynamically
react to changing traffic pa tterns. Across emergent research into this approach the traffic light
simulation tool, SUMO, has been used to train and evaluate implemented RL systems [24].

A relatively simple approach is to apply tabular RL methods to this problem [21]. Although
effective on smaller case studies such as single intersections, these methods do not scale well to
problems with larger state spaces. When we apply RL to our application, the state space of
more complex intersections becomes far too large to represent with a table [23]. The solution
to addressing the large state space lies in interpolation and approximation – being able to use a
small subset of states to generalise and make decisions over a much larger subset. This can be
achieved by using function approximation to approximate the value function, allowing problems
with high-dimensional state spaces to be solved. Various function approximation techniques can
be used in combination with RL, but recently artificial neural networks (ANNs) have become
the commonly method used to represent value functions and policies. The combination of ANNs
and RL is known as deep reinforcement learning (DRL).

Deep Q-learning is a popular DRL algorithm that utilises an ANN in conjunction with Q-
learning [11]. The resultant model is known as a deep Q-network (DQN). The benefits of using
a DQN are highlighted by Wei et al [24]. These authors develop a DQN for the purpose of
optimal traffic control, the DQN is  improved by  implementing state-of-the-art techniques such
as experience replay (ER) and a target network. Their paper further investigates how robust
the DQN is to different t raffic pat terns. They suggest that fur ther improvement can  be made
to the performance of the DQN in terms of convergence and stability.

Another popular RL approach is using policy-based methods. Traditional policy-based
methods tend to destabilise if not constrained. Trust region policy optimisation (TRPO) meth-
ods were developed with the aim of solving this problem by restricting the magnitude of the
changes allowed to be made to the policy. PPO is an emergent method which has all the same
benefits as TRPO methods, with the added advantages of easy implementation and better sam-
ple complexity. This method is also data efficient, as  it  is  ab le to  ru n mu ltiple ep ochs on  a
single sample and has been shown to outperform other policy gradient methods on applications
such as Atari [16]. Mousavi has demonstrated that PPO can achieve comparable results to a
DQN in the context of traffic light optimisation, making it a promising area for further research
[12]. This paper makes a direct comparison between the two methods in terms of robustness
and strategy implementation to help formulate the direction of future research.

3 Experimental setup
The traffic li ght in tersection is  si mulated us ing Si mulation of  Ur ban MO bility (S UMO), an
open source traffic simulation package [9 ]. The intersection geometry and traffic patterns used
to simulate the simple intersection used for our experiments are described in Sections 3.1 and
3.2. Phase changes can be made in the simulation to directly control the generated traffic; these
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phase changes are detailed in Section 3.3.

3.1 Intersection layout

SUMO was used to simulate the intersection used in Wei et al’s paper which can be visualised
in Figure 1 [24]. This simulated intersection was used to both train and test the RL agents, as
well as test the traditional methods used as benchmarks.

Figure 1: The intersection geometry used throughout this paper [24].

3.2 Traffic patterns

Four different synthetic traffic patterns are employed by Wei et al. to capture the spatial-
temporal aspects of urban traffic [24]. The four traffic patterns were simulated in the SUMO
environment, and include:

• A traffic distribution which simulates higher traffic flow patterns on the major roads over
the minor roads (P1).

• A traffic pattern which simulates higher traffic flow on the left-turn lanes over the through
lanes (P2).

• A tidal traffic pattern, where two perpendicular lanes have higher traffic flow (P3).

• Time based varying traffic patterns, where one of the major lanes has time varying traffic
patterns, where the other lanes kept a steady traffic flow (P4).

These synthetic traffic patterns were generated using a binomial distribution with the arrival
rates specified in Table 4. Since all these are feasible traffic patterns, the methods were tested
on all four patterns. Testing on the different traffic patterns gives us a more complete idea of
how the agent operates.

3.3 Traffic light phase definitions

Phase changes in the simulation can be made to directly control the generated traffic; these
phase changes are detailed in Section 2. The links between lanes represent the possible directions
a vehicle can take from a given lane. If the link is green the vehicle can move through the green
link and leave the intersection. If the link is red the vehicle will have to wait for a phase change

5
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where the corresponding link is green. Purple links indicate a stop for right turning vehicles.
These vehicles may turn right when it is safe to do so.

1: srrrsrrGsrrrsrrG 2: srrrsrrrsrrrGGGG 3: srrrGGGrsrrrGGGr 4: srrrGGGGsrrrsrrr

5: srrGsrrrsrrGsrrr 6: srrrsrrrGGGGsrrr 7: GGGrsrrrGGGrsrrr 8: GGGGsrrrsrrrsrrr

Figure 2: The phase definitions of the intersection [24].

A yellow time between consecutive green phases is implemented. This entails turning all
green links yellow for a specified t ime b efore switching to the next p hase. In order to prevent
the agent from making rapid changes between phases a minimum green time is implemented
where the agent is forced to wait a predefined duration before being able to make another phase
change. The parameters used for the simulation are shown in Table 3.

4 Methodology

One goal of this study is to develop a policy for dynamically controlling the traffic li ght that
optimises flow at the intersection described in Section 3 . To control the t raffic light optimally
requires efficient decision making regarding phase ch anges. This requires careful consideration of
how the problem should be structured in order to apply RL techniques such as Deep Q-learning
and PPO.

4.1 Reinforcement learning approach
In order to apply RL, the traffic li ght op timisation pr oblem sh ould be  fr amed as  a Markov
decision process (MDP). The MDP can be referred to as the environment, where the state
of the environment consists of the current traffic co nditions an d ph ase of  th e tr affic light.
Furthermore an agent can interact with the MDP by performing actions in the environment.
In this case, the set of actions available is phase changes of the intersection (as detailed in
Section 3.3). By taking actions which change the phase of the traffic light the agent is  able to
directly affect the traffic flow. After an action (phase change) has been implemented a reward
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is returned to the agent. The reward signal can be set up based on the exact objectives of the
intersection and serves as indication of how well the agent is performing. The goal of the agent
is to accumulate the largest possible return (sum of rewards) over time. Figure 3 illustrates the
interaction between the agent and the environment. In this case the environment is a SUMO
simulation wrapped in a Gym wrapper. The wrapper allows the agent to treat the environment
like any other Gym RL environment, enabling quick changes to both agent and intersection.

Agent

Sumo Gym

reward
rt

observation
ot

rt+1

action
at

ot+1

Figure 3: The interaction between the agent and Sumo Gym environment. At each time
step the agent receives a reward rt and observation ot. The agent performs an action at in
the environment based on the observation received. In return the environment returns a new
observation ot+1 and reward rt+1. The interaction between the agent and environment is
recurrent.

With the problem framed as an MDP, different RL techniques can be used to solve the
problem of finding an optimal decision path through the environment. Q-learning is a popular
value-based RL method that learns the value function of an optimal policy. By recurrently
alternating between estimating the Q-values of the current policy and improving the policy
by acting greedily with respect to the estimated Q-values, the agent indirectly moves towards
an optimal policy. The greedy policy can be followed by choosing the action with the highest
Q-value in each state. Q-learning is classified as a value-based method since it requires a value
function to be estimated.

In contrast to Q-learning, policy gradient (PG) methods aim to improve upon a policy
directly. Instead of predicting the value of an action, the agent directly predicts the action(s)
that will yield the most return (the sum of the rewards). Schulman et al. [16] state that
improvements are made to the policy by updating the policy in the direction of a calculated
gradient

ĝ = Êt[∇θlogπθ(at|st)Ât]. (2)

The advantage Ât is an indication of how much better the true value of being in a state st given
the current policy πθ is compared to an estimated value. If Ât is positive it means the value
was underestimated and the probability of taking that action in the policy is increased.

Making large steps based on these calculated gradients can lead to the policy becoming
unstable and diverging. To mitigate against this, PPO aims to keep deviations from the previous
policy small by clipping them to ensure stability. Since the updated policy will not differ too
significantly from the previous policy there will be lower variance when training.
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4.2 Agent observations

The observations returned by the environment have a significant effect on the agent’s perfor-
mance. This is because the agent’s actions are based on the observations it receives. For
example if the environment is only partially observable, it cannot be classified as an MDP and
presents new challenges to the agent.

The environment used in this study can be easily modified by using wrapper functions, by
allowing for the information returned by the environment to be adapted to suit the applica-
tion’s specific requirements. In our experiments we made use of an observation wrapper which
returned a vector of queue lengths for each lane [24]. The queue lengths are determined by
the number of halting vehicles. SUMO defines a halting vehicle as a vehicle moving at a speed
≤ 0.1 m.s−1 [9]. After the wrapper has been applied the observations returned to the agent
take the following form

ot =
[
q1t q

2
t · · · q12t

]T
, (3)

where qit is the queue length (or number of halting vehicles) in lane i at time step t. Furthermore,
the cardinality of the observation space is |ot| = 12, since the intersection in Figure 1 has 12
incoming lanes.

4.3 Reward function

The reward function is a crucial component when solving an RL problem. It specifies the metric
that the RL agent will strive to maximise in the long run. It is therefore critical to design the
reward function to align with the goal the designer wants the agent to achieve. Sutton et al.
advise against implicitly encoding domain knowledge into the reward function, as this may
cause the agent to learn behaviour that results in a large reward without achieving the desired
goal [19].

For this reason, we kept the reward function as simple as possible. Our reward function
gave the agent a penalty (negative reward) for the aggregate of the waiting time of vehicles at
the intersection [4]. The reward at a time step can be calculated using

Rt = −
n∑
i

wi
t, (4)

where n is the number of vehicles halting at the traffic light and wt
i is the waiting time of vehicle 

i at time step t. The waiting time of a vehicle only starts when it begins to halt i.e. when its
speed is below 0.1 m.s−1. Since a vehicle’s waiting time is correlated with delay, by maximising 
this reward we direct the agent to learn how to reduce delays.

4.4 DQN implementation

Since traffic light optimisation is complex, the state space of the environment becomes extremely
large and calculating a value for every possible action-value pair becomes infeasible [24]. To
account for this an ANN can be used to approximate the action-value function resulting in
a DQN. When using an ANN in conjunction with the off p olicy Q -learning a lgorithm, some
instabilities occur. RL works in a sequential manner, therefore observations are highly corre-
lated. This conflicts with t raditional supervised l earning where data s amples a re independent
and identically distributed (IID). In order to address this issue an experience replay (ER) buffer
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is utilised. As the agent steps through the environment it stores its experience in the replay
buffer. The agent then samples random mini batches from the buffer to train the DQN. The
second problem is that the targets used to update the DQN are not stationary. This is because
the DQN self is used to compute its targets. As a result, as the DQN’s weights change, so do
the new target values. To address this, a frozen copy of the DQN is created, known as the
target network. The target network is now rather used to compute the agent’s targets. The
parameters of the target network are held constant and only updated to the new parameters
after a set period [11]. This further helps to stabilise training.

The ANN was set up as follows, the network was made up of two hidden layers with 64
neurons in the first layer and 32 in the second. The activation function used was rectified linear
unit (ReLU) after each hidden layer. The networks were trained using an adaptive moment
estimation (Adam) optimiser, an extension of stochastic gradient descent (SGD), which has
been shown to work well for problems which are noisy [7]. The hyperparameters used can be
found in Table 1.

Hyperparameter Value
Replay memory size (M) 10000
Mini-batch Size (B) 128
Starting (ε) 0.9
Ending (ε) 0.05
Target network update interval (∆T ) 1800
Discount factor (γ) 0.999
Learning rate (α) 0.01

Table 1: Hyperparameters used for DQN

4.5 PPO implementation

To adapt PPO to the complex environment, two separate ANNs where created. The first
ANN was used to capture the policy by outputting a probability distribution over the agents’
actions. The second network was used to estimate the state action value function. The same
architecture was used for both of the networks. The networks were setup with an input layer
with the number of neurons equal to the number of lanes in the observation, two hidden layers
containing 128 neurons and an output layer where each neuron represents a possible action.
The hyperparameters used are outlined in Table 2.

Hyperparameter Value
Clipping parameter (ϵ) 0.2
Mini-batch size (B) 32
GAE parameter (λ) 0.95
Num epochs 4
Horizon (T) 128
Learning rate actor (αa) 2.5× 10−4

Learning rate critic (αc) 2.5× 10−5

Table 2: Hyperparameters used for PPO
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5 Experiments and results

In this section we evaluate the performance of the PPO and DQN agents across the four traffic
patterns defined by Wei et al. [24]. Furthermore, we compare the performance of the RL
approaches discussed above to three benchmarks: gap-based actuated, delay-based actuated,
and Webster. The parameters for the gap-based and delay-based traffic lights are set to the
default values found in SUMO, as shown in Table 7 and Table 8, respectively. The configuration
for the Webster traffic light using the parameters in Table 5 results in the timings shown in
Table 6.

The gap-based actuated traffic light is implemented by SUMO [9]. This method entails
to prolong the green time of any phase whenever a continuous stream of traffic is detected.
The gap-based implementation of SUMO also supports dynamic phase selection. This entails
assigning priorities to different phases of the traffic light depending on various factors. The
phase with the highest priority is then selected as the next phase of the traffic light.

The delay-based actuated traffic light prolongs the current green phase if there are vehicles
with accumulated time loss. A vehicle’s time loss begins as soon as it enters the detector range.
If the accumulated time loss exceeds the minimum time loss value, the corresponding green
phase is requested to be extended if it is active. The instantaneous time loss of a vehicle is
defined as

1− v

vmax
, (5)

where v is its current velocity and vmax the allowed maximal velocity.
We trained each RL agent for 200 episodes on each of the four traffic distributions P1

through P4 (see Table 4). Each episode consists of 1800 simulation time steps, where each
time step is equal to one real-time second. All experiments are seeded with the same seed to
ensure that all agents are presented with the same traffic and initial policies. After training,
we evaluate the eight trained agents (4 PPO, 4 DQN) on each of the four traffic distributions
using a different seed than used during training. This results in 32 total agents being evaluated
(16 PPO, 16 DQN).

For the benchmarks, there is no training involved and as such we only evaluate them once
using each of the four traffic distribution resulting in 12 benchmarks - 4 actuated, 4 delayed
and 4 Webster.

SUMO, [9], offers a plethora of output statics which we generated at the end of each testing
episode in order to gain an understanding into the workings and efficiencies of the benchmarks
versus the DQN and PPO RL agents.

5.1 Performance during training

We present three metrics: vehicle waiting time, mean queue length and mean speed to evaluate
the performance of each agent over consecutive training episodes. These metrics are defined by
SUMO [9], as:

• Waiting time: The time in seconds which the vehicle speed was below or equal 0.1 m.s−1

(scheduled stops do not count).

• Speed: The mean speed of all vehicles in the network in m.s−1.

• Queue length: The mean queue length of all lanes in meters.

To ensure that our agents do indeed converge, we ran the training process 10 times, each time
seeding the traffic and agents with a different seed. The results is the learning curves of in
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Figure 4, Figure 5 and Figure 6, with the line showing the mean across the 10 runs, and the
shaded area indicates a 95% confidence interval.
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Figure 4: The average vehicle waiting time of DQN compared to PPO over training episodes.
Since the goal was to minimise waiting time, this also serves as a proxy for the learning curve.
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Figure 5: The mean queue length of DQN compared to PPO over training episodes.
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Figure 6: The mean vehicle speed of DQN compared to PPO over training episodes.
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For all three metrics it is clear that the DQN agent convergences much faster to a stable
solution compared to the PPO agent. Further, the PPO agent seems to have a few runs that
become unstable after the 130 episodes mark on traffic pattern P4. Why this is we leave for
future work and for the remainder of this paper we use both a DQN and PPO agent that
remained stable during the entire training process.

In addition to policy performance, we measured the computational cost of training the
various agents. We present similar figures to those shown above, but this time they are plotted
over relative training time. All agents were trained on AWS using ml.m5.large instances. As
illustrated in Figure 7, both the DQN and PPO agents learn a high-performing policy in a
matter of minutes.
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Figure 7: The mean queue length of DQN compared to PPO over relative training time. Both
agents converge to optimal policies in a few minutes of training.

5.2 Performance comparisons

To evaluate the two RL agents against the three benchmark agents, we zoom in on the distri-
bution of the waiting time, speed and queue lengths. Using SUMO’s output functionality, we
are able to export the waiting time and speed for each vehicle and the queue length for each
edge at each second during the simulation.

5.2.1 Waiting time at the intersection

Figure 8 shows the distribution of speed for each of the three benchmarks. From the figure it is
clear that the Webster algorithm performs the worst of the three benchmarks against all four
test traffic patterns which is  expected as  it  is  unable to  adapt to  any dynamic traffic patterns.
The delay-based method outperforms the gap-based method on all the traffic patterns except
P4. This can be explained by the varying nature of the P4 traffic which the actuated method
can handle effectively in a manner which reduces the tail (max waiting) of the distribution.
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Figure 8: Vehicle waiting time distribution for 25 episodes across 4 traffic distributions for 3
benchmarks: Webster, delay and actuated.

Figure 9 shows the waiting time distribution of the DQN RL agent for all 16 combination
of train-test traffic pairs. The waiting time distribution appears to be invariant to the traffic
which the DQN agent is trained on, except for a slight benefit when training and testing on
the same traffic for P3 and P4 respectively. This is expected for the more varying traffic as the
agent has seen both regimes of traffic during training.
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Figure 9: Vehicle waiting time distribution for 25 episodes for 4 test traffic patterns and 4 train
traffic patterns for DQN.

Figure 10 shows the waiting time distribution of the PPO RL agent and tells a similar
story to the DQN RL agent with the agents tested on the same network they were trained on
performing slightly better compared to the other trained traffic patterns, but overall, all agents
perform well and no cars have a waiting time greater than 100 seconds.
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Figure 10: Vehicle waiting time distribution for 25 episodes for 4 test traffic patterns and 4
train traffic patterns for PPO.

Figure 11 compares the 3 benchmarks to the DQN and PPO agents trained and tested on
the same traffic pattern. From the graph it is apparent the benefit of using the RL agents.
They are adapting to the traffic demands, bringing the tail end of the waiting time distribution
in to around 50 seconds. In other words, if the RL agents are used, there are no cars waiting
at the intersection for longer than 50 seconds. According to Figure 11, the RL agents perform
very similarly.
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Figure 11: Vehicle waiting time distribution for 25 episodes across four test traffic patterns
comparing benchmarks with the two RL agents.

The speed and queue lengths distributions show similar results to the waiting time distri-
bution with the RL agents outperforming all the benchmarks. Figure 12 and Figure 13 show
the two best RL agents (trained and tested on the same traffic) against the three benchmarks.

Figure 12 shows that for the benchmark agents there are more vehicles reaching higher speeds
compared to the RL agents. However, there is a significant amount o f c ars t hat h ave speed
less than 3 m.s−1, whereas the RL agents’ speed distributions are more uniformly distributed 
serving all cars more equally.
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Figure 12: Vehicle speed distribution for 25 episodes across 4 test traffic patterns comparing
benchmarks with RL agents.

Figure 13 provides another lens on the performance of the RL agents, showing the distri-
bution of queue lengths for the three benchmarks and the two RL agents (trained and tested
on the same traffic). From the graph it is clear that the RL agents are outperforming the
benchmark agents as the RL agents are able to clear the lanes well before they fill up to their
maximal capacity of 150m.
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Figure 13: Lane queue length distribution for 25 episodes across four test traffic patterns
comparing benchmarks to RL agents.

5.3 Trained policies

In this section we attempt to analyse the policy each of the benchmark and RL agents followed
when being presented with a particular traffic pattern. In the case of the RL agents, how
the policies are affected when trained on the various traffic patterns P1 through P4. We gain
insights into the trained policies by looking at two different metrics namely the percentage time
spent in a phase over the 25 episodes and the number of times an agent switched from one
phase to another over the 25 episodes (phase transition matrix).
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5.3.1 Percentage time spent in a phase

In order to condense the eight dimensional action space of the agents into a graph we us polar
plots shown in Figure 15 with their legend shown in Figure 14. The polar plots compare the five
agents against each other using the defined polar plot legend. The percentage time an agent
spends in the different phases during testing determines the shape of the polygon. The further
the vertex is from the centre, the longer the agent spent in that respective phase. This allows
us to see insights such as if certain phases were favoured or ignored in the policy.
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Figure 14: Policy polar plot legend.
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Figure 15: Percentage time spent in each state per agent per test-train traffic over 25 testing
episodes.

From the emergent patterns in Figure 15 it is clear that the DQN and PPO agents have
very different policies when it comes to optimising a given traffic set. This is evident by the
different shaped polygons indicating the different policies favoured different states. A few note
worthy patterns from Figure 15 are:

• The bird-like pattern the DQN policy has when trained on traffic P3 and P4 and tested
on traffic P2.

• The kite-like pattern the PPO policy has when trained on traffic P1, P3 and P4 and
tested on traffic P2, as well as when trained on traffic P3 and P4 and tested on traffic P1.
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• The similarities in policies between the DQN agent and the benchmarks when the test
and train traffic is P2.

All three of these cases are tested on the P2 traffic pattern which in cludes higher demand
turning traffic. Th is hi ghlights th at in creased tu rning tr affic dema nds crea tes a significant
change in the policy.

The bird-like pattern the DQN has when trained on traffic P3  and P4  and tested on  traffic
P2 can be explained by looking at the four phases the DQN agent visited most, namely: 0, 2,
4, and 6. Referencing Figure 14 we can see that these four phases allow the agent to switch for
traffic on  the main N-S route (phase 2) , the E-W route (phase 6) , the W-E route (phase 0)  as
well as having a dedicated turning phase (phase 4) for the E-W/W-E routes. Objectively, the
bird-like policy of the DQN makes sense, as favour using these phases should allow an agent to
address most traffic patterns.

The bird-like policy of the DQN is in stark contrast to the kite-like policy the PPO agent
learnt. If we take a closer look at which phases the PPO agent favoured: 0, 3, 5 and 6, we can
see that two of these overlap. Both agents require phase 0 and 6 to clear the E-W/W-E traffic.
However, the difference b etween t he PPO a nd DQN a gents i s e vident i n t he way which they
clear the N-S/S-N traffic, the PPO instead ut ilises phase 3 and 5 instead of  phase 2 the DQN
uses. Again, considering that both these RL agents performed equally well for our metrics and
outperformed the benchmarks, it is clear that there are multiple optimum policies for a given
intersection and traffic pattern.

Lastly, looking at the similarities between the DQN agent and benchmark agents when the
train and test traffic both equal P2 , we  can se e that the RL  agents es timate the benchmark’s
policies under certain conditions. However, the DQN agent is able to put less of a dependency
on phase 0 and 6 and clear the turning traffic demand more efficiently using phase 4. Whereas,
the PPO agent resorts to using phase 3 and 5 for the N-S/S-N demand and in contrast to the
DQN and benchmarks, uses phase 1 for the E-W/W-E demand instead of phase 0 and 6.

The waiting time, speed and queue length graphs from Section 5.2 showed comparable
results across all policies. It is interesting to see that similar results can be achieved with such
varied policies. It also highlights the significance o f u sing s uch v isualisations t o e valuate the
policies.

5.4 Phase transition matrices

The policy polar plots introduced in the previous subsection, are a useful insight into the policies
in terms of where the agents spent their time. To gain further intuition into the policies we look
into how the policies transition between the different p hases. This can be visualised in Figures
16 through 20. These figures show the number of t imes each agent moved f rom one phase (on
the x-axes) to another (y-axes) during the 25 episodes during testing.

We begin by introducing our baseline algorithms which are used as comparison for the
RL agents. The phase transition matrices are shown for the three baseline methods namely
Webster, delay-based and vehicle-actuated. The matrices can be visualised in Figures 16, 17
and 18 respectively.
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Figure 16: Number of times the traffic light switch from one phase (x-axis) to another (y-axis)
over 25 episodes for the Webster algorithm.
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Figure 17: Number of times the traffic light switch from one phase (x-axis) to another (y-axis)
over 25 episodes for the delay-based algorithm.

The first thing to note is the is the diagonals formed for the Webster (Figure 16) and delay-
based (Figure 17) agents. These diagonals form as both these agents have a fixed sequence
which they are allowed to use, so each phase is always followed by a particular other phase.

The delay-based method uses shorter minimum green times which can be extended dynami-
cally as traffic patterns change. Since the Webster method has static phase timings not allowing
for such extensions it’s green time is set to a longer time period. This difference is illustrated in
Figure 17 where the delay-based benchmark has higher counts (demonstrated by the brighter
squares) than the Webster benchmark.
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Figure 18: Number of times the traffic light switch from one phase (x-axis) to another (y-axis)
over 25 episodes for the gap-based actuated algorithm.

The phase transition matrix for the gap-based actuated benchmark shown in Figure 18 shows
that this benchmark is indeed able to dynamically select the next phase and in our configuration
we’ve allowed it to choose any phase. There is little similarity between the the phase transition
matrices of the gap-based actuated benchmark and the phase transition matrices of the DQN
and PPO agents. This implies that the RL agents learned their own policies and did not learn
a strategy similar to the conventional gap-based benchmark.
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Figure 19: Number of times the traffic light switch from one phase (x-axis) to  another (y-axis)
over 25 episodes for the DQN agent.
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Finally, we compare the phase transition matrices of the DQN and PPO agents, shown in
Figure 19 and Figure 20 respectively. We can see that these agents approach the task at hand
in vastly different ways. The DQN agent is much more ”soft” with its transition, utilising
all phases, whereas the PPO agent transitions between a subset of all phases and completely
ignores some phases. This comes as a surprise as the PPO agent has the more probabilistic
architecture, sampling from its sample space instead of making a hard prediction like the DQN.
However, it appears from the phase transition matrices that these sampling distributions of the
PPO quickly converge with very low variability around the sampling distribution.
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Figure 20: Number of times the traffic light switch from one phase (x-axis) to another (y-axis)
over 25 episodes for the PPO agent.

It is also worth noting the patterns that emerge from the PPO’s phase transition matrices
across trained traffic patterns (same rows have same patterns). They suggest that the PPO
agents overfit on the traffic pattern it has seen in training and struggles to generalise well to
unseen traffic, only utilising the transitions it learnt during training. Whereas the DQN agent
appears to generalise better across both training and testing, not favouring any transitions, but
rather using all transitions to achieve the desired phase. For example when agents trained on
traffic pattern P2 (which included a larger volume of left turning traffic) were tested on other
traffic patterns, the agents tended to favour phases which allowed for the flow of left turning
traffic. Even when tested on other traffic patterns, this agent is trained to optimise flow for
this specific traffic pattern and tends to favour the phases that serve the left turning vehicles.
The policies learnt by these agents approach the problem in vastly different ways, and when
considering a real-world implementation of these agents, additional work would be required to
ensure that the policies these agents learn transfer to the real world.
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6 Conclusion

The aim of this paper was to provide an in depth comparison between Deep Q-learning and
proximal policy optimisation (PPO) on a traffic light optimisation problem. Both the PPO
and DQN methods drastically improved upon traditionally implemented methods namely, gap-
based actuated, delay-based actuated and a Webster fixed-time approach. On a high level
comparison of the agents, we see performance improve as they maximise their return during
training.

Training time and computational efficiency can be a concern, since deep reinforcement learn-
ing (DRL) is known to require large amounts of data and many training iterations to converge
to optimal policies. The experiments conducted in this study show that training times for this
specific intersection are extremely short. In future research, it will be interesting to see how
training times increase with more complex networks and intersections. Furthermore, no dataset
is required to train an RL agent because the data required for training is generated by the simu-
lation environment (SUMO). However, the simulation must be accurately parameterised, which
usually necessitates the use of real-world data.

In addition to demonstrating that the policies are efficiently and effectively trained, the goal
was to gain a deeper understanding of the strategies learned through the use of the various
methodologies, namely PPO and DQN. To visualise the difference between the agents’ policies,
we introduce several plots, including the polar policy plot and phase transition matrices. These
visualisations suggest that the strategies learned by these agents differ significantly. PPO
agents typically use only a subset of all phases, whereas DQN agents spread their policy across
all phases.

Another finding was that the agents tend to overfit on the traffic used to train a policy.
An agent who has been trained on traffic with a high volume of vehicles turning left learns a
policy that accommodates this specific traffic flow. This training artefact can be seen when the
agent is tested on other traffic patterns, as discussed in the previous section. A future research
avenue could be to train a more general policy that mitigates these training artefacts.

Despite the agents overfitting, this study shows the promise about using RL as an approach
to traffic light optimisation. The agents performed well on the traffic they are trained on showing
their ability to learn different types of traffic distributions and with a more encompassing
training set can become a robust and efficient solution.
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A Simulation configuration

Parameter Value
Lane length 150 meters
Vehicle length 5 meters
Minimal gap between vehicles 2.5 meters
Car-following model Krauss following model [9]
Max vehicle speed 13.42 m.s−1

Acceleration ability of vehicles 2.6 m.s−2

Deceleration ability of vehicles 4.5 m.s−2

Duration of yellow signal 3 seconds
Minimum green time 10 seconds
Number of episodes 200
Episode length 1800 seconds

Table 3: Simulation parameters [24]
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Traffic pattern Direction
Arrival rate

Through
Left- Right-
turn turn

P1:Major/Minor road N-S 0.05 0.025 0.01
S-N 0.05 0.025 0.01
E-W 0.1 0.05 0.01
W-E 0.1 0.05 0.01

P2:Through/left-turn lane N-S 0.05 0.025 0.01
S-N 0.05 0.025 0.01
E-W 0.05 0.1 0.01
W-E 0.05 0.1 0.01

P3:Tidal traffic N-S 0.1 0.08 0.01
S-N 0.05 0.025 0.01
E-W 0.1 0.08 0.01
W-E 0.05 0.025 0.01

P4:Varying demand traffic N-S 0.05 0.025 0.01
S-N 0.05 0.025 0.01

E-W

0.05

0.025 0.01
(0-1200 steps)
0.15
(1200-1800 steps)

W-E

0.15

0.025 0.01
(0-600 steps)
0.05
(600-1800 steps)

Table 4: Arrival rates for different traffic patterns as outlined by Wei et al. [24]

B Benchmark configuration

Parameter Value
Lost time 12
Max cycle 240
Min cycle 20
Sat headway 3.2

Table 5: Configuration used for Webster
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P1 P2 P3 P4 State
32 50 34 23 srrrsrrGsrrrsrrG (4)
32 30 19 21 srrrsrrrsrrrGGGG (0)
34 22 27 26 srrrGGGrsrrrGGGr (1)
33 30 29 22 srrrGGGGsrrrsrrr (6)
21 21 33 25 srrGsrrrsrrGsrrr (7)
21 21 18 24 srrrsrrrGGGGsrrr (5)
21 21 26 26 GGGrsrrrGGGrsrrr (2)
20 21 29 26 GGGGsrrrsrrrsrrr (3)

Table 6: Webster phase timings for each traffic pattern

Parameter Value
Detector gap 1
Minimum duration (all phases) 10
Maximum duration (all phases) 60
Frequency 300
Max gap 3
Nexts All phases included current
Passing time 10

Table 7: Configuration for gap-based actuated

Parameter Value
Detector range 100
Minimum duration (all phases) 10
Maximum duration (all phases) 60
Frequency 300
Minimum time loss 1

Table 8: Configuration for time-loss actuated
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C Additional results

C.1 Speed
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Figure 21: Benchmarks
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Figure 22: DQN

0 5 10 15 20
Speed (m/s)

10 4

10 3

10 2

10 1

De
ns

ity

Test traffic: P1

0 5 10 15 20
Speed (m/s)

Test traffic: P2

0 5 10 15 20
Speed (m/s)

Test traffic: P3

0 5 10 15 20
Speed (m/s)

Test traffic: P4
Train traffic

P1
P2
P3
P4

Figure 23: PPO
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C.2 Queue lengths
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Figure 24: Benchmarks
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Figure 25: DQN
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Figure 26: PPO
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C.3 Percentage time spent in each phase
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Figure 27: Percentage time spent in phase for the benchmarks agent for each test traffic .
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Figure 28: Percentage time spent in phase for the DQN agent for each test train traffic pair.
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Figure 29: Percentage time spent in phase for the PPO agent for each test train traffic pair.
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Abstract 

The paper describes a novel approach to modelling traffic light control in SUMO with 
control logic configured in xml inputs. It shows also, that this approach allows for high 
fidelity replication of a real-world traffic controller by comparing original and simulated 
switching behavior when confronted with the same traffic situations. The approach 
could process from a traffic engineer with limited programming knowledge. 
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1 Motivation 

Traffic lights are an important element of traffic simulation and their accurate 
representation is necessary to achieve good agreements between real world traffic and 
simulation traffic. Even when new control concepts are to be tested, it is necessary to 
represent existing systems for a fair assessment of gains. 

The traffic simulation SUMO supports default traffic algorithms for fixed-timing control 
as well as adaptive traffic control based on detected time gaps. It also permits coupling 
with an external process for fine-grained control of traffic light switching via the TraCI 
API.1 When using TraCI, it is possible to model the traffic light logic within different 
programming Languages such as Python, C++, Matlab, and Java2. Both native and 
coupled approaches have their advantages and disadvantages. In this paper we 
introduce a new configuration approach that has advantages over the previous 
approaches: 

• High fidelity representation of control algorithms which differ from the default
algorithms

• No need for process coupling (simpler and faster)
• Simplified and standardized algorithm description mirroring existing standards

(compared to unconstrained TraCI code)
• Graphical analysis of operation and internal controller state with sumo-gui

Keywords: Simulation, traffic lights, adaptive control 

2 Introduction 

The paper describes a novel approach to modelling traffic light control in SUMO with 
control logic configured in xml inputs. We show that this approach allows for high 
fidelity replication of a real-world traffic controller by comparing original and simulated 
switching behavior when confronted with the same traffic situations. 

In the following, we explain the syntax and semantics of the new configuration langue. 
For this purpose, an exemplary control algorithm is introduced and presented in the 
typical format used by traffic engineers in Germany. We then show how to translate 
this algorithm into an xml configuration usable by SUMO. 

The figures C, 4, 7, 9, 10, 12, 15 represent a traffic light document (TLD). The 
translation of the TLD elements into a SUMO XML configuration are shown in figures 
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A, B, 1, 2, 3, 5, 6, 8, 11, 13, 14, 16, 18. The process of translating the TLD into the 
corresponding XML configuration is described in the following chapters. 

2.1 Enhancements of the SUMO Software 

To enable a high-fidelity modelling of traffic light control with xml logic representation, 
we implemented the new features in SUMO listed below. Further information about 
these features beyond the information in this paper, can be found in the SUMO 
documentation.3 

• Coordination of actuated traffic lights
• Type 'actuated' with custom switching rules
• Overriding phase attributes with expressions
• Storing and modifying custom controller variables at runtime
• Extended signal plan visualization

In the researching project SAVeNoW4 we used all listed functions to model the logic of 
a real traffic light controller in a SUMO xml-file. This paper uses an exemplary TLD 
which shows the most important controller design elements for a simplified 
intersection. The example controller is not completely efficient and realistic but it 
includes most of the functions typically needed for traffic light control modelling (phase 
logic and public transport prioritization).  

2.2 Structure of this paper 

First of all, we describe the SUMO Net preparation and the preparation of the additional 
xml files for the detectors and the traffic light. Than we describe basic traffic light 
configurations. We follow by describing the modelling of traffic light logics in the traffic 
light xml file. First the definition of constants/parameters, then how to identify important 
logic blocs for the basic timing attributes of sumo and also the basic function of every 
expressions. Afterwards we describe the definition in detail and also discuss alternative 
definition styles.  
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3 XML modelling description 

3.1 SUMO Net preparation 

First of all, the SUMO Net and traffic light of the examined intersection has to be 
created. By default, every lane-to-lane connection is assigned its own “tls link index” 
to define its position within the signal state description string. To remove redundancy 
in the phase description and visualization, we define signal groups by assigning the 
same tls-link-index to all connections with the same signal behavior (in this, permissive 
green and protected green are counted as different signal behavior). (Figure 1, 
example link0, link2, link4; right frame), besides/apart from conditionally compatible 
the signal state description changes, so the link number has to be count up. By default, 
SUMO counts the link number clockwise. It is also possible to change the order of the 
link indices. An example can be seen in Figure 1. 

Figure 1: SUMO intersection tls-link-index 

 default  signal groups same tls-link-index 

The traffic light program in SUMO is defined as a list of phases numbered from 0 to n. 
We distinguish these phases by calling them “stages” and “interstages” depending on 
their role during the operation of the traffic light. Stages permit vehicle movements and 
their length may be adjusted in response to traffic conditions. The state of every signal 
stays constant while a stage is active. Interstages form the transition between stages 
and must ensure that traffic flowing in one stage has left the intersection space before 
a new stage begins. So, the states of signals could change from one interstage phase 
to the next. 

In the following program we assign to each sumo phase a name according to their 
stage number or the interstage (stage-to-stage transition) it belongs to (i.e. 1,2,3, 1.2, 
2.3, 3.1). (TLD: Figure C, SUMO-xml: Figure A, Figure B) These names serve as a 
visual aid when following the sequence of phases in the tracking diagram (chapter: 3.6 
Tracking Phases). 
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A signal plan can be generated for SUMO with the aid of an OCIT-file and the tool 
ocit2SUMO5. A signal plan may also be created visually in netedit (i.e. when the traffic 
light specification is only available as a pdf document). 

An additional preparation for the SUMO simulation is the definition of the detectors 
(induction loops). They are defined with the same name and also the same position 
(Figure 2, Figure 3) at each lane according to the TLD signal location plan (Figure 4). 

Figure 2: detector definition – SUMO det.add xml 
1   <additional> 

2  <inductionLoop id="DA1" lane="-E3_0" pos="-30" freq="30" file="cross.out"/> 

3  <inductionLoop id="DA2" lane="-E3_1" pos="-30" freq="30" file="cross.out"/> 

4  <inductionLoop id="DA3L" lane="-E2_0" pos="-10" freq="30" file="cross.out"/> 

5  <inductionLoop id="RPD" lane="-E3_0" pos="-50"      […]       vTypes="bus"/> 

6  <inductionLoop id="RPE" lane="E4_0"  pos="10"       […]       vTypes="bus"/> 

7   </additional> 

Figure 3: net - SUMO GUI

Figure 4: signal location plan - TLD

For the public transport prioritization, mostly “telegrams” (sent upon passing a specific 
location) are used. Here it is possible to use induction loops in sumo that are placed at 
the corresponding location and which are only triggered by specific vehicle types (i.e. 
bus) (Figure 2, line 5,6). All detectors are defined in an additional file. (Figure 2)  
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3.2 Basic traffic light configurations 

The next step is to declare the traffic light type of the example intersection as “actuated” 
to activate the core functionality of switching in response to traffic detectors. (Figure 5, 
line 2; type = “actuated”). The parameter coordinated has to be set to “true” in order to 
align the cycle second counter of the traffic light with the simulation time (Figure 5, line 
3). In coordinated mode, the cycle-second time range configured by the attributes 
earliestEnd and latestEnd will be aligned with all other traffic lights of the same 
cycleTime. The cycleTime attribute (Figure 5, line 4) denotes the duration of one 
switching cycle. The offset attribute (Figure 5, line 2) defines where within the cycle, 
the signal program will start, effectively shifting the initial cycle second. 

An optional next step is to assign the detectors related to the signal plan and the 
intersection (Figure 5, line 6-8). This permits using custom detector placement instead 
of detectors that would otherwise be generated in default locations on each incoming 
lane during initialization. To define a custom detector, a lane that is incoming to the 
traffic light is used as the key and the id of a custom detector is used as the value. Both 
custom and automatic detectors can later be observed when tracking operations 
visually (chapter: 3.6 Tracking Phases) 

Figure 5: basic traffic light configurations – SUMO xml 
2 <tlLogic id="J3" type="actuated" programID="1" offset="-5"> 

3 <param key="coordinated" value="true"/> 

4 <param key="cycleTime" value="90"/> 

5 

6 <param value="DA1" key="-E3_0" /> 

7 <param value="DA2" key="-E3_1" /> 

8 <param value="DA3L" key="-E3_2" /> 

(abstract of Figure A) 

3.3 Define constants/parameters out of the TLD 

The parameter setting out of the TLD are defined in conditions with fixed values in the 
SUMO XML (Figure 6). This corresponds directly to a table of values as in TLD (Figure 
7). This simplifies re-use of an existing algorithm by only modifying its parameters to 
create another signal plan with different parameters for a different time of the day. 

Figure 6: Table of algorithm configuration constants – SUMO xml 
14  minal/maximal times  

15 <condition id="min_Stage_1" value="10"/> 

16 <condition id="max_Stage_1"   value="60"/> 

17 <condition id="tgrmin_FVA"  value="35"/> 

18 <condition id="tgrmax_FVA"  value="32"/> 

19 <condition id="max_pedestrian" value="75"/> 

20 

21  constants 

22 <condition id="k1" value="1"/> 

23 <condition id="k2" value="2"/> 

24 

25  time conditions 

26 <condition id="t01"  value="30"/> 

27 <condition id="t02"  value="65"/> 

28 <condition id="tb01" value="45"/> 

29 <condition id="tb02" value="80"/> 

(abstract of Figure A)
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Figure 7: Table of algorithm configuration constants – TLD 

3.4 Define logical condition 

The logical condition out of the TLD (Figure 9) are defined in conditions (Figure 8). 

Figure 8: logical conditions – SUMO xml
59 <condition id="l1" value="(z:DA1 >= 3) or (z:DA2 >= 3)"/> 

60 <condition id="An" value="z:RPD + k1"/> 

61 <condition id="Ab" value="z:RPE + k2"/> 

62 <condition id="l2" value="a:DA3L"/> 

(abstract of Figure A) 

Figure 9: logical conditions – TLD 

All logic conditions here used functions to retrieve information from detectors 
previously assigned to the traffic light controller, but it is also possible to retrieve 
information from every detector loaded into the simulation. The function z:DETID 
retrieves the time (in seconds) since the last vehicle detection at the detector with id 
DETID. The function a:DETID returns a value of 1 if the given detector is occupied and 
0 otherwise. 

minal/maximal times  constants 

variable P1 constants P1 

min_Stage_1 10 k1 1 

max_Stage_1 60 k2 2 

tgrmin_FVA 35 
time conditions tgrmax_FVA 32 

max_pedestrian 75 time conditions P1 

t01 30 

t02 65 

tb01 45 

tb02 80 

name Logical condition comment 

l1 (ZD(DA1) >= 3) or (ZD(DA2) >= 3) FVA 

An ZD(RPD) + k1 Bus 

Ab ZD(RPE) + k2 Bus 

L2 Demand(DA3L) FVAL 
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3.4 Phase logic modelling 

We show two possible ways to model a phase logic. 

The approach of the first example can be used when all attributes that describe the 
time boundaries of a phase minDur, maxDur, earliestEnd and latestEnd have fixed 
values. 

52 <phase […] minDur="0" maxDur="40" earliestEnd="70" latestEnd="84"/> 
(abstract of Figure A) 

The advantage of this approach is the brevity of the XML definition. However, some 
TLD descriptions may be too complex to use constant values to describe time 
boundaries or it may be too hard to restructure the flow diagrams of the TLD and extract 
these constants.  
In this case it can be simpler to “blindly” transcribe all logic elements from the TLD and 
forgo the “simpler” XML definition. Hence, we also describe a second approach where 
the attributes minDur, maxDur, earliestEnd and latestEnd are replaced by complex 
conditions. This more general approach can be used to transcribe any TLD logic but 
the resulting XML configuration is lengthier and somewhat harder to understand. Good 
names for the employed conditions help to keep the descriptions readable and aids in 
debugging with the phase tracking dialog.  

3.4.1 Example with constant time bounds 

Figure 10 shows the phase logic of the first example as expressed in the TLD. 

Figure 10: Example 1 - TLD logic 

TLD SUMO-XML modelling 
Constant time bounds Figure10 Figure A 
Variable time bounds Figure13 Figure B 
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All shown TLD phase logics in this paper are similar to the CROSSIC Software notation 
(Open TRELAN). For readers familiar with the LISA+ notation, we show the main 
difference in flow diagram style in Figure 11. 

Figure 11: Phase x logic example 

3.4.1.1 Sumo phase definition 

Each phase (stage or interstage) can either be of fixed or variable duration. Whereas 
fixed phases may be fully described by the duration attribute, the attributes minDur, 
maxDur, earliestEnd, latestEnd are used to describe the time bounds for variable-
length phase. The attributes next, earlyTarget, finalTarget are used to define successor 
relationships among phase and the conditions for switching between them. All these 
attributes will be described in the following. 

3.4.1.2 Phase logic modelling 

The switching time for a phase of variable length may be restrained by upper and lower 
bounds with regard to its running duration and also with regard to a time window for 
coordination. For this purpose, the ‘phase’ element provides the following attributes: 

- minDur: minimum running duration (mandatory)
- maxDur: maximum running duration (optional)
- earliestEnd: earliest time within a cycle for ending phase (optional)
- latestEnd: latest end within a cycle for ending phase (optional)

These attributes correspond to standard control parameters in a typical TLD and in our 
example they take on the values of b1, b2, b4 and b10 (Figure 10). 

The possible reachable interstages are here in the blocs b3, b8, b9, b12 and b13 
(Figure 10). These blocs represent which interstages are used to skip in another phase 
and also define in which following phase the phase0/stage1 is able to switch. Attribute 
next defines in which possible following phases the phase0/stage1 could switch. 
EarlyTarget defines conditions which are checked upon entering the lower time bounds 
of minDur and earliestEnd. FinalTarget defines conditions which are checked when 
reaching the upper time bounds of maxDur or latestEnd. In Figure 10, the yellow blocks 
(b1, b2, b4, b10) define these time bounds. The remaining blocks from the earlyTarget 
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area (blue) and finalTarget area (red) in Figure 10 we have to define for possible paths 
through the logic. So, every question bloc in the earliestTarget area (Figure 10, blue) 
and finalTarget area (Figure 10, red) are defined as a condition with the same name 
like the bloc named in TLD Logic. (Figure 10) These conditions are necessary for later 
modelling. For later defining of b10 (in chapter 3.4.1.6) we have also to model the blocs 
b1, b2, b4, b10. (Figure 12) The function c: access the current cycle second of the 
operating signal plan.  

Figure 12: Example 1 bloc conditions – SUMO xml 
70    <condition id="b5" value="l1"/> 

71 <condition id="b6" value="l2"/>

72    <condition id="b11" value="M1 = 1"/> 

73 

74 <condition id="b1" value="min_Stage_1 >= c:"/> 

75 <condition id="b2" value="max_Stage_1 >= c:"/> 

76 <condition id="b4" value="t01 >= c:"/> 

77 <condition id="b10" value="t02 >= c:"/>

 (abstract of Figure A) 

For earlyTarget the starting point is in general minDur and/or earliestEnd. In our example 
it is earliestEnd, so b4. In the example earlyTarget is checked when minDur and 
earliestEnd is reached. For finalTarget the starting point is in general maxDur or 
latestEnd. In our example it is maxDur or latestEnd which has to be reached, so b2 or 
b10. Now every frame condition is described in general. In the following the detailed 
modelling of each frame condition will be described. 

3.4.1.3 MinDur maxDur 

The first values are the minDur and maxDur. In SUMO we could implement this in two 
ways. With a fixed value  

<phase […] minDur="10"[…] maxDur="60"[…]/> 

or we override the attributes with an expression 
32 <phase […] minDur="-1" maxDur="-1"[…]/>  

64 <condition id="minDur:0" value="min_Stage_1"/> 

65 <condition id="maxDur:0" value="max_Stage_1"/> 

(abstract of Figure A) 

Even if the minimum duration of a phase is constant, it may be advantageous to 
override the phase attribute in order to collect all configuration parameters in a single 
place within the XML configuration. This makes it easier to copy and re-use a 
configuration for another controller program.  

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

54



3.4.1.4 EarliestEnd latestEnd 

For the earliestEnd and latestEnd the same override approach as described for minDur 
and maxDur may be used. But also, a fixed value defined directly in the phase definition 
works. 
32 <phase […] earliestEnd="-1" latestEnd="-1" […]/> 

67 <condition id="earliestEnd:0" value="t01"/>  

68 <condition id="latestEnd:0"   value="t02"/> 

(abstract of Figure A) 

 EarliestEnd and latestEnd will be always compare with currently cycle second. 

3.4.1.5 Next 

Attribute Next defines possible successor phases for a given phase. It is typically used 
in stages to declare the first phase for each possible interstage sequences that target 
a successor stage. However, in some controllers it is also possible to branch of into 
different interstages from within an interstage.  It is possible to switch when any of the 
basic conditions ((minDur and/or earliestEnd) or maxDur or latestEnd) is reached. In 
the example we defined in next with phase indices 1 and 6 because these are the 
interstages/phases which transition after a switch to the stage 2 and stage 3.  
32 <phase name="stage1" […]  next="1 6"/> 
(abstract of Figure A) 

These transitions are shown in the stage-sequence-diagram (Figure C). If a phase 
does not use attribute next, the signal plan switches to the subsequent phase in the 
phase list after reaching max duration (with a wraparound to 0 at the end). To define a 
signal plan with a single phase that is permanent green phase one could write the 
index of the phase itself in the next attribute or specify only a minDur but no maxDur. 

3.4.1.6 EarlyTarget and finalTarget 

In our controller there are two ways to switch out of the phase0/stage1. The first way 
is by adapting to traffic measurement (elapsed time since detection). Effectively, the 
phase is ended when a defined condition evaluates to ‘true’ (or non-0). In the example 
we could exit the phase earlier as soon as minDur and erliestEnd are reached, then 
Sumo will check by order of the values of next the listed phases. The attributes 
earliestEnd check the including conditions of the mentioned phases. If a condition is 
true the signal plan switches in this phase. If none of the conditions are true, the signal 
plan remain in the phase 0/stage1. For earliestEnd here are two possible paths.  

path b5-b6-b9 
34    <phase […] name="INS1.2" earlyTarget="b5 and !b6 " […]/> 

(abstract of Figure A) 

and path b5-b6(f)-b7-b8 
42 <phase […] name="INS1.3" earlyTarget="b5 and b6" […]/> 

(abstract of Figure A) 
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We have only to model the questions blocks from the paths because they will change 
something on the operating decision. Here the logic conditions (Figure 8) and the 
conditions about the blocs (Figure 12) are used to define the paths. The possible paths 
must be written in the attribute earliestEnd for each phase which is possible to reach 
for the signal program (INS1.2/phase 1 and INS1.3/phase 6), as shown above.  
The path b5-b6(f)-b7-b8 has a special bloc b7 (Figure 10), in this bloc a variable is be 
written. It is not possible do it directly in the path. But when the path b5-b6(f)-b7-b8 is 
reached it is a unique path within the how logic, so we define an assignment to 
modelling that. If all blocs of the path get the right state, V will be assigned with the 
integer 12 and the path b5-b6(f)-b7-b8 is modelled completely. 
79 <condition id="V" value="0"/> 

80 
81 <assignment id="V" check="b1 and b2 and b4 and b5 and !b6" value="12"/>

(abstract of Figure A) 

It is also possible to model it when there are more than two paths for the earliestTarget. 

When defining latestEnd = cycle time - duration_interstage from the last phase, then 
each cycle will last for the give cycle duration. 

The second diagram path for leaving the state is via the finalTarget bloc. It is used 
when maxDur or latestEnd are reached. Here we have two possible pathways. The 
path begins at the starting element maxDur b2 and latestEnd b10. Sumo will check by 
order of the values of next Phase the attributes finalTarget and check the including 
conditions of the mentioned phases. If a condition is true the signal program switch to 
this phase. Here we have to define two paths to the interstage1.2:  

path 1: b2-b3 path 2: b10-b11(f)-b13 
34 <phase […] name="INS1.2" finalTarget="b2 or !b11"/> 

(abstract of Figure A) 

and one path to the Interstage1.3: 

path: b10-b11-b12  
42 <phase […] name="INS1.3" finalTarget="b10 and b11"/> 

(abstract of Figure A) 

Here we also only model the question blocs for the same reason as mentioned. If none 
of the condition evaluates to true, SUMO switches to the last value of the next attribute 
as a fallback. If next is not defined, it switches to the next phase in definition order. In 
a typical TLD this should not occur and at least one of the path conditions should 
evaluate to true.  

With this, every possible path in the logic is modeled and the SUMO controller can 
determine the switching conditions as described in the TLD.  

Halbach and Erdmann | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

56



3.4.2 Example with variable time bounds 

For the second example we transcribe a TLD that does not express the time 
boundaries minDur (b1), maxDur (b2), earliestEnd (b4) and latestEnd (b10) with 
numerical constants (Figure 13). This means the XML definition cannot use attributes 
minDur, maxDur, earliestEnd and latestEnd as shown in the first example. In the 
following text we describe how to create the appropriate XML definitions.  

Figure 13: Example 2 - TLD logic 

First of all, we define a condition for every question bloc with the same bloc name as 
in the TLD logic. (Figure 14)  
Here we used two SUMO function which we want to describe shortly. Function g: 
accesses the current running green time of a link. function r: accesses the current 
running red time of a link. This could be used for example to define that a maximum 
waiting time for pedestrians is not exceeded.  

Figure 14: Example 2 bloc conditions – SUMO xml 
62 <condition id="b1" value="(g:0 >= tgrmin_FVA)"/> 

63 <condition id="b2" value="(g:0 >= tgrmax_FVA) or (max_pedestrian >= r:9)"/> 
64 <condition id="b4" value="(c: >= t01 or tb01 > c:)"/> 

65 <condition id="b5" value="l1"/> 

66 <condition id="b6" value="(l2 and b11)"/> 

67 <condition id="b10" value="(c: >= t02 or tb02 > c:)"/> 

68 <condition id="b11" value="M1 = 1"/>  

(abstract of Figure B) 

In our example in bloc b2 (Figure 13) expresses that max_pedestrian has to be smaller 
or equal than the red time of fgd/link 10, here we have to swap both expressions (from: 
tr(fgd) <= max_pedestrian to max_pedestrian >= tr(fgd)), because the traffic light 
definition is processed in a xml file, for that reason we have to pay attention with the 
possible syntax of xml. The XML standard prohibits use of the ‘<’ character within an 
attribute value. The simplest solution is to reverse the inequality and use the permitted 
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‘>’ character. A less readable alternative would be to use the xml code ‘&lt;’ to encode 
the ‘<’ character. These two options are possible ways to implement the specific 
condition: 

63   <condition id="b2" value="(g:0 >= tgrmax_FVA) or (max_pedestrian >= r:9)"/> 

(abstract of Figure B) 

or 

<condition id="b2" value="(g:0 >= tgrmax_FVA) or (r:9 &lt;= max_pedestrian)"/> 

Then we define the pathways for reachable interstage. 
70 <condition id="b3" value="(b1 and !b2)"/> 

71 <condition id="b8" value="(b1 and b2 and b4 and b5 and !b6)"/> 

72 <condition id="b9" value="(b1 and b2 and b4 and b5 and b6)"/> 

73 <condition id="b13" value="(b1 and b2 and b4 and !b5 and b10 and b11)"/> 

74 <condition id="b12" value="(b1 and b2 and b4 and !b5 and b10 and !b11)"/> 

(abstract of Figure B) 

The conditions were named like the interstage action bloc. Then we define conditions 
which will be used for the attribute earlyTarget of every reachable interstage 
76 <condition id="earlyTarget_INS_1_2" value="b3 or b8 or b13"/> 

77 <condition id="earlyTarget_INS_1_3" value="b9 or b12"/> 

(abstract of Figure B) 

Then every earlyTarget attribute is assigned the condition (defined above) which 
collects all paths by which this transition may be reached. 
32 <phase […] name="INS1.2" earlyTarget="earlyTarget_INS_1_2"/> 

40 <phase […] name="INS1.3" earlyTarget="earlyTarget_INS_1_3"/> 
(abstract of Figure B) 

While in stage 1, the conditions for each path are checked in every simulation step. If 
any of them evaluates to true (non-zero) the phase will switch. It works because every 
path is unique.  

Effectively, all checks that were modelled by attributes minDur, maxDur, earliestEnd, 
latestEnd and finalTarget in the first example, were moved into the earlyTarget check. 
for that reason, minDur was set “0” and maxDur to a very high value (maxDur may also 
be omitted for the same effect). 
31 <phase duration="99"[…] name="stage1" minDur="0" maxDur="1000000" […]/> 

(abstract of Figure B) 

In the example 1, the logic uses a special function which we describe below. 
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3.5 Function definition 

In the algorithm description within the TLD logic, function definitions are often use to 
structure repeating code. In our example we use a function for data preparation of the 
public transport prioritization.  

Figure 15: function – TLD logic 

A function definition requires a name (id) and the number of input arguments (nArgs). 
(Figure 16, line 83) This is followed by assignments which model all possible paths 
through the logic diagram of the TLD function. In our example we named the 
assignments/path like the last action bloc in each path (Figure b16, b19, b20, b21). In 
the value description of every assignments the input arguments are defined with a $ 
number argument. Then assignments for the output argument of the function are 
defined (Figure 16, line 88-91). The function now checks if a unique path is reached, 
depending on this a corresponding value is assigned to the function output $0. To call 
the function the expression ID:arg1,arg2,…,argN is used in a condition expression. 
(Figure 16, line 94) (Figure 15, b14). Note that there may be no spaces after a comma. 

Figure 16: function – SUMO-xml 
83   <function id="function" nArgs="4"> 

84 <assignment id="function_b16" check="1" value="!(20 >= $1)"/> 

85 <assignment id="function_b20" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:)) and !(1 >= $4)"/> 

86 <assignment id="function_b21" check="1" 

value="(20 >= $1) and !((c: >= $2) and ($3 >= c:))"/> 

87 <assignment id="function_b19" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:)) and (1 >= $4)"/>

88 <assignment id="$0" check="function_b16" value="1"/> 

89 <assignment id="$0" check="function_b20" value="10"/> 

90 <assignment id="$0" check="function_b21" value="12"/> 

91 <assignment id="$0" check="function_b19" value="14"/> 

92   </function> 

93 

94   <condition id="M1" value="function:An,t01,t02,Ab"/> 
(abstract of Figure B) 

Assignment definitions placed outside a function definition are evaluated and executed 
in every simulation step where switching is possible. They are executed in the order in 
which they are defined. Likewise, in a function all assignments are executed in 
definition order every time the function is evaluated.  
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3.6 Tracking Phases 

A useful mode for observing and analyzing the switching behavior of a traffic light is a 
diagram that shows signal and detector states over time. Such functionality is often 
part of the software suite used by commercial traffic light design software. The sumo-
gui application which is part of the SUMO software package, provides the ‘Phase 
Tracker’ (Figure 17) dialog to display such a diagram. It was recently extended to 
optionally show internal controller variables along with detector states to aid in 
debugging controller operation. The dialog is accessed by right-clicking on a traffic 
signal and selecting the ‘track phases’ menu entry.  

With the parameter key show-conditions, the list of observed expression can be 
customized. 
11  <param key="show-conditions" value="b5 b6"/> 

(abstract of Figure A / Figure B) 

With the parameter key extra-detectors, it is possible to visualize in the tracking mode 
any additional detectors within the sumo simulation. In our example, this is used to 
track the state of additional induction loops used for the bus prioritization. It works for 
induction loops as well as laneAreaDetecors. 

12    <param key="extra-detectors" value="RPD RPE"/> 

(abstract of Figure A / Figure B) 

Figure 17: Tracking Phases:
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4 Replication study 

4.1 Traffic light protocol 

Real-world traffic lights may supply a second-by-second record of their signal states, 
detector occupation, and public transport telegrams.  

Figure 18: Traffic light record:
2021-07-31-11-19-57 secOfDay:40796 lza:15 konr:156 diff:1836 values: 303 0 0 189 145 273 0 0 0 0 0 729 175 0 0 0 40 3630 3970 40 
2021-07-31-11-19-58 secOfDay:40797 lza:15 konr:156 diff:1857 values: 403 0 0 190 145 273 0 0 0 0 0 729 175 0 0 0 40 3620 3960 40 
2021-07-31-11-19-59 secOfDay:40798 lza:15 konr:156 diff:1775 values: 503 0 0 191 145 273 0 0 0 0 0 729 175 0 0 0 40 3610 3950 40 

This protocol is specific to a particular controller software version and also to the control 
algorithm itself. With the aid of controller software documentation and the TLD it is 
possible to interpret all elements of the record and to write a semantically identical 
record based on the outputs of a SUMO simulation. 

By preparing a simulation that replays the detector-states from a real-world controller 
record, and writing a corresponding simulation record, we can compare whether the 
simulated controller has the same switching behavior as the real-world controller for 
the recorded traffic situation. 

4.2 TraCI Simulation 

To simplify the replay-simulation, we have used the TraCI client functionality for setting 
artificial detector states. This avoids the need for creating vehicles which would trigger 
the detectors at the recorded times. 

The TraCI function inductionloop.overrideTimeSinceDetection was used to 
replicate the exact detection times from the real-world recording. 

Figure 19 example trigger a SUMO detector with TraCI (python) 

traci.inductionloop.overrideTimeSinceDetection("DA1",0)   #Demand  
traci.inductionloop.overrideTimeSinceDetection("DA1",-1)  #no Demand 

In our project, the real-world intersection (located in Ingolstadt) also participates in a 
network wide control scheme. This means it is supplied externally with integer values 
that may change over time and which are used in the controller logic. 

To emulate access to these variables, we have added virtual laneAreaDetectors in 
SUMO and supplied the values (x) from the real-world record via the function 
traci.lanearea.overrideVehicleNumber. 

Figure 20: example trigger a SUMO laneAreaDetectors with TraCI (python) 

traci.lanearea.overrideVehicleNumber("T6", X) #Value X 
traci.lanearea.overrideVehicleNumber("T6",-1) #No Value 

This way we can use the expression “a:DETECTOR_ID” to retrieve the recorded 
numerical values.  
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Figure 21: implementation to retrieve the recorded numerical values in the traffic light 
control 

<condition id="T6" value="a:T6"/> 

<assignment id="t06" check="a:T6 != 0 " value="T6"/> 

Since the operating of the network wide control scheme has its own control logic based 
on parameters and detector states, it would have also been possible to replicate this 
logic within the custom switching rules. This, would make it necessary to include all 
detectors that participate in network control within the simulation.  

4.3 Results 

We simulated 60 minutes with the detector record data and compared the second-by-
second sequence of stages and interstages from the record with the corresponding 
sequence from the simulation. A matching sequence indicates that the simulation 
traffic light in SUMO has the same behavior as the recorded real-world traffic light.  

In our experiment the stages and interstages were reproduced with an accuracy of  
96%. While analyzing the real-world record we observed errors such as gaps and 
duplicate time steps and this is likely a source of the disagreement between both 
records. And some synchronizations situations from outside/external are not 
completely reproduced.  

Due to time constraints, we did not translate the logic modules for initializing the 
program at daybreak or for switching it off at nightfall. We also excluded the code for 
emergency vehicle prioritization. In our tests we therefore used a record sequence that 
did not feature these events. 

Unfortunately, we also could not test the code for bus prioritization because some of 
the functions referenced in the TLD were not made available by the vendor of the 
controller software in time for this publication.i For this reason, our tests also excluded 
bus approaches. 

Nevertheless, we are convinced that the omitted logic modules can be reproduced in 
SUMO as long as their behavioral description is available in full. 

5 Conclusion 

In prior versions of SUMO, it was only possible to model detailed adaptive traffic light 
control with an external TraCI client process and this route was only open to users with 
considerable experience in computer programming. With the configuration language 
presented in this work, it is possible to achieve a high-fidelity simulation given familiarity 
with traffic signal design documents and very limited programming knowledge.  

Nevertheless, replicating the described toolchain for replaying a controller record and 
generating a corresponding simulation record still requires programming experience. 

i GEVAS Software GmbH has graciously provided control flow diagrams for some of its functions already and we 
expect to replicate all features of bus prioritization eventually. 
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6 Abbreviations 

b logic bloc 

bx(f) bx is false  

bx-by-bz it defines a path of logic blocs 

by by is true 

cycle second the time within the current cycle (0 <= cycle second < cycle time) 

cycle time     the duration of a full cycle 

F false 

Fg Pedestrian  

FV Individual motorized Traffic 

INS interstage 

P1 Signal program 1 / Signal plan 1 

T true 

tgr  green time of the signal group 

TLD  traffic light document 

tr red time of the signal group 

TraCI  Traffic Control Interface (a SUMO API)
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7 Appendix 

Figure A: Example 1 – SUMO-xml 
1<additional> 

2   <tlLogic id="J3" type="actuated" programID="1" offset="-5"> 

3 <param key="coordinated" value="true"/> 

4 <param key="cycleTime" value="90"/> 

5 

6 <param value="DA1" key="-E3_0" /> 

7 <param value="DA2" key="-E3_1" /> 

8 <param value="DA3L" key="-E3_2" /> 

9 

10 

11 <param key="show-conditions" value="b5 b6"/>  

12 <param key="extra-detectors" value="RPD RPE"/> 

13 

14 <!-- minal/maximal times--> 

15 <condition id="min_Stage_1" value="10"/> 

16 <condition id="max_Stage_1" value="60"/> 

17 <condition id="tgrmin_FVA" value="35"/> 

18 <condition id="tgrmax_FVA" value="32"/> 

19 <condition id="max_pedestrian" value="75"/> 

20 

21 <!--constants--> 

22 <condition id="k1" value="1"/> 

23 <condition id="k2" value="2"/> 

24 

25 <!--time conditions--> 

26 <condition id="t01"  value="30"/> 

27 <condition id="t02"  value="65"/> 

28 <condition id="tb01" value="45"/> 

29 <condition id="tb02" value="80"/> 

30 

31 <!—link index: 0123456789 --> 

32 <phase duration="99" state="GrrrGgrrrr" name="stage1" minDur="-1" maxDur="-1" 

earliestEnd="-1" latestEnd="-1" next="1 6"/>  <!--0--> 

34 <phase duration="3" state="yrrrGgrrrr" name="INS1.2" 

earlyTarget="b5 and !b6" finalTarget="b2 or !b11"/> <!--1--> 

35 

36  <phase duration="10"state="rrrrGgrrrr" name="stage2"/>  <!--2--> 

37 

38  <phase duration="3" state="rrrryyrrrr" name="INS2.4"/>    <!--3--> 

39 <phase duration="1" state="rrrrrrrrrr" name="INS2.4"/>  <!--4--> 

40      <phase duration="2" state="rruurruuuG" name="INS2.4" next = "13"/>   <!--5--> 

41 

42 <phase duration="3" state="Grrryyrrrr" name="INS1.3" 

earlyTarget="b5 and b6" finalTarget="(b10 and b11)"/> <!--6--> 

43 <phase duration="1" state="Grrrrrrrrr" name="INS1.3"/> <!--7--> 

44 <phase duration="2" state="Gurrrrrrrr" name="INS1.3"/> <!--8--> 

45 

46 <phase duration="10"state="GGrrrrrrrr" name="stage3"/> <!--9--> 

47 

48 <phase duration="3" state="yyrrrrrrrr" name="INS3.4"/> <!--10--> 

49 <phase duration="1" state="rrrrrrrrrr" name="INS3.4"/> <!--11--> 

50 <phase duration="2" state="rrurrruuuG" name="INS3.4"/> <!--12--> 

51 

52 <phase duration="40" state="rrGgrrgGgG" name="stage4" minDur="0" maxDur="40" 

earliestEnd="70" latestEnd="84"/> <!--13--> 

53 

54 <phase duration="3" state="rryyrryyyr" name="INS4.1"/>    <!--14--> 

55 <phase duration="1" state="rrrrrrrrrr" name="INS4.1"/>   <!--15--> 

56 <phase duration="2" state="urrruurrrr" name="INS4.1"/>   <!--16-->   

57 

58 <!--logical condtion definition--> 

59 <condition id="l1" value="(z:DA1 >= 3) or (z:DA2 >= 3)"/> 

60 <condition id="An" value="z:RPD + k1"/> 

61 <condition id="Ab" value="z:RPE + k2"/> 

62 <condition id="l2" value="a:DA3L"/> 

63 

64 <condition id="minDur:0" value="min_Stage_1"/> 

65 <condition id="maxDur:0" value="max_Stage_1"/> 

66 

67 <condition id="earliestEnd:0" value="t01"/> 

68 <condition id="latestEnd:0"   value="t02"/> 
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69 

70 <condition id="b5" value="l1"/> 

71 <condition id="b6" value="l2"/> 

72 <condition id="b11" value="M1 = 1"/> 

73 

74 <condition id="b1" value="min_Stage_1 >= c:"/> 

75 <condition id="b2" value="max_Stage_1 >= c:"/> 

76 <condition id="b4" value="t01 >= c:"/> 

77 <condition id="b10" value="t02 >= c:"/> 

78 

79 <condition id="V" value="0"/> 

80 

81 <assignment id="V" check="b1 and b2 and b4 and b5 and !b6" value="12"/> 

82 

83 <function id="function" nArgs="4"> 

84 <assignment id="function_b16" check="1" value="!(20 >= $1)" /> 

85 <assignment id="function_b20" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:)) and !(1 >= $4)"/> 

86 <assignment id="function_b21" check="1" 

value="(20 >= $1) and !((c: >= $2) and ($3 >= c:))"/>

87 <assignment id="function_b19" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:)) and (1 >= $4)"/> 

88 <assignment id="$0" check="function_b16" value="1"/> 

89 <assignment id="$0" check="function_b20" value="10"/> 

90 <assignment id="$0" check="function_b21" value="12"/> 

91 <assignment id="$0" check="function_b19" value="14"/> 

92 </function> 

93 

94 <condition id="M1" value="function:An,t01,t02,Ab"/> 

95 

96   </tlLogic> 

97</additional>  

Figure B: Example 2 – SUMO-xml 
1<additional> 

2   <tlLogic id="J3" type="actuated" programID="1" offset="-5"> 

3 <param key="coordinated" value="true"/> 

4 <param key="cycleTime" value="90"/> 

5 

6 <param value="DA1" key="-E3_0" /> 

7 <param value="DA2" key="-E3_1" /> 

8 <param value="DA3L" key="-E3_2" /> 

9 

10 

11 <param key="show-conditions" value="b5 b6"/>  

12 <param key="extra-detectors" value="RPD RPE"/> 

13 

14 <!-- minal/maximal times--> 

15 <condition id="tgrmin_FVA" value="35"/> 

16 <condition id="tgrmax_FVA" value="32"/> 

17 <condition id="max_pedestrian" value="75"/> 

18 

19 <!--constants--> 

20 <condition id="k1" value="1"/> 

21 <condition id="k2" value="2"/> 

22 

23 <!--time conditions--> 

24 <condition id="t01"  value="30"/> 

25 <condition id="t02"  value="65"/> 

26 <condition id="tb01" value="45"/> 

27 <condition id="tb02" value="80"/> 

28 

29 <!-- link index: 0123456789 -->

30 <phase duration="99" state="GrrrGgrrrr" name="stage1" minDur="0" maxDur="1000000" 

next="1 6" />                   <!--0--> 

31 

32 <phase duration="3" state="yrrrGgrrrr" name="INS1.2" 

earlyTarget="earlyTarget_INS_1_2"/> <!--1--> 

33 

34 <phase duration="10"state="rrrrGgrrrr" name="stage2"/> <!--2--> 

35 

36 <phase duration="3" state="rrrryyrrrr" name="INS2.4"/> <!--3--> 

37 <phase duration="1" state="rrrrrrrrrr" name="INS2.4"/> <!--4--> 
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38 <phase duration="2" state="rruurruuuG" name="INS2.4" next= "13"/>  <!--5--> 

39 

40 <phase duration="3" state="Grrryyrrrr" name="INS1.3" 

earlyTarget="earlyTarget_INS_1_3"/> <!--6--> 

41 <phase duration="1" state="Grrrrrrrrr" name="INS1.3"/> <!--7--> 

42 <phase duration="2" state="Gurrrrrrrr" name="INS1.3"/> <!--8--> 

43 

44 <phase duration="10"state="GGrrrrrrrr" name="stage3"/> <!--9--> 

45 

46 <phase duration="3" state="yyrrrrrrrr" name="INS3.4"/> <!--10--> 

47 <phase duration="1" state="rrrrrrrrrr" name="INS3.4"/> <!--11--> 

48 <phase duration="2" state="rrurrruuuG" name="INS3.4"/> <!--12--> 

49 

50 <phase duration="40" state="rrGgrrgGgG" name="stage4" minDur="0" maxDur="40" 

earliestEnd="70" latestEnd="84"/> <!--13--> 

51 

52 <phase duration="3" state="rryyrryyyr" name="INS4.1"/> <!--14--> 

53 <phase duration="1" state="rrrrrrrrrr" name="INS4.1"/> <!--15--> 

54 <phase duration="2" state="urrruurrrr" name="INS4.1"/> <!--16--> 

55 

56 <!--logical condition definition--> 

57 <condition id="l1" value="(z:DA1 >= 3) or (z:DA2 >= 3)"/> 

58 <condition id="An" value="z:RPD + k1"/> 

59 <condition id="Ab" value="z:RPE + k2"/> 

60 <condition id="l2" value="a:DA3L"/> 

61 

62 <condition id="b1" value="(g:0  >= tgrmin_FVA)"/> 

63 <condition id="b2" value="(g:0 >= tgrmax_FVA) or (max_pedestrian >= r:9)"/> 

64 <condition id="b4" value="(c: >= t01 and tb01 > c:)"/> 

65 <condition id="b5" value="l1"/> 

66 <condition id="b6" value="(l2 and b11)"/> 

67 <condition id="b10" value="(c: >= t02 and tb02 > c:)"/> 

68 <condition id="b11" value="M1 = 1"/>  

69 

70 <condition id="b3" value="(b1 and !b2)"/> 

71 <condition id="b8" value="(b1 and b2 and b4 and b5 and !b6)"/> 

72 <condition id="b9" value="(b1 and b2 and b4 and b5 and b6)"/> 

73 <condition id="b13" value="(b1 and b2 and b4 and !b5 and b10 and b11)"/> 

74 <condition id="b12" value="(b1 and b2 and b4 and !b5 and b10 and !b11)"/>

75 

76 <condition id="earlyTarget_INS_1_2" value="b3 or b8 or b13"/> 

77 <condition id="earlyTarget_INS_1_3" value="b9 or b12"/> 

78 

79 <condition id="V" value="0"/> 

80 

81 <assignment id="V" check="b1 and b2 and b4 and b5 and !b6" value="12"/> 

82 

83 <function id="function" nArgs="4"> 

84 <assignment id="function_b16" check="1" value="!(20 >= $1)" /> 

85 <assignment id="function_b20" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:))and !(1 >= $4)/> 

86 <assignment id="function_b21" check="1" 

value="(20 >= $1) and !((c: >= $2) and ($3 >= c:))"/>

87 <assignment id="function_b19" check="1" 

value="(20 >= $1) and ((c: >= $2) and ($3 >= c:)) and (1 >= $4)"/> 

88 <assignment id="$0" check="function_b16" value="1"/> 

89 <assignment id="$0" check="function_b20" value="10"/> 

90 <assignment id="$0" check="function_b21" value="12"/> 

91 <assignment id="$0" check="function_b19" value="14"/> 

92 </function> 

93 

94 <condition id="M1" value="function:An,t01,t02,Ab"/> 

95 

96   </tlLogic> 

97</additional> 
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Figure C: Stage following diagram – TLD 

Figure D: confic.xml – SUMO 
Note, that the detectors det.xml has always to be loaded bevor the traffic light 
configuration which references the detectors is loaded.   
<configuration> 

 <input> 

   <net-file value="paper_net.net.xml"/> 

   <route-files value="paper_routes.rou.xml"/> 

   <additional-files value="paper_inductionloop.det.xml,paper_traffic_light_control.add.xml"/> 

 </input> 

</configuration>
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Abstract 
To understand the influence of the automated shuttles on active modes as pedestrians and 

bicyclists, data was collected at the pilot site Linköping within the context of the European project 
SHOW, where AS provide regular transport service on the campus and run along a corridor restricted 
to bike and pedestrian traffic with pre-defined stops. Three types of data were collected, i.e. video 
data, shuttle data and traffic count with use of Telraam, while the first one was the main data source 
for analyzing VRU behaviors and the others were used for checking the validity of video data. The 
investigation mainly focused on VRU’s space usage, speed, acceleration and lateral position and 
distance with and without AS presence. Bikes maneuvers, compatible with overtaking, were also 
examined. The analysis results can help for simulation model improvement. 

1 Introduction 
The aim to introduce automated shuttles (AS) into daily life is to extend and enhance mobility 

quality and services as well as improve user experiences. It is also expected to increase accessibility not 
only in the temporal and spatial respects, but also in the aspect of user groups. Accordingly, more and 
more demonstrations take place for examining the respective impacts for further improvement on AS 
planning and operation. In some of demonstrations, active modes as pedestrians and bicyclists share 
space with AS. Due to the current regulations in many European countries and requirements on safe 
operations on and/or from the manufactures most AS run at low speed. Under such condition, AS’s 
performance and possible contribution on transport system are limited as well. Furthermore, the 
introduction of automated shuttles on bike paths might imply additional interactions and delays for 
bicycle traffic. To analyze the interactions and potential delays the movements can be recorded via 
camera systems with computer vision, generating trajectories. However, there is also a need to 
investigate how the effects depend on the penetration rates and possible operation speed of the AS. 
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Traffic simulation is a suitable supplementary instrument for evaluating AS’s impacts under different 
conditions given that models in traffic simulation can properly represent road users’ behaviors. In this 
paper, extracted trajectory data from video data, collected in the shared space at the test site Linköping, 
was analyzed with the following aims 

• to better understand the general influence of the AS introduction on VRU;

• to extract key pedestrian and bike related parameters/characters for enhancing simulation
models, such as desired speed distributions for pedestrians and bikes, clearance distances
between pedestrians, bikes and AS and maneuvers related to overtaking actions.

Apart from the video data, trajectory and operation data, collected by AS, and traffic count and 
speed data collected by Telraam [1] was also used for cross-checking the data validity and for gathering 
traffic demand for a longer time period for future upcoming traffic simulation experiments. 

2 Test site Linköping 
Test site Linköping is a part of the Swedish twin mega sites [2] within the European project SHOW 

[3]. The main objectives are to improve user experience and to provide a robust first and last mile 
solution to public transportation. The test site’s overall layout is illustrated in Figure 1(a), and it is 
divided into two parts according to the demonstration phases. The first part is the university campus as 
surrounded by the blue dotted line. During the data collection period two AS ran in clockwise direction 
with maximum speed 14 km per hour, whilst there are three AS in operation currently. They serve 8 
pre-defined locations, indicated as red dots. The planned AS schedule is 20 minutes. The second part is 
the adjacent residential area, as bounded by the yellow dotted line.  

(a) Layout of the test site Linköping (b) Simulation network of the campus area

Figure 1: Overview of Test Site Linköping 
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The data analysis and the ongoing simulation work with SUMO [4] focus on the campus area (see 
Figure 1(b)) [5, 6, 7]. The analyzed video data was collected at the B-Huset in the shared space on the 
eastern side, marked in pink in Figure 1. In this area, cyclists and shuttles share the bike path, located 
in the middle of the space, and pedestrians can cross the bike path anytime if necessary. All intersections 
on campus are priority-controlled intersections.  

3 Data processing and verification 
Data was collected from three sources, i.e. video-camera based measurement system from Viscando, 

Telraam and log data from the AS, and is briefly explained below. 

• Shuttle data: it consists of the AS trajectory information, i.e. timestamp, position expressed in
longitude and latitude and speed, and the operational data, such as status of the vehicle door,
battery level, load information, operation mode (manual or automatic), etc. The latter one is
irrelevant to this study scope.

• Telraam data: it contains the number of passages per type over a cross-section at B-Huset in the
shared space. In addition, the counts are given together with an estimate of the speed and the
direction of which the object is moving.

• Viscando data: the measuring site was chosen in the middle of the shared space corridor with
the consideration of the road infrastructure and the locations of lamp posts. Two OTUS3D
cameras from Viscando were deployed. Figure 2 and Figure 3 show the space layout and the
coverage overview from the video cameras.

Data from shuttles and the OTUS3D cameras were available for the entire study period from the 
20th of September 10:00 AM to the 26th of September. As the Telraam counter was set up later, data 
from the counter is available from the 22nd of September 12:00 AM to the 26th of September. Since 

 

from the post

Figure 2: Space layout of the measuring site 
Source: [8] and Google Map (right) 
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the shuttles did not operate during weekends and evenings, the study period is from the 22nd to the 24th 
of September between 8:00 and 18:00. 

The OTUS3D cameras captured all road users in the area with the highest attention to detail. Thus, 
this is considered to be the main data source used for analysis. Both the shuttle data and the Telraam 
data were mainly used for verification purposes as both data sources were very limited for the purpose 
of studying variations in traffic performance of bicyclists with and without shuttle presence.  

Furthermore, the OTUS3D camera data was processed and cleaned due to some misclassifications 
(only for AS), ghost trajectories, trajectory fragmentation with temporal/spatial jumps and short 
trajectories. All trajectories shorter than 9 meters were excluded. Pedestrian trajectories with space jump 
larger than 3 meters, and bicycle trajectories with space jump larger than 6 meters were also excluded. 
Lastly, trajectories with inconsistencies in time sampling rates were split if time jump exceeded 3 
seconds. In the end, data was split into two groups: (1) Data set 1 – Trajectory data when a shuttle was 
present, and (2) Data set 2 – Trajectory data when no shuttle was present. 

The time periods with shuttle presence were relatively short, causing an imbalance in the amount 
of data between the two datasets. Also, the shuttles were not always detected correctly, and the 
corresponding amount was underestimated (10% - 40% daily in the whole study period) when 
comparing with the ground truth shuttle data. In the end, the data set with shuttle presence is naturally 
smaller and constitutes 2% of the entire data set. Approximately 15% and 11% of the data in the data 
sets 1 and 2 were not used for analysis respectively.  

In addition, the flow comparison between Viscando data and Telraam data was also carried out. 
Figure 4 (a), (b) and (c) show that the Telraam counter consistently underestimated the traffic volume 
in comparison to the Viscando system with regards to pedestrians and bicyclists. It implies that 
Telraam counter, which is developed to count passages over a cross section, seems to have difficulty 
to handle traffic counting in a shared space where objects move more freely than those on normal 
roads. However both systems show that traffic peaks appeared around 12:00 PM, and close to 17:00 
PM, which coinsided with lunch break and the last lecture given at the university. 

Figure 3: Coverage overview of the measuring site from the video cameras [8] 
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4 Data analysis 

4.1 Space usage 

(a) 

(b) 

(c) 
Figure 4: Hourly traffic volumes detected by Viscando and Telraam 
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As mentioned in Section 2, the shared space was originally designed to be used by pedestrians and 
cyclists, and has then also been used by AS since 2020, where cyclists and AS share the bike path. 
Figure 5 shows the collected trajectories by type and direction when AS were present. The directions 
of pedestrian and cyclist flows were mainly from north to south and from south to north, whilst the AS 
ran only from north to south. It also shows that both pedestrian and cyclists mainly used their respective 
designated paths, but did deviate from these to some extent using each other’s paths as well.  

The usage of bike path with and without the AS presence was further analzed. The result in Table 1 
shows that AS ran 99.5% within the bike path as expected, and their paths deviated from the pre-defined 
path sometimes due to unexpected events, which can also be oberseved from their trajectories in Figure 
5. The pedestrians tended not to use the bike path even when the AS were not present. The percentage
of pedestrains using the bike path slightly decreased from 7.2% to 5.3% when the AS were present. In
comparison to that, the decreasing rate for cyclists reached around 20%, while 68% of cyclists used the
bike path without AS presence. It indicates that cyclists were those directly affected by the AS
introduction. Pedestrians were also affected due to that cyclists use then more often the sidewalks with
the AS presence.

Figure 5: Object trajectories when shuttle was present 

X position (m) Type with shuttle presence without shuttle presence 
-2 <= x <= 2

(within bike
path) 

AS 99.5% - 
pedestrian 5.3% 7.2% 
bike 47.0% 68.2% 

Table 1: Changes in space usage with and without shuttle presence 
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4.2 Speed and acceleration 
To understand the influence of the AS introduction on the motions of pedestrians and bikes, mean 

speed, mean acceleration and the respective standard deviations for each object type were analyzed. 
The result is summarized in Table 2 and illustrated in Figure 6. It shows that the mean speed of bikes 
was slightly higher when traversing through the study area in the same direction as the shuttle in 
comparison to that when bikes were moving in the opposite direction of the shuttle. This is not entirely 
unexpected as there is a slight slope in the north part of the study area. Therefore, bikes entering the 
study area from the north might have gained a little speed. It also shows that bikes tended to slow down 
in both directions when the shuttles were present. However, such slow-down is not statistically 
significant according to the t-test result with a significance level of 0.05.  

(a) with shuttle presence

(b) without shuttle presence
Figure 6: Mean speed and standard deviation per type and direction with and without AS presence 

AS 
presence 

type Southbound (AS’s running direction) Northbound 
mean 
speed 

speed 
s.d.*

mean 
acc.* 

acc 
s.d.*

mean 
speed 

speed 
s.d.*

mean 
acc.* 

acc 
s.d.*

Yes 
ped. 1.4244 0.3526 -0.0003 0.3935 1.3231 0.5057 0.0139 0.4541 
bike 3.4367 1.3088 0.0149 0.8962 3.5557 1.1880 0.0624 0.8669 
AS 2.0756 0.4902 -0.0247 0.6269 - - - - 

No ped. 1.2503 0.4911 0.0022 0.4044 1.2306 0.5394 -0.0016 0.6261 
bike 4.1919 1.5903 0.0077 0.9128 3.7995 1.3492 0.0386 0.7294 

*: s.d.: standard deviation; acc: acceleration 
Table 2: Mean speed and acceleration by type and direction with and without AS presence 
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Regarding pedestrians’ speed it seems that there was a small tendency for pedestrians to walk 
slightly faster when the shuttle was present. According to the t-test the mean speed difference is 
statistically significant at a confidence level of 0.05. It could potentially mean that pedestrians got a 
sense of urgency when the shuttle was present and therefore walked slightly faster. Moreover, there 
were substantially fewer crossings while the shuttle was present. Thus, another possible reason could 
be that speeds during straight walking are faster than those during crossing. In any case it is hard to 
know exactly why the data shows this unexpected result and would need deeper investigations.  

When looking at the accelerations both pedestrians’ and bikes’ mean accelerations were around 0 
m/s2 either with or without the AS presence, and no statistically significant difference exists between 
the mean accelerations with and without the AS presence for both object types. 

The illustration in Figure 7 gives a clear overview about the speed-acceleration relationship of each 
object type when AS were present. AS’s speed spectrum was similar to the pedestrians’ speed spectrum 
(between 0 and 3 m/s), whilst bikes’ speed spectrum was relatively wider. The acceleration spectrum 
was mainly between 1 and -1 m/s2 for all object types. A few of pedestrians’ accelerations were close 
to 2 or -2 m/s2. It could be due to the misclassification or measurement errors.  

4.3 Lateral position and distance 
Figure 8 (a) and (b) show lateral positions of bikes and pedestrians for the case when a shuttle is 

present and the case when no shuttle is present. Both figures show that bi-directional bicycle traffic 
shifted to the same direction, i.e. to the east of the shuttle, when the shuttle was present. It seems as the 
sidewalk shift was larger for the southbound bikes than for the northbound bikes. In addition, it seems 
that bikes travelling in the opposite direction of the shuttle tended to encroach the sidewalks more than 
those travelling in the shuttle’s running direction. On the contrary, pedestrians still mostly walked or 
stood on the pedestrian paths although some pedestrian activities occurred on the bicycle paths as well. 
There is not much of a difference in the two studied situations although there seemed to be a slight 
increase in the probability to choose the pedestrian paths when the shuttle was present. These findings 
correspond to the result shown in Section 4.1 space usage. 

Moreover, the lateral distances in relation to the longitudinal distances between objects and AS were 
also examined. Figure 9 depicts that pedestrians mostly kept at least a lateral distance 3 m away from 

Figure 7: Relationship between speed and acceleration per type and direction with the AS presence 
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the shuttles’ x positions in the shuttles’ running direction. When the longitudinal distance between 
pedestrians and shuttles was less than 10 m, the respective lateral distance increased to mostly more 

(a) bikes (southbound)

(b) bikes (northbound)

(c) pedestrians (both directions)
Figure 8: Bikes’ and pedestrians’ lateral positions with the AS presence 
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than 4 m. In the opposite northbound direction, the minimum lateral distance was around 3.8 m, and it 
increased to more than 4 m with a longitudinal distance less than 10 m. In comparison to that, the lateral 
distances of the southbound bikes varied between 0.4 m to 4.3 m within 10 m longitudinal distance, and 
tended to decrease when the longitudinal distance increased, i.e. cyclists tended to move back to the 
bike path when they are getting far away from the shuttles. In addition, it seems that bikes’ lateral 
distances to the shuttles’ x positions varied quite large even when the respective longitudinal distance 
less than 10 m. The minimum lateral distance within 10 m longitudinal distance was around 0.8 m. In 
addition, there is a tendency for cyclists to decrease their lateral gaps when their longitudinal gaps 
increase in the southbound direction, but not in the northbound direction.  

4.4 Interactions between objects and shuttles 
Interactions between objects and shuttles cannot be observed from extracted trajectory data, only 

the maneuvers resulting from cyclists/pedestrians intending to take. Accordingly, only the 
corresponding action points, not decision points, can be discovered. Some interactive maneuvers, 
compatible with yielding, following, and overtaking, were observed according to the respective time-
space diagrams. Such interactive maneuvers appeared quite rarely in the study area during the whole 
data collection period. Most of them were between bikes and shuttles, since pedestrians mainly used 
sidewalks. The mainly identified maneuvers were the maneuvers related to overtaking and conflict 
avoiding in the southbound and northbound directions respectively. Accordingly, the required time 
distribution for such maneuvers can be derived from the corresponding time-space diagrams.  

A. Overtaking maneuvers

The concept to derive the afore mentioned duration distribution is to firstly identify the object 
candidates which fulfill the pre-defined criteria corresponding to an overtaking maneuver. The proposed 
criteria consist of (1) an object catches and passes the respective shuttle at a certain time point within 
the same time window, i.e. there is a cross point in the respective y-positions-based time-space diagram; 
(2) the x-position of the object in (1) gets closer and closer to the shuttle’s x-position over time after
catching the shuttle; and (3) the x-position of the object in (1) begins to get farther away from its

Figure 9: Lateral distances in relation to the longitudinal distances between the objects and the AS 

*: x_dist: lateral gap (m) between object’s and shuttle’s x-positions; y_dist: longitudinal gap (m) between 
object’s and shuttle’s y-positions 
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previous x positions and the shuttle’s x-position at some certain time point before catching the shuttle. 
After that, the time (Tovertake) spent for the whole overtaking-related maneuver is divided into two parts: 

• ta: duration between the point when a bike catches up with a shuttle, i.e. reaching the same y
position, and the point when this bike begins to deviate its path from the shuttle path (see
Figure 10).

• tb: duration between the point when a bike catches up with a shuttle, i.e. reaching the same y
position, and the point when this bike moves back to the bike path (see Figure 10).

B. Maneuvers to avoid conflicts

Following the similar concept in Section A objects are selected as candidates when their maneuvers 
correspond the following characters: (1) An object is coming towards the shuttle running in the opposite 
position; (2) The object in (1) deviates his/her path from the bike path before meeting the shuttle (move-
out); and (3) The x-position of the object in (1) gets closer and closer back to the bike path, i.e. shuttle’s 
x-position) over time after meeting the shuttle (move-back). The time (Tavoid) spent for the whole
maneuver is also divided into two parts, just like Tovertake:

• tc: duration between the point when a bike meets a shuttle at the same y position and the point
when this bike begins to deviate it path from the shuttle path (see Figure 11).

• td: duration between the point when a bike meets a shuttle at the same y position and the point
when this bike moves back to the bike path (see Figure 11).

Figure 10: Time-space diagram of the exemplary objects with overtaking maneuver 

*: fat dash line: shuttle’s x positions; thin dash line: shuttle’s y positions; fat solid line: 
bike’s x positions; thin solid line: bike’s y positions. 
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The reason for the time separation is due to incomplete trajectory data or/and trajectory 
fragmentation, which can be seen in Figure 11 as example. Moreover, data interpolation will be applied 
as well in order to get more samples. Accordingly, the respective duration distributions can be derived. 
The implementation work is currently undertaken. 

5 Conclusion and perspective 
Video-camera based measurements has been used for traffic data collection since years due to its 

efficiency and effectiveness for temporally and spatially collecting large amount of road user 
movements. Various processing methods have been developed and commercialized. With the 
consideration of data protection respective image resolution is normally limited and it can result in some 
imprecision in data extraction especially when other conditions are not adequate, such as light, 
visibility, monitoring position and the complexity of movements. In this study, some imprecise data 
exists in the extracted trajectory data, and it could be resulted from several situations, e.g. (short) 
incomplete trajectories du to shuttles blocked the objects behind, double counting due to shadow effect, 
misclassification due to that pedestrians walked with bikes or they were too close to each other. 
According to the comparison result with the ground truth shuttle data approximately 70% of the shuttle 
passages were captured correctly. Moreover, the analysis of pedestrian and bicycle trajectories resulted 
in an error between approximately 11% and 14% depending on the dataset. Since there are only 
anonymized videos available for pedestrians and bicyclists, it is harder to correctly identify all the 
errors. It is assumed that uncertainties in the data still exist after data filtering. In addition, Telraam 

Figure 11: Time-space diagram of the exemplary objects for avoiding conflicts 

*: fat dash line: shuttle’s x positions; thin dash line: shuttle’s y positions; fat solid line: 
bike’s x positions; thin solid line: bike’s y positions. 
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counter seems to have difficulty to properly count the passages of each object type in a shared area 
where pedestrians and bikes can move more freely than standard roads. 

According to the analysis results bikes were the main objects directly affected by the AS 
introduction. They tended to encroach sidewalks when the shuttles were present. Pedestrians tended to 
continue using sidewalks and were possibly then affected by the changed movements of the bikes 
accordingly. The shuttle presence did not statistically significantly affect the acceleration behaviors of 
either pedestrians or bikes. However, the mean speeds of both road users were slightly affected by the 
shuttle presence. Bikes tended to traverse the area with a lower mean speed while the shuttle was 
present. The possible reasons could be that bicycles got hindered by the shuttles operating on the bike 
path or/and cyclists were not being able to travel at their desired speed due to the reduction in available 
space (with AS presence). In contrast to the bikes, there was an increase in pedestrians’ mean speed 
with statistical significance when the shuttles were present. Despite of the result of statistical 
significance the amount of speed increase is very limited (0.17 m/s southbound and 0.09 m/s 
northbound). Together with the consideration of (1) no difference in acceleration behavior and (2) little 
difference in lateral positioning it would be difficult to observe or feel a real speed difference while 
walking throughout the area. Further investigation is then needed. Moreover, interactive maneuvers 
between objects and shuttles were examined with use of time-space diagrams. Only quite limited 
maneuvers, compatible with yielding, following and overtaking, were observed, while the latter one 
occurred more often.  

In this paper, the focus puts on if there is any influence on the selected performance indicators 
(speed, acceleration, space usage) with the AS introduction. A concept to derive the duration 
distributions for the time spent for overtaking-related maneuvers is proposed. The respective 
implementation work is undertaken. In the next step, the interactions between pedestrians and bikes 
under the AS presence will be investigated. Moreover, several parameters, such as speed/acceleration 
distributions, durations for overtaking-related maneuvers will be derived and comparisons with 
simulated data will be carried out for examining and enhancing the respective microscopic traffic 
modelling. If the data is sufficient, the focus will be further put on the use of Bayesian inference to 
model the decision of the maneuver compatible with overtaking. 
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Abstract

In the past years the progress in the development of autonomous vehicles has increased
tremendously. There are still technical, infrastructural and regulative obstacles which need to be
overcome. However, there is a clear consent among experts that fully autonomous vehicles (level 5
of driving automation) will become reality in the coming years or at least in the coming
decades. When fully autonomous vehicles are widely available for a fair trip price and when
they can easily be utilized, a big shift from privately owned cars to carsharing will happen. On
the one hand, this shift can bring a lot of chances for cities like the need of less parking space.
But on the other hand, there is the risk of an increased traffic when walking or biking trips are
substituted by trips with shared autonomous vehicle fleets. While the expected social, ecological
and economical impact of widely used shared autonomous vehicle fleets is tremendous, there are
hardly any sci-entific studies or data available for the effects on cities and municipalities. The
research project KI4ROBOFLEET addressed this demand. A result of the project was SUMO4AV, a
simulation environment for shared autonomous vehicle fleets, which we present in this paper. This
simulation tool is based on SUMO, an open-source traffic simulation package. SUMO4AV can
support city planners and carsharing companies to evaluate the chances and risks of running shared
autonomous fleets in their local environment with their specific infrastructure. At its core it comprises

the mapping of OpenStreetMap1 entities into SUMO objects as well as a Scenario Builder to create 
different operation scenarios for autonomous driving. Additionally, the simulation tool offers a
recursive execution with different fleet sizes and optimization strategies evaluated by economic and
ecologic parameters. As eval-uation of the toolset a simulation of an ordinary scenario was
performed. The workflow to simulate the scenario for shared autonomous vehicle fleets was
successfully processed with the SUMO4AV environment.

1 Introduction

Within the last decades, the automotive industry has enhanced their development with many
automation levels ending up in autonomous vehicles (AVs) [12]. Today that field has got a wide
interest and is further expanding. The German parliament has recently passed a regulation
that facilitates the operation of autonomous driving in February 2022 [3]. However, critical
topics such as safety or trust in autonomous systems still needs to be further improved [12].
It is expected that in future shared autonomous vehicles (SAVs) will be one building block of

1Url: https://www.openstreetmap.org/
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mobility in cities. Thus, the definition of autonomous systems and scenarios and how they can
positively influence the mobility for individuals and the society need to be further investigated
[12]. One challenge is the lack of scientific data about the operation of shared autonomous
vehicle fleets (SAV fleets). The simulation of AVs is one method to obtain realistic data. It
helps to get deeper insights into influence factors in a very complex setup, e.g., fleet sizing,
pricing, or changes in the individual mobility behavior [13].

To address this issue, we developed a toolset for the simulation of SAV fleets, called
SUMO4AV, that we describe in this paper and which was developed within the project
KI4ROBOFLEET 2. SUMO4AV extends the Simulation of Urban Mobility (SUMO) package
[10]. We use the scenario of transportations between points of interest using SAV fleets (called
TPOI-Scenario) as running example. To be precise, the TPOI-Scenario simulates people who
need a ride after work from office or from home to other amenity locations such as restaurants,
parks or cinemas.

Basically, SUMO enables the simulation of vehicles on roads by representing the roads as
edges and the junctions as nodes in a network. The vehicles can move along the edges and
turn to another edge/road at the junctions. However, this representation as a network alone
does not provide a satisfactory implementation of SAV fleets and their behavior in distinct use
cases. The implementation of the TPOI-Scenario and other complex scenarios requires the
simulation model to reflect different points of interest, which cannot be modeled directly by the
SUMO network. This is where SUMO4AV comes into play. It enables SUMO to simulate SAV
fleets that operate according to defined scenarios and that reflect points of interest. SUMO4AV
comprises several steps. In the first step, infrastructure data such as roads and points of
interests are analyzed and processed. This data can be extracted from OpenStreetMap and will
be transferred into a simulation model. The OSMWebWizard [6] tool from SUMO is used to
perform the import. The second step enables to connect the map entities (e.g., POIs) with the
SUMO objects like edges and parking areas. To enable interactions with the map entities, a
projection of the map entities on the network is provided. With this realization, vehicles can
now navigate to the map entities that are located on an edge. The third step allows to create
customized scenarios. Finally, the fourth step offers a choice of predefined routing algorithms
to simulate the customized scenarios.

The developed SUMO4AV environment is evaluated using map data from Mannheim, a
city in Germany. Through an iterative process, the simulation was executed with multiple fleet
sizes and optimization algorithms. The results show that the simulations give insights into
the operation of SAV fleets. Using such a tool, cities or companies in the mobility sector are
enabled to evaluate local opportunities and risks for the operation of SAV fleets reflecting local
characteristics, like infrastructure, POIs or living and business areas [13].

The rest of the paper is organized as follows: Section 2 provides a review of relevant lit-
erature. Section 3 represents the workflow of how to generate the SUMO model to simulate
the TPOI-Scenario. This comprises, firstly, how a static simulation model is created using
OpenStreetMap data. Secondly, it includes how the required entities are modeled as SUMO
objects for the TPOI-Scenario. Thirdly, it involves how the TPOI-Scenario is configured and
which optimization algorithms are provided. The extended simulation environment is evaluated
in Section 4 using a practical example, and the resulting findings and ideas for further work
initiatives are finally presented in Section 5.

2Url: https://www.keim.iao.fraunhofer.de/de/projekte/KI4ROBOFLEET.html
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2 Related Work

An observable recurring challenge is the development of reliable and usable mobility scenarios
to evaluate new mobility concepts especially in the context of AVs. Several publications present
simulation scenarios that deal with the simulation of fleet behavior patterns.

Simulations of autonomous and non-autonomous fleets: Wang et al. [18] extend
an approach of Autonomous Intersection Management at an intersection with the focus on
connected AVs by considering different challenges such as pedestrian road crossings. Vakayil et
al. [17] describe a model for the allocation of user demand between an autonomous mobility-on-
demand-system and mass transit. They developed a framework to support an operator’s fleet
management planning. Spieser et al. [15] use rebalancing strategies to enable a fleet operator
to achieve a favorable balance between customer satisfaction and corporate goals. Different
rebalancing strategies are evaluated in a simulation. The last two approaches do not reflect
different types of POIs for the simulation of SAV fleets. From our point of view, this aspect
is important for running more precise scenarios in the context of autonomous mobility and,
hence, to show its potential. Although the information about the characteristics of POIs is
extracted via the OSMWebWizard, this information is only used to display buildings and other
map entities in the SUMO GUI. In contrast to that, our approach is to integrate information
about the POIs into SUMO by a new component, so that the individual AVs can access them
in a simulation.

Simulations of conventional fleets in SUMO: Malinverno et al. [11] developed frame-
work to simulate vehicle-to-infrastructure. That framework supports different communication
protocols. Codeca et al. [4] run mobility scenarios that support different kinds of traffic de-
mands or free-flow patterns, scenario dimensions and road categories. Additionally, multi-modal
traffic evaluations and traffic scenarios like rush hours are considered. The SUMO simulation
also contains POIs, which are extracted from OpenStreetMap. As opposed to our approach, the
POIs are differentiated binarily: into buildings and parking lots. In another work by Codeca et
al. [5] the impact of vulnerable road users on road traffic is investigated. The goal is to optimize
traffic and reduce traffic jam through Cooperative Intelligent Transport System applications.
Bautista et al. [2] investigate the effects of dynamic route planning in vehicle simulations. They
examine the impact of vehicle rerouting capabilities on vehicle mobility and vehicle network
connectivity.

Simulations of SAV fleets in SUMO: S. Alazzawi et al. [1] performed a study that
included the analysis of traffic count data and mobile phone data to investigate mobility de-
mand and traffic jams. This data was combined with extensive simulations of conventional
(classical) cars and self-driving robo-taxis in Milan, Italy. SUMO was chosen as the simula-
tion environment and the map material was imported from OpenStreetMap. The self-driving
robo-taxis are offered as on-demand mobility service and have the goal to transport people
over a certain route and to pick up other users on the way having the same travel destination.
The focus of Schweizer et al. [14] is on the development of travel demand generators that aim
to create person-based plans for SUMO. This involves generating populations, activities and
associated locations, travel plans, and determining travel time. Based on the calculated travel
times, people can modify their travel plans. In Li et al. [9], the open-source simulator for
autonomous driving research CARLA3 is combined with SUMO to create a traffic environment
for training AVs. Another approach is followed by Kusari et al. [8]. Here, the background traffic
is approximated to reality by adjusting the parameter distribution of well-known car-following

3Url: https://carla.org/
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models from driving databases. The second difference is that scenarios are abstracted by taking
the strengths of the SUMO simulator and combining them with those of OpenAI Gym. The
work of Gasper et al. [7] deals with the use of autonomous shuttles. Here, the autonomous
shuttles move autonomously in an area shared with pedestrians. The simulation in SUMO is
intended to derive further requirements for the development of AVs. The vehicles as well as
the pedestrians both move on the streets and certain situations are simulated, such as a shuttle
passing pedestrians without collisions.

3 Creating the SUMO Model

The workflow and its activities for extracting map entities and generating scenarios with
SUMO4AV is presented in Figure 1. The figure also sketches the topics of the following subsec-
tions. In the first activity, Import Map, the OSMWebWizard extracts the map material from
OpenStreetMap and stores it in individual XML files. The file osm.poly.xml contains informa-
tion about the POIs, which is further processed in the self-developed component SUMO4AV
(grey box) that also comprises the other activities of the workflow. Basically, converting data
from OpenStreetMap using the OSMWebWizard provides a convenient, reliable and fast way to
create a running SUMO model from scratch. To be able to access map entities like POIs and
buildings in the SUMO model created with the OSMWebWizard a workaround must be per-
formed, which is implemented in the second activity, Process Map Entities (Section 3.2). The
SUMO4AV environment provides GUI based functions to process POIs and make them acces-
sible for AVs. In the next activity, Generate Scenarios (in Section 3.3), the Scenario Builder
is used to generate the considered TPOI-Scenario. The last activity, Run Simulation (3.4), de-
scribes the flow of the simulation, which includes on the one hand the input file (osm.sumocfg)
and static parameters, which go directly into the SUMO simulation and on the other hand the
dynamic routing of the selected strategies of the AVs, which are transmitted to the simulation
via the interface TraCI 4.

3.1 Import Map

The first activity aims to create a SUMO model from OpenStreetMap by selecting a map
area within the OSMWebWizard. For the TPOI-Scenario we used map data from Mannheim,
Germany. The output comprises several files, which are shown in Figure 1. They are necessary
for an executable SUMO model and are listed in the following:

• osm.net.xml contains all essential map entities for the simulation like roads, lanes, rails
and traffic lights.

• osm.poly.xml contains polygons and points representing specific areas, buildings and POIs.
This file is not required to run the simulation but improves the map appearance in the
SUMO GUI by displaying buildings, POIs and other map entities in different colors.

• osm.view.xml contains the SUMO GUI settings.

• osm.[x]trips.xml: contains a random base traffic specification (see Section 3.4).

• routes.xml: contains base traffic specification from traffic counting data (see Section 3.4).

• osm.sumocfg : is the SUMO master file which includes the files above.

4Url: https://sumo.dlr.de/docs/TraCI.html

Reichsöllner et al. | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

86



Figure 1: Workflow diagram for map entity extraction and scenario generation for AVs

3.2 Process Map Entities

As described in Section 3.1, the osm.poly.xml file is one of the output files of the first activity
and serves as input file for the second activity, which contains the mapping of POIs to SUMO
accessible objects.

Every entity in the file contains a unique Id and further information (e.g., the POI type
like amenity.restaurant), which was transferred from the OpenStreetMap data. In the SUMO
GUI these entities can be inspected, and their view settings can be changed, but there is no
interaction possible between these map entities and the simulation. For closing this gap, we
developed the SUMO OSM POI-Tools, which are part of SUMO4AV (Figure 2). They provide
a set of functions to create a workaround that meets the aforementioned demands of interacting
with map entities for more detailed and realistic simulations and scenario analysis. Furthermore,
they comprise functions to analyze, process, map, and display POIs and other map entities.

Figure 2 shows how different OpenStreetMap entity types (e.g., building.office) are imported
and colored in a customizable way. Each entity type consists of a main type or primary feature
(e.g., building) and a sub type (e.g., office). The usage of types and subtypes follow a certain
principle described in the OpenStreetMap documentation5. The first step in the SUMO OSM
POI-Tools is to select the map entity types that should be considered for the simulation.
Optionally, the colors for these map entities on the map can be set.

After the selection, the following functions (scripts) for further processing are available:

• Create Edge Positions: With this script each entity instance of the selected entity
types gets a position in the SUMO model. The entity instances are mapped on a SUMO
edge (by the edge Id) and given an edge position to make them accessible for the SUMO
routing algorithm. The edge position is a float value between zero and the length of the
edge. To identify which end of the edge equals to the zero position the edge definition
has to be considered. The result is the file POIsEdges.xml.

5Url: https://wiki.openstreetmap.org/wiki/Map features

Reichsöllner et al. | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

87



Figure 2: Extract of the SUMO OSM POI-Tools

• Convert Parking Areas: With this script the entity instances with type amenity.parking
are converted to parking areas (with several parking lots) which can be utilized by the
SUMO routing algorithm. The routing strategies, described in Section (3.4), use these
parking areas to park AVs that have no trip request at hand. In some amenity.parking
entities the number of parking lots are specified. We use this data to create the correct
number of parking lots for the simulation. If the number is not available, we take a default
value. With this script, also the type amenity.car sharing can be converted to parking
areas, because it is considered that today’s carsharing companies will be operators of SAV
fleets in the future. The output file parkingAreas.xml is created and can be included into
the SUMO model, i.e., the osm.sumocfg file.

• Apply View Settings: This script modifies the osm.poly.xml input file according to
the entity type selection and color settings in the SUMO4AV GUI to apply them in the
SUMO GUI.

• Create POI Statistics: This script creates the POI Statistics.csv file with statistics of
the occurrence for each map entity type (e.g., building.school) of the selected map area.

• Create Map Legend: This script creates the POI Legend.png file providing a map
legend with all selected entity types and their current color settings. The polygons are
represented as colored squares and the POIs as colored points.

3.3 Generate Scenario
The Scenario Builder module of SUMO4AV, shown in Figure 3, is a tool to create customized
lists of random requests which define c ertain s imulation s cenarios. For e ach s cenario a  l ist of
pickup and target map entity types has to be specified as input d ata. A  use case of a  common
leisure (after work) scenario could be, for example, to pick up customers at an entity of type
building.office and to bring them to an entity of type amenity.restaurant or le isure.fitness centre.
A scenario usually comprises a list of several transportation use cases with separate pickup and
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target map entity types. The Scenario Builder randomly picks map entities of the specified
pickup and target map entity types and creates a list of customer requests. The submission
time is randomly distributed, so the requests arise randomly within the total simulation time
specified in the SUMO4AV GUI. For each use case in the list, a certain number of requests
is specified. An additional feature is the roundtrip option. Here, for each request a return
ride is scheduled after a certain stay time, which can optionally be normal distributed with
a given standard deviation to model the customer behavior more realistically. The output of
the Scenario Builder is the CustomerRequests.xml file, which contains a list of SUMO readable
edge Ids and edge positions for the pickup and target map entities. This file contains also
additional meta data for the considered map entities (e.g., restaurant type, opening times and
the url), but this data is not used yet by our toolset.

Figure 3: The SUMO4AV Scenario Builder module

3.4 Run Simulation

After creating the SUMO model and the CustomerRequests.xml file, the simulation can be
started with three different routing strategies, which define how the customer requests from
the CustomerRequests.xml file are processed. In the following Table 1, the developed routing
strategies as well as the related conditions and parameters are described. The two parameters
LF (lateness factor) and RT (realistic time) for the shared strategy are not self-evident. They
are used to determine the length of the detour to pick up a second customer on a similar route.
Following calculations are performed in this context: travel time= sumo estimate * RT and
expected finish = travel time * LF where sumo estimate is the estimated travel time from the
SUMO routing algorithm.

The interaction of the running SUMO traffic simulation with AVs and customers is im-
plemented in Python, using the SUMO traffic control interface (TraCI)6. TraCI provides a
large set of functions to access and modify entities of a SUMO traffic simulation during the
runtime. In the current implementation of the fleet management algorithm and the routing
strategies, TraCI was used to push the data of the Python objects for AVs and customers to
the running simulation and to fetch the current state. When a customer request from the Cus-
tomerRequests.xml file is submitted, the waiting customer is placed via TraCI at the specified
pickup edge id and edge position. Then an AV needs to be dispatched to this customer. SUMO
provides a configurable Taxi dispatch algorithm to simulate this case of demand responsive

6Url: https://sumo.dlr.de/docs/TraCI.html
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transport (DRT)7. All strategies described in Table 1 use the SUMO Taxi dispatch algorithm,
but they differ in the way how the requests are processed.

Table 1: Overview of the routing strategies
Strategy Description Conditions Parameters
simple After submitting a customer request,

the closest free AV is assigned to this
request.

only one customer
per AV, fleet size is
fixed

fleet size

look
ahead

The fleet is informed about the pre-
dicted location of an upcoming cus-
tomer request in advance, e.g., 10 min
(look ahead time) and sends an AV
to this location. The idea is to make
request predictions based on AI tech-
niques.

only one customer
per AV, fleet size is
fixed

fleet size, look
ahead time [sec]

shared The AV can make a detour to pick
up a second customer with a similar
route.

One or two cus-
tomers per AV,
flexible fleet size

LF (lateness fac-
tor)*, RT (realis-
tic time)*

* The length of the detour to pick up a second customer on a similar route can be specified
by two parameters called lateness factor (LF) and realistic time (RT).

Optionally, it should be considered to include daily base traffic in  or der to  ge t a more
realistic simulation model. A straightforward way to create a random base traffic is  provided
by the OSMWebWizard, where different types and flow-rates of  traffic (i.e., cars, trucks, buses,
motorcycles, bicycles, pedestrians, trams, trains and ships) can be included. For each type of
traffic entity, a separate file is created, e.g., osm .bus.trips.xml. However, in order to consider a
more realistic base traffic, a more complex approach can be performed by using traffic counting
data, which can be converted to XML route files (routes.xml) by using the SUMO routeSampler8 

script.

4 Evaluation

For the evaluation of SUMO4AV and the complete workflow we performed the TPOI-Scenario
at the city center of Mannheim (Figure 4). The scenario represents a typical and realistic leisure
scenario, which can be observed in cities. Pickup locations are, for example, apartments, offices
or residential areas and target locations are restaurants, cinemas, pubs, theatres, fitness centers
or beer gardens.

This TPOI-Scenario has been applied to the workflow d escribed i n S ection 3 . Firstly,
we imported the map area from the OSMWebWizard as described in the first a ctivity i n the
workflow (Figure 1 ). Secondly, we applied the next steps by using SUMO4AV. They comprised
the processing of the map entities (activity two in the workflow). For that we used the SUMO
OSM POI-Tools to select and to colorize the map entities which were relevant to the TPOI-
Scenario. This is shown in Figure 2. Moreover, we generated the TPOI-Scenario with the
7Url: https://sumo.dlr.de/docs/Simulation/Taxi.html
8Url: https://sumo.dlr.de/docs/Tools/Turns.html#routesampler.py
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Figure 4: TPOI scenario: City center of Mannheim in the evening

Scenario Builder as shown in Figure 3 including several pickup and target map entity types.
The output file CustomerRequests.xml of the Scenario Builder contains 300 requests and was
processed 14 times with three different routing strategies, each with different parameter sets.
With respect to the routing strategies as described in Table 1, the simulations with the simple
strategy and with the look ahead strategy were each performed with a fleet size parameter
of 10, 25, 50, 100 and 200. Additionally, for the look ahead strategy, the parameter for the
look ahead time was set to 900 seconds (15 minutes). The shared strategy was applied with
four different pairs of values for the lateness factor (LF) and realistic time (RT): LF=1.2 and
RT=1.0, LF=1.4 and RT=1.0, LF=1.2 and RT=4.0, LF=1.4 and RT=4.0. All 300 requests
were submitted within the first 30 minutes, but the initial simulation time was set to a much
higher value of 10 hours (36000 seconds) to ensure, that even simulation runs with small fleet
sizes can complete all 300 requests and subsequently to make the simulation results comparable.
When all 300 requests are fulfilled, the current simulation run is aborted and the result file is
written. We originally planned to use base traffic derived on traffic counting data. Therefore
the city of Mannheim provided traffic counting data of 89 counters in the considered map
area, which were converted to XML route files (routes.xml) by using the SUMO routeSampler9

script . After we faced severe stability problems by including the (routes.xml) file, we decided
to perform the proof-of-concept simulations without base traffic.

The AVs were considered as fully electric vehicles with following boundary conditions for
the simulation and the subsequent calculation of key figures:

• Energy consumption per vehicle: 15kWh/100km

• Emissions: 401g/kWh (according to the German energy mix for generating electricity
2019 [16])

• Energy costs: 0,32€/kWh

• Fleet base costs per vehicle: 3€/h

9Ibid.
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Figure 5: Simulation results of the SUMO4AV (TPOI-Scenario)

Figure 5 shows that the runs for the TPOI-scenario in the SUMO4AV environment were
a successful proof-of-concept simulation with comprehensible results, even when the negligence
of the base traffic might gloss over the re sults. The required simulation time depends strongly
on the fleet size and varies between 2305 seconds and 26363 s econds. Further simulation results
are ecological and economical key figures, e .g., C O2 e missions, t otal c osts, o r waiting times,
calculated as average values per request to make these values more descriptive. The results
show, that for the given boundary conditions with 300 requests, a minimum fleet s ize o f 50 is
necessary to achieve an acceptable waiting time of less than 30 minutes. A fleet size of 25 leads
to waiting times of more than one hour and a fleet s ize o f 1 0 l eads t o waiting t imes o f more
than 3 hours, but with such small fleet s izes the costs p er k ilometer a re l ess than 0 .5€ which 
can be attractive for some specific u se c ases. The l ook a head s trategy s eems t o b e t he most
efficient strategy concerning waiting time and cost per ki lometer. As  expected, by  transporting
more than one passenger at once, the shared strategy causes the lowest emissions, because
the average driving distance per request is significantly lower compared to the other strategies.
Surprisingly the costs per kilometer are slightly higher, which can be explained by the fact, that
the parameter set which specifies the length of the allowed detour to pickup further passengers
is not optimized yet. This leads to idle time for some vehicles, causing higher fleet base costs.
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5 Conclusions

In this paper we presented SUMO4AV, a simulation environment that facilitates the simulation
of SAV fleets in cities. It extends the SUMO package by making OpenStreetMap entities
like POIs accessible during simulation runs and by the possibility to define different use case
scenarios. We described in detail the complete workflow to create, customize, run and analyze
the simulations. SUMO4AV is currently in a prototypical state available on GitHub10.

As proof-of-concept, we simulated a leisure scenario where an SAV fleet transports people
in the evening after work from office or from home to locations like restaurants or cinemas.
The scenario was successfully performed by importing OpenStreetMap data of the city center
of Mannheim with the OSMWebWizard, by extracting map entities and creating the scenario
with the SUMO4AV environment, by running the simulation with SUMO and by attaining
first simulation results. We used three different routing strategies for the SAV fleet and several
different fleet sizes. Due to stability problems during runtime the proof-of-concept had to be
performed without base traffic.

Future work is planned to improve the usage of the environment and to perform larger
studies on the routing strategies, especially for the shared strategy in order to optimize the
parameter sets. A further improvement can be attained by implementing a combination of
the shared and the look ahead strategy to unite the advantages of both strategies. Also, the
stability problems by using base traffic needs to be investigated and solutions must be found.
When these problems are solved, we want to apply SUMO4AV for other municipalities, in the
ideal case also using further data from mobility studies. It is also planned to implement an
additional feature to consider charging states and charging cycles to give SAV fleet operators
more accurate results regarding the maximum degree of capacity utilization of an SAV fleet.
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Abstract: This paper presents some new developments related to TrafficFluid-Sim, a lane-free 
microscopic simulator that extends the SUMO simulation infrastructure to model lane-free traffic 
environments, allowing vehicles to be located at any lateral position, disregarding standard 
notions of car-following and lane-change maneuvers that are typically embedded within a (lane-
based) simulator. A dynamic library has been designed for traffic m o nitoring a n d lane-free 
vehicle movement control, one that does not impose any inter-tool “communication” delays 
that standard practices with the TraCI module introduce; and enables the emulation of vehicle-
to-vehicle and vehicle-to-infrastructure communication. We first s u mmarize t h e v a rious core 
components that constitute our simulator, and then discuss the new capability to utilize the 
bicycle kinematic model, additionally to the usual double-integrator model, as a more realistic 
model of vehicle movement dynamics, particularly for a lane-free traffic e nvironment. Finally, we 
developed the necessary components so that the bicycle model can alternatively be combined 
with the use of global coordinates for more realistic simulation in road networks with curvature, 
such as roundabouts.
Keywords: lane-free traffic, m icroscopic m odelling a nd s imulation, c onnected a nd automated 
vehicles

Introduction

Technological advancements in the automotive industry reinforce the promise of Connected and 
Automated Vehicles (CAVs) [1] featuring superb perception and automated driving capabilities, 
fostered by vehicle-to-vehicle and vehicle-to-infrastructure communications. In consequence, 
novel traffic flow paradigms appear that consider current or projected capabilities of CAVs, such 
as the TrafficFluid p aradigm [ 2] t hat i nvestigates n ovel t raffic environments fe aturing tw o novel 
vehicle characteristics, namely: (i) lane-free traffic, m e aning t h at v e hicles’ l a teral placement 
can be arbitrary within the road boundaries; and (ii) vehicles may use their automated driving 
and connectivity capabilities to apply “vehicle nudging” caused by other neighboring vehicles. 
Such a pushing force may lead vehicles to adjust their lateral position appropriately to accom-
modate faster vehicles upstream to pass. In addition, nudging is found to lead to improved 
characteristics of the emerging traffic flow, e.g., in  terms of  stability and capacity [2].

The use of traffic s i mulation s o ftware i s  c e ntral i n  t h e d e sign a n d t e sting o f  v e hicle move-
ment strategies and related applications and can significantly f a cilitate r e search i n  emergent
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Figure 1. A high-level overview of the different parts that constitute our lane-free microscopic
simulation tool.

traffic paradigms. As such, it is important to have an appropriate simulator for lane-free traffic
environments, one that allows for large-scale simulation scenarios, and its use can be easily
generalized for different types of vehicles, connectivity schemes and road network structures.

To this end, we provide an extension of the SUMO simulator infrastructure, rendering it appro-
priate for the design and assessment of several vehicle movement strategies, including vehicle
nudging, under the lane-free paradigm, considering the existence of CAVs. In what follows,
we first summarize the most important aspects of our simulator, which are presented in more
detail in [3]. Then, we present our newer development, the adoption of the bicycle model as an
alternative to the existing double-integrator model, and the use of global coordinates for certain
applications. Finally, we discuss imminent future work and conclusions.

Simulator Overview

SUMO [4] (Simulation of Urban MObility) is the prevalent platform to work with since it is an
open-source project and therefore appropriate for the adjustments and extensions needed.
While the use of TraCI for CAV related endeavors is quite popular in other existing tools, such
as VEINS [5], “iTETRIS Control System” (iCS) [6] and MOSAIC (formerly known as VSim-
RTI) [7], TraCI was not considered due to limited efficiency and lack of customizability. Note
that we are interested in designing and testing novel vehicle movement strategies in lane-free
environments, and that our simulator should support large-scale experiments. Simulations with
a large number of controllable vehicles would require a substantial amount of communication,
when using TraCI, since each vehicle would request relevant information through the TraCI API;
and also provide a custom control input through it. Therefore, in simulations containing, e.g.,
thousands of vehicles, these delays would impose a significant bottleneck. We note that, while
the Libsumo tool of SUMO addresses the communication overhead of TraCI, its use is still quite
limited and it does not operate with the GUI application of SUMO. Moreover, TraCI (and SUMO
in general) is designed for lane-based traffic, meaning that it relies on notions tied to lane-based
traffic, such as car-following and lane-changing behaviors. Only through internal modifications
and extensions in the codebase we could provide a simulator that is appropriate for simulation
in lane-free traffic environments, and one that allows for further customization and extensions
for imminent and future requirements.

Therefore, we have opted to construct a new dynamic library and an API that are tied to lane-
free traffic environments. In Figure 1 we show a high-level overview of our application, which
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Figure 2. The ego vehicle on the on-ramp indicated with red, has direct access to the vehicles
downstream located in the next segments.

contains the dynamic library that the user has access to and can develop code in C/C++ for
any vehicle movement strategy, provided that the code yields the necessary control input of
the vehicles in every discrete time-step. This is in contrast to the standard operation of SUMO,
where the user has to select among a specific range of car-following and lane-changing models,
and can only tune the associated set of parameters.

The code developed by the user is compiled into a .dll or .so file (depending on the operating
system, windows or linux based), and is connected with our extension of the SUMO application,
that contains the implementation of our API and the enabling of lane-free vehicle movement.
With this API, the user has access to information regarding the traffic environment through
the use of unique IDs (similar to TraCI). One can monitor online each vehicle’s current status
(position and speed), and request information regarding certain vehicle properties (e.g., length,
width, followed route). Road Networks in SUMO have a graph structure, with road segments
corresponding to the graph’s edges. According to the unique ID of each segment, the user has
access to relevant information, such as the IDs of the vehicles currently within that segment
(ordered according to longitudinal position), and information regarding densities of vehicles
within user-defined adjustable subregions of the segment. Dimensions of each road segment
(length and width) are also available. Moreover, simple loop detectors placed through the road
network can be monitored through the API as well.

We should emphasize that we mostly rely on the local coordinate system that vehicles employ
through SUMO, meaning that each vehicle’s position is w.r.t. the current road segment. This
lifts the task of manually performing turning operations when needed and allows us to design
vehicle movement strategies considering that each ego vehicle always operates on a straight
highway. Essentially, a vehicle only needs to be placed appropriately laterally so that it follows
the requested route (this is further discussed in future work, see Section 4). Each vehicle can
observe downstream and upstream traffic, w.r.t. its own position and routing, and obtain an
ordered (according to longitudinal distance) set of the neighbor IDs downstream and upstream.
The important aspect of this feature is that the ego vehicle can automatically obtain information
about the vehicle in the next (or previous, for upstream requests) road segments, depending
on the specified range. Figure 2 showcases an example with an ego vehicle on an on-ramp
that is about to enter the acceleration lane of the highway. It can request access to vehicles
downstream by simply providing a longitudinal observation distance. The ego vehicle observes
the highway as an unfolded straight road due to geometry of the road being handled by SUMO,
and we performed the necessary developments so that information regarding longitudinal and
lateral distances of neighboring vehicles (from the ego vehicle) is calculated accordingly.

Lane-Free Vehicle Movement with the Bicycle Model

In this section, we first briefly address how we consider the positioning of the vehicles in SUMO
for our lane-free settings, and discuss the standard use of the double-integrator model for the
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movement dynamics. Then, we present the new option for movement dynamics with the bicycle 
kinematic model, along with the alternative to operate under global coordinates alongside this 
model.

Longitudinal and Lateral Positioning in SUMO

Regarding the positioning of the vehicles, the local coordinates (x, y) of the rectangular-shaped 
vehicles that we consider are as follows: The longitudinal position x of the vehicle is the distance 
of its center point from the starting point of the road segment. On the other hand, the lateral 
position y measures the distance from the right road boundary to the vehicle’s center point. 
Hence, the vehicles observe a single lateral position, without knowledge about lateral placement 
w.r.t. to lane centers, as this information is not meaningful anymore for designing a vehicle
movement control strategy under lane-free settings.

Double-Integrator Model

The ‘Ballistic-Update’ option of SUMO for the longitudinal movement, and the incorporation 
of lateral dynamics in a similar double-integrator manner, constitute a double-integrator model 
for the lane-free vehicle movement dynamics, in which longitudinal and lateral movements are 
disjointed and are controlled by respective independent (longitudinal and lateral) accelerations. 
For the double-integrator model, the orientation of the vehicle is essentially according to the 
ratio of longitudinal versus lateral speed, but it is always considered in parallel with the road 
boundaries for simplicity. This approximation is good enough for highways, where we typically 
have vehicles moving with high longitudinal speeds, while lateral speeds are much smaller. 
In the following subsection, we present an alternative approach, namely the bicycle kinematic 
model, which provides a more realistic depiction of movement dynamics, since it incorporates 
explicitly the orientation of the vehicle.

The associated controller for vehicles employing the double-integrator model should provide 
the control inputs, i.e., a longitudinal and a lateral acceleration (in m/s2) value in every time-
step. Also, under the lane-free paradigm, where vehicles can be placed anywhere laterally 
within the road boundaries, a collision between two vehicles is reported when their rectangular 
shapes overlap. This is a straightforward check, given the vehicles’ information regarding posi-
tioning and their dimensions (length, width), since the vehicles’ orientation is assumed parallel 
with the road boundaries.

Bicycle Kinematic Model

An important development, necessary to enable microscopic simulation of complex urban net-
work applications such as [8], is the incorporation of the bicycle kinematic model [9] into the 
simulator. In Figure 3, we show a snapshot from a roundabout scenario containing vehicles that 
use the approach of [8] and utilize the bicycle kinematic model and global coordinates. In this 
model, the vehicle’s front (and back) wheels are abstracted to a unique front (and back) wheel 
located at the respective axle middle points, whereby the front wheel is steerable, controlling 
the vehicle’s orientation, and there is a unique forward acceleration (control input) and a unique 
forward speed, both in the direction of the current vehicle orientation. We refer the interested 
reader to the relevant paper [9] for more details regarding this kinematic model. In this model, 
longitudinal and lateral dynamics are interconnected and nonlinear, and, more generally, the bi-
cycle model is more accurate in describing vehicle movement than the linear double-integrator 
model and is particularly interesting in a lane-free environment, when vehicles are driving in 
curves at relatively low speeds, such as in urban networks and roundabouts. In such cases, 
the user has the option to select an alternative method for vehicle movement dynamics in lane-
free traffic. The bicycle model’s state variables are, beyond the longitudinal and lateral vehicle
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Figure 3. Vehicles employing the bicycle kinematic model with global coordinates in a round-
about scenario.

position (x, y), the vehicle orientation θ and the forward speed v; while the control variables are
the forward acceleration and the steering angle. Figure 4 illustrates the state variables of the
bicycle model, where we do not have two separate dynamics for longitudinal and lateral move-
ments, but a unified and more realistic movement, involving the actual orientation resulting from
steering the vehicle.

In terms of technical developments for the simulation, this involved an internal implementation
regarding the position (x, y) and speed v update process of the vehicles, according to the
bicycle kinematic model. Information regarding the orientation θ of the vehicle and the ability to
directly change it is already available through SUMO, so we can adjust its value through internal
extensions within the source code. The local coordinates (x, y) of the vehicle again refer to its
center, as discussed earlier, and as depicted in Figure 4. However, the bicycle model utilizes
the position corresponding to (xb, yb) in Figure 4, i.e., the vehicle’s orientation changes with
respect to this point. This is considered within our implementation, and this point is also directly
available to the user who wishes to design a movement strategy using the bicycle model. User
access to the orientation of the vehicles is granted through the API, providing either global (with
respect to the global coordinate system of SUMO) or local (with respect to the longitudinal axis
of the current road vehicles reside) coordinates. The associated lane-free controller should
simply provide the value for the forward acceleration F (in m/s2) and the steering angle δ (in
rad) as control inputs for every time-step (instead of the longitudinal and lateral accelerations
of the double-integrator model).

As of now, we have a simplified way that incorporates the orientation of the vehicles for the
collision check. Essentially, we draw a rectangle that is in parallel to the road and contains
the vehicle (red rectangular in Figure 4), and report a collision if these rectangular regions of
two vehicles overlap. Of course, this procedure may report a collision even if two vehicles do
not actually collide. However, it also guarantees that no collision will be disregarded. An exact
collision identification method is in the course of implementation and will be reported when
ready and tested.

Troullinos et al. | SUMO Conf Proc 3 (2022)  "SUMO User Conference 2022"

99



Figure 4. Illustration of a vehicle utilizing the bicycle model.

Bicycle Kinematic Model with Global Coordinates

The local coordinate system of SUMO is utilized for the bicycle model, and, as such, controllers
do not need to take into account the geometry of the residing road. Hence, the operating ori-
entation of the vehicles is local, i.e., with respect to the road segment the vehicle is currently
located at, so turning operations (e.g., at junction points) are handled through SUMO. However,
for certain applications, we may be interested in controlling turning operations instead of letting
SUMO automatically handle such procedures, something that is also needed for more realistic
depiction in road structures with continuous curvatures, e.g., roundabouts. We also provide
the option to do so, in a way that does not affect or cause regression to existing functionalities.
One can utilize the bicycle kinematics along with global coordinate control for more realistic
behavior, that does not succumb to the road structure, but is rather based on the global Carte-
sian coordinates (x, y). This feature serves to facilitate an impending application that involves
lane-free movement in a roundabout, where we wish to work with junctions for vehicles enter-
ing and exiting, and utilize polar coordinates instead of Cartesian ones for vehicles operating
within the roundabout. This provides a more realistic and more convenient depiction of the ac-
tual vehicle and emerging traffic behavior compared to the use of the standard local coordinate
system SUMO provides. Of course, in such a global environment, we need to properly design
the above-mentioned behaviors.

For this feature, the use of internal mapping from global to local coordinates (and vice-versa)
was crucial, given that the existing infrastructure and our extensions rely on the local coordinate
system that SUMO provides. If we would completely neglect the local coordinates in favor of
simplicity in the development process, then certain features would not function properly, e.g.,
the observation capabilities on surrounding vehicles, and as such, essential information for the
design and real-time operation of vehicle movement strategies would not be available. Global
coordinate control is tied only with the bicycle kinematics, since it would be quite restrictive for
the double-integrator model, due to the absence of orientation control.

Future Extensions

A forthcoming extension is the incorporation of lateral boundaries based on the desired path
for vehicles to follow, along with the capability to control them at execution time through the API
for generalizing the vehicles’ behavior in more complex road networks with vehicles following
different routing schemes. In lane-based environments, vehicles can follow any (feasible) path
by simply choosing lanes appropriately. For instance, a vehicle entering a highway from an
on-ramp will typically need to perform a lane-change in order to merge on the highway. SUMO
provides information regarding the availability of the road downstream through information on
available lanes downstream. In our case, a vehicle adhering to the lane-free paradigm, wishing
to enter a highway through an on-ramp, will again need to merge on the highway appropriately.
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Figure 5. Left and right lateral boundaries for vehicles entering or scheduled to exit from the
off-ramp.

Then, it is important to introduce an equivalent notion in a lane-free domain, since providing
information on available lanes downstream is not appropriate in lane-free environments.

As of now, such maneuvers are performed with ad-hoc techniques, tied to specific traffic
scenarios. Yet, there is a need to establish a formal way for vehicles to follow left and right
boundaries on the road, guiding them to always operate within an admissible lateral region,
so as to comply with their routing. This is illustrated in Figure 5, where we observe a vehicle
with a route initiating from the on-ramp and leading to the off-ramp. The blue lines indicate
the left and right lateral bounds, relevant to the path the vehicle needs to follow. As such,
the vehicle will be able to request information regarding these two lateral bounds through the
API, at any longitudinal distance corresponding to its position. Therefore, the vehicle will have
the necessary time to adjust its behavior in order to be located within the bounds, and, as a
consequence, to follow its desired routing scheme. Besides the application for on-ramps and
off-ramps, this feature is crucial to enable microscopic simulation on emerging applications such
as internal boundary control in lane-free traffic for two-way streams, as introduced in [10]. This
will also involve an online update process for the boundaries’ lateral position through the API.

Conclusions

In this work, we presented some advancements of TrafficFluid-Sim, an extension of SUMO
appropriate for lane-free traffic environments, that is developed for the research project Traf-
ficFluid [2]. Specifically, we discussed on the new capability to employ a more realistic depiction
for movement dynamics with the bicycle model, which is more appropriate in certain applica-
tions that consider the lane-free paradigm. This tool is already being utilized for the design and
evaluation of various vehicle movement strategies [2], [11]–[14].

Data Availability Statement

The associated code is developed for the Trafficfluid project [2] and cannot be shared as of now.
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Abstract 

The ongoing research in intelligent transport systems and connected and automated 
vehicles, enabled by advancements in artificial intelligence, integrating traffic 
simulations has become an essential part of product/software development for the 
automotive industry. Nowadays, traffic simulations are used to mimic real-world 
environment scenarios for virtual testing of advanced transportation technologies. . 
With the increase in data collection methods for traffic flow, the calibration of the 
microscopic traffic simulations has emerged as an important research area. The 
underlying question in traffic modeling is how accurately simulations can mimic the 
real environment traffic flow conditions? This paper attempts to create a framework 
for microscopic traffic simulation calibration procedure which can be scaled for large 
networks. This paper makes the following major contributions. First, a calibration 
framework is proposed which harnesses the existing data set collected from The 
Ohio State University (OSU) campus bus service (CABS) busses using Global 
Positioning System (GPS) sensors to determine the traffic state in the real 
environment and create a microscopic traffic simulation. The traffic simulation is 
implemented for a section of the OSU campus (“Woody Hayes Drive") in an open-
source traffic simulator – Simulation of Urban MObility (SUMO). The traffic flow 
generation is probabilistic to introduce variability between scenarios. The second 
contribution is the development of a communication interface between real-time 
dSpace ASM Hardware in Loop setup with SUMO to create a complete real-time 
simulation of urban environments for advanced driver assist systems (ADAS) virtual 
testing. Ademonstration scenario is the Ohio State University campus network with 
traffic demand generated using the calibrated model from the first part of the work. 

1 Introduction 
Traffic simulations are widely used by city planners and government agencies to 
understand the movement of people and goods in a road network environment. With 
increased interest in ADAS and connected and autonomous vehicles (CAV) 
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technologies for intelligent transportation, traffic simulations have become an 
important part of automotive research. The development of ADAS and other 
connected vehicle fields requires millions of miles of testing to demonstrate 
improvements. Most often virtual simulation testing is a safer, more efficient and 
faster alternative to road testing[1]. For a realistic testing environment setup, traffic 
simulations play a very critical part. Traffic simulations consist of multiple modes of 
transportation (vehicles, pedestrians, scooters, etc.) interacting with a road network 
environment and infrastructure (e.g. traffic lights and signs). In a microscopic traffic 
simulation, each individual traffic participant is modeled as independent agent while 
ensuring the overall traffic flow matches the desired flow. The task of calibration of 
traffic simulation entitles the accurate vehicle flow information and vehicle 
interaction in a closed-loop road environment. Despite the wide research in the field 
of traffic simulations, the calibration approach used requires on-road traffic data 
which intern requires sensors infrastructure [2], such as, cameras, induction loop 
detectors, etc. This data may not be readily available due to cost and time.  
A university campus is a unique environment as it consists of cars, buses, utility 
vehicles, and foot traffic. The traffic patterns tend to follow a specific pattern that 
depends on class schedule and vacations. Besides, the OSU campus offers unique 
opportunities for further research related to smart cities. Hence, this study focuses on 
modeling multi-modal traffic on the OSU campus. The key challenge is that vehicle 
counts data is very limited due to lack of sensors. The calibration approach used in 
this paper is based on GPS locations available from CABS busses. This approach 
does not require vehicle counts data from infrastructure sensors.  In this approach we 
first compute the average travel time at intersections using the GPS data and 
calibrate the model to match this travel time. The underlying assumption is that the 
travel time is an indicator of traffic flow rate.  
Calibrated traffic models alone are not sufficient to test ADS and ADAS safety. The 
vehicle under test (a.k.a. ego vehicle) should be controlled using the algorithm being 
tested. The fidelity of the ego vehicle models, and traffic simulator models are 
decided based on the validation level. However, establishing a seamless 
communication between vehicle simulators and traffic simulators is not always 
trivial as the models have different accuracies and time steps. In this paper we 
consider one such application of traffic models to Hardware in the Loop (HIL) 
testing of ADAS algorithms. A lot of research has been done in scenario-based 
testing of ADAS and CAVS [3]. The scenario-based testing consists of few vehicles, 
shorter time horizon and smaller distances. There are lot of ADAS testing software 
packages like MATLAB® ADT, dSpace ASM, CARLA, Roadrunner, etc. But no 
commercial or open-source available software has linked the traffic simulation with a 
vehicle simulator in a HIL setup [1]. In this paper the traffic simulation model 
calibrated for a section of the OSU campus is linked with the ADAS equipped 
vehicle model running on a HIL setup to demonstrate a closed loop virtual testing 

Kalra et al. | SUMO Conf Proc 3 (2022)  "SUMO User Conference 2022"

106



environment.  The challenge is due to difference in the vehicle dynamics model 
fidelities and differences in time steps between SUMO and dSpace ASM. The 
SUMO model can run at maximum of 10Hz, but the HIL setup must run at-least at 
100Hz. Besides, the yaw rate of SUMO vehicle dynamics is not accurate enough to 
feed directly to the high Degree of Freedom (DoF) vehicle dynamics model of ASM. 
Hence a synchronization interface is developed to approximate vehicle positions.  
This paper is structured as follows. Section 2 of the paper describes the traffic model 
calibration process and results of calibration for a section of the OSU campus. In 
Section 3 we explain the process to integrate traffic simulation models with HIL 
simulator. Finally, in Section 4 we make concluding remarks.  

2 Multi-Modal Traffic Calibration using Probe Data 

The simulation structure in SUMO is represented by Figure 1. The three primary 
components in a sumo simulation configuration file are: vehicle demand, additional 
files (virtual detectors and other road infrastructure) and network (road network with 
links and junctions etc.). The additional files and the network components of the 
simulation are not the variables for traffic flow calibration. The calibration 
parameters in this paper are the vehicle flow(count) in the network. The car 
following model used is Intelligent Driver Model (IDM). The selection of IDM as 
the candidate for car following model is based on current literature which depicts its 
better performance in high density junction traffic scenario to match the real-world 
driving behavior. [4]  
The road network selected is Woody Hayes Drive in the OSU campus. The selected 
road network map is shown in Figure 1. The network consists of six intersections, 
out of which, five intersections are controlled by traffic signals. There are total 
twelve entry points for the vehicles in the road network. The primary reasons for 
selecting this section of the network are:  

• Woody Hayes connect the major routes of CABS on OSU campus
• Woody Hayes Drive connects major department and student classes buildings thus it has the

most footfall during office hours 8:00 a.m – 9:00 a.m (time considered in this simulation for
traffic data)
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Figure 1: Woody Hayes Drive Network 

Figure 2: SUMO Traffic Simulation File Structure 
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The traffic simulation is multimodal with three vehicle classes - pedestrian, passenger cars and buses 
(CABS). The parameters used for these three modes are given in Table 1. 

Table 1 Traffic Agents Parameters 

 Parameter Pedestrian Car Bus 
Length 0.215 4.3 12 
Width 0.478 1.8 2.5 
Height 1.719 1.5 3.4 
Minimum Headway Gap (m) 0.25 2.5 2.5 
Maximum Acceleration (m/s2) 1.5 2.9 1.2 
Maximum Deceleration (m/s2) 2 7.5 4 
Emergency Braking Deceleration 
(m/s2) 5 9 7 

Maximum Speed (km/h) 5.4 180 85 

2.1 Traffic Data 
Any traffic model calibration process has two key steps – 1) road network 
calibration, and 2) traffic flow calibration. Road network calibration requires 
information about road segments and junctions including number of lanes, road 
length, speed limits, stop signs etc. Open Street Maps (OSM) is an open-source data 
consisting of all the necessary information regarding roads and junctions. However, 
the map imported from the OSM may have errors, particularly at junctions the 
number of lanes may not be correct or turn only lanes may not be correctly assigned. 
These errors are corrected using the process depicted in Figure 4. The corrections 
were validated by manually confirming against google maps street view. The other 
part of road network is traffic signal timings. The traffic signals assignment is done 
in SUMO using the traffic controller phase timings provided by the OSU Traffic and 
Transportation Management (TTM) Department and the phase timings are then 
inspected at the actual location to validate the controller data. 
The vehicle flow data for three different modes are decided as per the following: -  

• The CABS busses frequency and schedule are used to generate the flow(count) data. All the
CABS busses are equipped with GPS logging devices. The data is available from 2011 to
2019.  This data consists of GPS coordinates (latitude and longitude) and corresponding GPS
timestamp. The data was filtered to extract this data of the busses on routes that pass through
the selected region on campus. The data is not sampled consistently, meaning the sampling
time varies depending on the number of available satellites and other uncertainties. Hence,
another filter was implemented to discard inconsistently logged data. Figure 3 shows the
variability in successive data logs from GPS.
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Figure 3: CABS GPS Timestamp delta distribution 

• The traffic flow data was separately collected for three days which gives the number of
vehicles for the vehicles at all five junctions in the network. The count data is used to
generate turning ratios at each junction. Figure 5 shows an example for turning ratios from
the count data. The turning ratios are used as probability of turning in the SUMO simulation.
For example, a vehicle coming from west direction in Figure 5 as 30% probability of a left
turn.

• Due to lack of pedestrian count data, the pedestrian flow is assumed to be constant at one
pedestrian every 60 seconds at each crossing lane at the junctions. This frequency is used
since the pedestrian walk green signal timing is fixed and it is activated upon pedestrians’
request. The chosen frequency ensures that the pedestrian walk signal is requested in each
cycle.

Figure 4: Network Correction Process 
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Figure 5: Turn Ratio Example 

2.2 Vehicle Generation 

SUMO has three packages to build the traffic in a network environment. The three 
packages are DFROUTER, JTRROUTER and DUAROUTER. In this work 
JTRROUTER is used to generate the vehicles. JTRROUTER requires turning ratios 
and vehicle flow probabilities from entry points in the network. The turning ratios 
are calculated from turn count data and doesn’t change during a simulation run. The 
flow probabilities are used as a calibration parameter by the optimization algorithm. 

2.3 Objective function and calibration parameters 

The CABS GPS data is used as an indicator for the traffic density in the network. 
The entire network is divided into twelve sections. Six in West-East direction and six 
in East-West direction. A simple algorithm is developed which calculated the travel 
time in the network section as shown in Figure 6.  

Figure 6: Network Section CABS Travel Time 

GPS data has uncertainty in the position log. In this research we did not have access 
to the sensor information to quantify the uncertainty. Hence, as shown in Figure 6, a 
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circle with radius R centered at the point of interest on the road is used as a region to 
find a GPS data point. The R used in the algorithm is 30m. Each section has two 
reference GPS coordinates, the start reference point ( 𝐿𝑟𝑒𝑓 ) and end section
reference point ( 𝑅𝑟𝑒𝑓). The algorithm searches the GPS data file and if a data point
is found within the circle around 𝐿𝑟𝑒𝑓 then the timestamp (𝑇𝐿𝑟𝑒𝑓

) and position
coordinates (𝑋𝐿𝑟𝑒𝑓

) are stored in a memory. Then the algorithm finds the next
timestamp (𝑇𝑅𝑟𝑒𝑓

) when the GPS coordinates are in the circle centered at 𝑅𝑟𝑒𝑓.  The
𝑇𝑅𝑟𝑒𝑓

 and GPS position coordinates (𝑋𝑅𝑟𝑒𝑓
)  are stored in a separate memory buffer.

To compute average travel time and speed across a junction, 𝐿𝑟𝑒𝑓  and 𝑅𝑟𝑒𝑓  are
chosen on the road such that 𝑅𝑟𝑒𝑓 is upstream of the junction and 𝐿𝑟𝑒𝑓 immediately
downstream of the junction. Timestamps of the CABS busses passing through these 
two points are logged using the algorithm described above. The time-stamps and 
corresponding GPS coordinates are used to compute average speed and average 
travel time.  

�̅� =
𝐷𝐺𝑃𝑆

Δ𝑇

�̅�𝑜𝑏𝑠 =
𝐿𝑠𝑒𝑐𝑡𝑖𝑜𝑛

�̅�

Where Δ𝑇 = 𝑇𝑅𝑟𝑒𝑓
− 𝑇𝐿𝑟𝑒𝑓

 , DGPS = 𝑓 (|𝑋𝑅𝑟𝑒𝑓
− 𝑋𝐿𝑟𝑒𝑓

|),  �̅�  is the average velocity 
within the captured GPS points and  �̅�𝑜𝑏𝑠 is average travel time in the predefined
section length. 𝑓 is function to convert geolocations to linear distance. The SUMO 
simulation environment is also divided into twelve segments and the travel time in 
simulation for vehicles is compared with the travel time from CABS GPS data 
analysis. 
The objective function used is a point mean relative error between measured travel 
time 𝑇𝑜𝑏𝑠,𝑗  and simulated travel time 𝑇𝑠𝑖𝑚,𝑗 for a section 𝑗. and the objective is to
minimize this error. The genetic algorithm in the MATLAB optimization toolbox is 
used to minimize the function. 

minimize
𝑃𝑘

 √∑ (
𝑇𝑜𝑏𝑠,𝑗 − 𝑇𝑠𝑖𝑚,𝑗

𝑇𝑜𝑏𝑠,𝑗
)

212

𝑗=1

Such that 𝑇𝑠𝑖𝑚𝑗
= 𝑓𝑆𝑈𝑀𝑂(𝑃𝑘)

𝑃𝑘 ∈  [0.05 , 0.20]   ∀𝑘 = 1,2, … ,12

where, 𝑘  are the entry points of the network,   𝑗 is the section number, 
𝑃𝑘  is the probability of vehicle generation at every one second, and 𝑓𝑆𝑈𝑀𝑂 is the
SUMO traffic simulation model. The results of this simulation model are the of 
travel times for each section obtained from E3 detectors.  The assumption here is that 
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𝑇𝑠𝑖𝑚,𝑗 ∝
1

𝑃𝑘
 . The flowchart in Figure 7 shows the process for the optimization using 

GA. 

Figure 7: Genetic Algorithm Optimization Process 

2.4 Calibration Results and Discussion 

The maximum number of generations used for GA are ten. For each generation a 
population size of 150 is generated. Here each population refers to the calibration 
parameter 𝑃𝑘 which is a vector of 12 entry probabilities in the network. From the
Figure 8 it can be observed that the objective function fitness value reaches steady 
state in the 4th generation and does not change from next generation. The Figure 9 
represents the average travel time comparison between travel time obtained from E3 
detectors (𝑇𝑠𝑖𝑚), and the observed travel time from the CABS GPS data (𝑇𝑜𝑏𝑠) for
each road section. In some of the sections the error is large and the primary reason 
for that is the inconsistency in the logged GPS data for CABS. If the delta time 
between CABS GPS timestamps can be reduced the uncertainty in the average travel 
time from calibration data set will reduce. The simulation average travel time doesn’t 
have uncertainty because the virtual detectors can track the vehicle trajectory with a 
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delta timestamp of 1 s which is very accurate compared to actual data with mean 
time of 15 s. 

Figure 8: PMRE (Objective Function) Value Evolution 

Figure 9: Average Travel Time Comparison 

3 Hardware in Loop Simulator 
In automotive research and development vehicle testing is done virtually using 
different x-In the Loop validation procedures. HIL setup is typically used for real 
time implementation of various electronic control units (ECU) along with 
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communication channels. Although HIL testing is not new in automotive 
applications, the implementation of HIL for ADS testing is not trivial due to their 
extremely complex Opearational Design Domains (ODDs). Testing CAVs can be 
performed either in the real world with all the necessary hardware or parts of the 
environment could be simulated using virtual representation. The simulation-based 
approach is a much faster, safer, and efficient alternative compared to actual road 
testing[5]. The simulation for emulating the real environment involves a critical 
component of replicating the real traffic conditions in terms of road network and 
nearby vehicle behavior with respect to ego vehicle. In this paper a framework is 
created that integrates real time HIL setup(dSPACE) with large scale traffic 
simulator. The components for this framework are a high-fidelity simulation for ego 
vehicle dynamics compared to traffic vehicles and a communication interface with 
extrapolation algorithm to transfer the traffic information between traffic simulator 
and the HIL setup (dSPACE ASM) 

3.1 Ego Vehicle Information Interface (EVI) 

Figure 10: SUMO and dSpace ASM Co-Simulation Framework 

The  Figure 10 shows how the information from the SUMO is passed to dSPACE 
ASM regarding the traffic vehicles and the feedback of ego vehicle speed and 
position from ASM to SUMO. The challenge in real time implementation is proper 
clock time synchronization between the two simulators. In SUMO TraCI is used with 
the command mentioned in Table  . The SUMO simulator calculates the new 
position for traffic vehicles at every 0.2(5 Hz) and the ego vehicle dynamics model 
and ADS control is running on HIL at 0.001s (1000 Hz). The difference between the 
time update is handled using an extrapolation algorithm in the HIL setup which 
updates the position of traffic vehicles every 1ms till the nest update from SUMO at 
every 0.2s is available. Besides, rendering visualization and using high fidelity 
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models for all the agents on the road is computationally inefficient and un-necessary. 
From ADS control perspective only fewer other significant traffic agents affect the 
perception and control of the ego vehicle. On the other hand, traffic simulation 
models simulate all the agents movements Hence, a region of interest (ROI) is 
calculated around the ego vehicle and the vehicles in this ROI are considered as 
nearby traffic vehicles. In this paper ROI with nearest 10 vehicles have been 
considered. Simultaneous to traffic vehicle information the traffic signal SPaT is also 
sent to dSPACE ASM. For SPaT only the ego vehicle nearest junction is considered 
as all the traffic vehicles are controlled by SUMO and do not need control command 
in the HIL simulator.  

Table 2: Traci Commands for the EVI 

TraCI Command Information 

traci.start() Start the SUMO simulation 
traci.simulationStep() Progress simulation by one time step 

traci.vehicle.getIDList() IDs for all vehicle in SUMO scenario 

traci.vehicle.getNextTLS(‘ego’) Get State Information for next traffic 
light in front of Ego  

traci.vehicle.moveToXY() Move Ego Vehicle to position specified 
by ASM  

traci.vehicle.getPosition() Get XY position for the fellow traffic in 
SUMO network  

traci.vehicle.getLateralSpeed() Get lateral speed in m/s t 

traci.close() Close the SUMO simulation 

traci.vehicle.getAngle() Get Yaw angle in degrees for traffic 
vehicles 

3.2 Co-Simulation Scenario & Results Discussion 

The scenario used in this paper is the calibrated traffic on Woody Hayes drive as 
shown in Figure 12. This figure shows the ego vehicle position in ASM network and 
its corresponding position in SUMO is passed. The ego vehicle travelled from West 
to East crossing six intersections. The Figure 11 is the representation of the real time 
implementation of the communication interface. At t = 0 simulation is started and 
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ego position is transferred to SUMO. Traffic vehicles positions are calculated and 
then transferred to dSpace ASM using an Ethernet interface. The SUMO and EVI 
execution time is around 150ms for the network used in this paper. The sumo step is 
paused till the clock time is 200ms and then next time step calculation starts in 
SUMO. As caching data to HIL takes time the writing of information about the 
fellow vehicles starts at 20ms before the indented clock time. 

Figure 11: One Cycle of Simulation Synchronization: Repeats every 200ms 

 Figure 13 shows the extrapolation trajectory vs SUMO output for a fellow vehicle 
in the region of interest near ego vehicle. It can be observed that the extrapolated 
drifts from the actual path. The maximum deviation observed was 40 cm which can 
be reduced by reducing the 200ms SUMO time step to 100ms or lesser. 

Figure 12: Co-Simulation Snapshot: ASM & SUMO 
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Figure 13: SUMO & Extrapolation Algorithm Fellow Trajectory Example 

4 Conclusions 

In this paper we presented an approach to calibrate the microscopic traffic simulation 
using limited dataset with genetic algorithm optimization approach. It is shown that 
the travel time across all the junctions could be approximately captured in the 
simulation using this approach. The benefit of the this approach is that it does not 
require traffic count data from infrastructure sensors. To demonstrate a use case of 
traffic simulation models in testing ADS features, the calibrated traffic simulation 
model in SUMO is then combined in a framework with the dSpace ASM HIL 
simulation. The framework uses region of interest concept to transfer only the 
relevant fellow traffic information to HIL simulator. This gives us an opportunity to 
create large network of roads in SUMO and link them with high fidelity vehicle 
powertrain and ADAS simulations. The time synchronization problem is solved by 
using the extrapolation between the larger timestep of SUMO. 
The presented work can be extended to including pedestrian vehicle class in the HIL 
simulation. Also, the framework can be extended to other xIL simulation testing 
platforms such as camera in the loop. The traffic calibration will be improved using 
the vehicle counts from the camera detection installed on OSU campus traffic 
signals. 
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5 Definitions/Abbreviations 

ASM Automotive Simulation 
Models(dSpace) 

SUMO Simulation for Urban 
Mobility 

SPaT Signal Phase and Timing 

GA Genetic Algorithm 

HIL Hardware in Loop 
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Abstract 
User equilibrium (UE) and system optimal (SO) are among the essential principles for 

solving the traffic assignment problem. Many studies have been performed on solving the 
UE and SO traffic assignment problem; however, the majority of them are either static (which 
can lead to inaccurate predictions due to long aggregation intervals) or analytical (which is 
computationally expensive for large-scale networks). Besides, most of the well-known micro/
meso traffic simulators, do not provide a SO solution of the traffic assignment problem. To this 
end, this study proposes a new simulation-based dynamic system optimal (SB-DSO) traffic 
assignment algorithm for the SUMO simulator, which can be applied on large-scale networks. 
A new swapping/convergence algorithm, which is based on the logit route choice model, is 
presented in this study. This swapping algorithm is compared with the Method of Successive 
Average (MSA) which is very common in the literature.  Also, a surrogate model of marginal travel 
time was implemented in the proposed algorithm, which was tested on real and abstract road 
networks (both on micro and meso scales). The results indicate that the proposed swapping 
algorithm has better performance than the classical swapping algorithms (e.g. MSA). Furthermore, 
a comparison was made between the proposed SB-DSO and the current simulation-based 
dynamic user equilibrium (SB-DUE) traffic assignment algorithm in SUMO. This proposed 
algorithm helps researchers to better understand the 
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impacts of vehicles that may follow SO routines in future (e.g., Connected and Autonomous 
Vehicles (CAVs)). 

1 Introduction 
One of the most critical factors in the transportation planning process is solving the traffic 

assignment problem (Bamdad Mehrabani et al., 2021). Traffic assignment determines the routes that 
are used by vehicles based on certain behavioral principles, such as, for example, each vehicle seeks 
to minimize its own travel time. Many of the current traffic assignment algorithms are based on the 
two behavioral principles of Wardrop (Wardrop, 1952): (1) Wardrop’s first principle: under user 
equilibrium (UE) conditions, no vehicle can unilaterally reduce its travel time by shifting to another 
route; (2) Wardrop’s second principle: under system optimal (SO) conditions, traffic should be 
arranged in congested networks such that the average (or total) travel time is minimized. The first 
principle (UE) assumes that each vehicle attempts to minimize its own travel time (selfish routing). In 
contrast, in the second principle (SO), it is considered that each vehicle selects a route that minimizes 
not only its own travel time but also the entire network’s travel time. 

Traffic assignment methods can be broadly classified into two categories: 1) static traffic 
assignment (STA) and 2) dynamic traffic assignment (DTA) (Saw et al., 2015; Tsanakas, 2019). In 
STA, the traffic demand is static with respect to time and is typically used for strategic transportation 
planning. In DTA, the traffic demand is not static and varies over time, and the arrival time at a link is 
different from the departure time. Although the computational expenses of DTA are higher than those 
of STA, DTA attracts researchers owing to the several limitations of STA, for example, 1) limitations 
of static models because of the use of volume delay functions (such as no overtaking effects and no 
representation of the phenomenon of congestion spillback), 2) limitations in modeling of signal 
synchronization, 3) limitations in modeling of lane-based effects (such as high-occupancy vehicle 
lanes), and 4) limitations in modeling intelligent transportation system-related applications, such as 
traveler information systems (Chiu et al., 2011). 

Different models exist in the literature to solve the DTA. The most important models are listed in 
Table 1. 

Analytical models of DTA use analytical formulations to predict the propagation of traffic in a 
network (network loading). Traffic propagation models, which are used in analytical models, are 
typically based on extensions of the Lighthill–Whitham–Richards (LWR) model (Lighthill & 
Whitham, 1955; Richards, 1956). LWR is a macroscopic one-dimensional traffic model that uses 
traffic density and speed for traffic flow propagation (Li, 2016). The traffic flow propagation during 
dynamic network modeling can be based on the cell transmission model (Ziliaskopoulos, 2000) or 
link transmission model (Yperman, 2007). Although the mathematical closed-form is available for the 
analytical solution algorithm (thus, they are highly accurate), in practice, they cannot model certain 
phenomena (such as individual vehicles and vehicle interaction) in detail due to their macro-scale 
nature. Also, applying analytical assignment problems to large-scale networks may be highly time-

Table 1: Different approaches of DTA 

Model Approach 

Analytical Based Model 
Mathematical Programming 

Optimal Control Formulations 
Variational Inequality-Based 

Simulation-based Model Micro Simulation 
Meso Simulation 
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consuming and complex to solve (Gawron, 1998). Simulation-based traffic assignment models use a 
traffic simulator to replicate the traffic flow dynamics (propagation) and spatio-temporal interactions 
(e.g., vehicle movements), which are based on micro/meso traffic flow simulation models (Saw et al., 
2015). In addition, a traffic simulator is used as part of the search process to determine the optimal 
solution (Peeta & Ziliaskopoulos, 2001). They typically conduct several iterations to obtain optimum 
values (no closed-form is available). Compared to the analytical model, the simulation-based model 
appears to be more practical because of its ability to explain traffic flow propagation in more detail. 

In the near future, several road users (e.g., connected and autonomous vehicles (CAVs)) are 
expected to follow Wardrop's second principle (SO) routines (Bagloee et al., 2017; Mansourianfar et 
al., 2021; J. Wang et al., 2019). It is important to provide a simulation-based dynamic system optimal 
(SB-DSO) traffic assignment model as a powerful tool to evaluate the impacts of such users. The 
dynamic system optimal (DSO) traffic assignment problem has been thoroughly studied in the 
literature. However, most of these works are based on an analytical model (e.g., (J. Liu et al., 2020; 
Ngoduy et al., 2021; Shen et al., 2006; Shen & Zhang, 2009; Tajtehranifard et al., 2018; Wie et al., 
1990)) and very few studies utilize a simulation-based model which either are only microscopic or 
only mesoscopic (Ameli et al., 2020a; Hu et al., 2018; Mansourianfar et al., 2021; Peeta & 
Mahmassani, 1995; Sbayti et al., 2007; Yang & Jayakrishnan, 2012). Nevertheless, previous studies 
have demonstrated the superior performance of the simulation-based dynamic traffic assignment (SB-
DTA) model (Ameli et al., 2020a), but many open-source (e.g., simulation of urban mobility 
(SUMO)) and commercial (e.g., Aimsun) traffic simulation software products do not provide SB-
DSO traffic assignment algorithms. Therefore, this study contributes to the literature by proposing a 
SB-DSO traffic assignment algorithm based on a new swapping/convergence method that implements 
a logit route choice model for SUMO. The proposed algorithm can be applied on both micro and 
meso models of traffic flow which replaces the travel time of a link with a surrogate model of 
marginal travel times (MTT) to shift from DUE to DSO. To better understand the performance of the 
proposed algorithm, three case studies were conducted. A comparison was made between the 
proposed SB-DSO and the current simulation-based dynamic user equilibrium (SB-DUE) traffic 
assignment in SUMO. The remainder of this paper is organized as follows. The notations and 
abbreviations used in this paper are presented in section 2. In section 3, the literature is reviewed, 
followed by the research methodology (SB-DSO framework) in section 4. The proposed algorithm is 
applied to three case studies in section 5, and the conclusions are presented in Section 6. 

2 Notations and Abbreviations 
The list of all abbreviations used in this paper is included in Table 2. The notations used to present 

the proposed SB-DSO solution algorithm are listed in Table 3.  

 

 

 
 

Table 2: The list of abbreviations in the paper 

Abbreviation  Meaning   Abbreviation   Meaning 

ADT Average Distance Travelled MSWA Method of Successive Weighted 
Average 

AS Average Speed MSAR Method of Successive Average Ranking 
ATL Average Time Loss MTT Marginal Travel Time 

CAV Connected and Autonomous 
Vehicles O-D Origin-Destination pairs 

DSO Dynamic System Optimal SA Simulated Annealing 

DTA Dynamic Traffic Assignment SB-DSO Simulation-Based Dynamic System 
Optimal 

DUE Dynamic User Equilibrium SB-DUE Simulation-Based Dynamic User 
Equilibrium 

DNL Dynamic Network Loading  STA Static Traffic Assignment 
GA Genetic Algorithm SO System Optimal 

LWR Lighthill–Whitham–Richards TTT Total Travel Time 
MSA Method of Successive Average UE User Equilibrium 
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3 Literature Review 
The Simulation-based DTA problem is split into two parts: 1- a simulation-based dynamic 

network loading (DNL) model and 2- an algorithm for finding the equilibrium solution (Ameli et al., 
2020b). The DNL process explains the traffic flow dynamics and determines “how flows propagate 
with time through the network along the selected paths” (Jaume Barceló, 2010). A traffic simulator is 
used as the dynamic network-loading model in the simulation-based solution of the DTA problem. 
Whereas the second part determines the path used by the vehicles and the proportion of demand at 
each instant in time allocated to this determined path.  

To find the equilibrium solution in simulation-based methods, usually, an iterative scheme is 
employed. These iterative methods start from an initial solution and update the path flow distribution 
for each iteration based on a path swapping algorithm. The reassignment process of vehicles in each 
iteration confirms whether the algorithm is in a descent direction or not. In other words, the algorithm 
forces vehicles at each iteration to follow a more efficient path than the previous iteration. Also, at the 
end of each iteration, a convergence criterion (or error) is calculated to check the algorithm's 
termination.  

This approach was initially developed by Mahmassani and Peeta (Mahmassani & Peeta, 1993, 
1995) and Peeta and Mahmassani (Peeta & Mahmassani, 1995). They incorporated a mesoscopic 
traffic simulator, DYNASMART (Jayakrishnan et al., 1994) (as the DNL model), in an iterative 
search solution framework to calculate the (marginal) travel times under the assumption of 

Table 3: Notations 

Indices 
𝑐 Index for travel times (cost) 
𝑓 Index for traffic flow 
𝑖 Index for iteration steps 
𝑘 Index for path 
Sets 
𝐺(𝑉, 𝐴) traffic network 
𝐴 set of links  (𝑎 ∈ 𝐴) 
.𝑉 set of nodes (𝑣 ∈ 𝑉) 
𝐽(𝑅, 𝑆) set of vehicles (𝑗 ∈ 𝐽) 
𝑅 set of origin nodes (𝑟 ∈ 𝑅) 
𝑆 set of all destination nodes  (𝑠 ∈ 𝑆) 
I set of simulation iterations (𝑖 ∈ 𝐼) 
𝑃𝑗,𝑖

𝑟−𝑠 set of alternative paths for vehicle 𝑗 in iteration 𝑖, travel from origin 𝑟 to destination 𝑠 
Variables, parameters, and elements 
.𝑐𝑎

′ empty network travel time 
.𝑐𝑎

𝑖 travel time of link 𝑎 in iteration 𝑖 
.𝑐�̅�

 𝑖 marginal travel time of link 𝑎 in iteration 𝑖 
.𝐶𝑘

𝑖 travel time of path 𝑘 in iteration 𝑖 
.𝑝𝑗,𝑖

  𝑟−𝑠 selected path for vehicle 𝑗 in iteration 𝑖, travel from origin 𝑟 to destination 𝑠 
.𝑝𝑗,𝑖

∗,𝑟−𝑠 adjusted selected path for vehicle 𝑗 in iteration 𝑖, travel from origin 𝑟 to destination 𝑠 
.𝑝𝑟𝑘,𝑗

𝑖  probability of selecting path 𝑘 by vehicle 𝑗 in iteration 𝑖 
.𝑅𝑆𝐷𝑛

𝑖 relative standard deviation of average travel time in the last n elements of 𝑖𝑡ℎ iteration 
.𝑎𝑣𝑖′ the average travel time of the entire network in iteration 𝑖′ 

Mehrabani et al. | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

124



information availability for advanced traveler information system operations. The Method of 
Successive Averages (MSA) is used as the path swapping algorithm, and the convergence criterion is 
based on the differences in the number of vehicles assigned to various paths over successive iteration. 
The local approximation of MTT is evaluated by summing the link MTTs along the path according to 
the time-dependent link traversal times.  

There are many studies in the literature based on the solution algorithm of Peeta and Mahmassani 
(Peeta & Mahmassani, 1995). For instance, Sbayti et al. (Sbayti et al., 2007) used MSA to solve the 
SB-DTA (with both DUE and DSO) in large-scale networks. They presented two new implementation 
techniques to address the disadvantages of MSA. Similar to Peeta and Mahmassani, the 
DYNASMART simulator was used to calculate the time-dependent link travel times, turn penalties, 
and link marginals. In addition,  Yang and Jayakrishnan (Yang & Jayakrishnan, 2012) attempted to 
address the disadvantages of MSA in SB-DTA problems by implementing a gradient projection 
method. This study used the PARAMICS software in the DNL process. However, the travel times 
(generated by PARAMICS) are not directly fed into the route assignment procedure (the proposed 
gradient projection algorithm). As the proposed gradient projection algorithm requires an analytical 
function that represents link costs as traffic loads, link performance functions are used to calculate the 
path travel times in the path assignment process. An SB-DTA procedure was developed by Hu et al. 
(Hu et al., 2018) using a dynamic traffic simulator called DynaTAIWAN. The dynamic traffic 
simulator is used to simulate traffic flow distributions based on vehicle properties and routes 
(calculating the link travel time in each iteration). Four different vehicle class types (car, bus, 
motorcycle, and truck) and four different behavioral rules, including the pre-specified-path driver, UE 
driver, SO driver, and real-time information driver, are considered in the solution procedure. The 
MSA is applied to update the vehicles’ path in each iteration. In a similar study, Mansourianfar et al. 
(Mansourianfar et al., 2021) developed an SB-DTA algorithm for mixed UE and SO users. They used 
the Aimsun traffic simulator instead of DynaTAIWAN to calculate the travel times. To address the 
shortages of MSA, they examined the method of successive weighted average (MSWA), which gives 
higher weights to later auxiliary flow patterns. This study proposes a new hybrid convergence 
criterion to find the mixed equilibrium solution. Another study that tried to overcome MSA's 
drawbacks is Ameli et al. (Ameli et al., 2020b). They study two new solution methods for the SB-
DUE problem: a new extension of simulated annealing (SA) and an adapted genetic algorithm (GA). 
A comparison is made between the proposed meta-heuristic algorithms (SA and GA) and the classic 
methods (MSA, MSA ranking (MSAR)), and a gap-based algorithm). The results show that meta-
heuristic algorithms dominate classical methods. However, it should be pointed out that all of the 
proposed meta-heuristic algorithm uses MSA as part of their solution. Also, this study implements a 
microscopic traffic simulator named Symuvia, which does not have meso modeling features for a trip-
based dynamic simulation. Adopting the MATSIM software, Lämmel and Flötteröd (Lämmel & 
Flötteröd, 2009) developed an agent-based microsimulation DTA model. They replaced the travel 
time (based on which agents evaluate their routes) with the MTT to achieve SO. The results indicate 
that a simulation-based system leads to an acceptable approximation of the SO mathematical solution. 
There is also another group of studies on sustainable optimal DTAs (Chen et al., 2021; Lu et al., 
2016). For instance, Lu et al. (Lu et al., 2016) solved an eco-system optimal DTA problem based on 
analytical and simulation-based models. Their study aimed to determine the SO ecological routes that 
minimize total vehicular emissions. The proposed simulation-based model combines macroscopic and 
microscopic traffic descriptions (mesoscopic) based on Newell's (Newell, 2002) simplified kinematic 
wave model and a simplified car-following model. In addition, this study introduces a novel 
approximation for path marginal emissions based on path MTT. Although the numerical examples of 
this study demonstrate the effectiveness of the model, it adopted a simplified car-following model 
(Newell) and not the commonly used car-following models, such as Krauß et al. (Krauß et al., 1997) 
and Gipps (Gipps, 1981).  
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As mentioned earlier, the traffic simulator software can be regarded as DNL of DTA (W. Wang et 
al., 2018); therefore, the available DTA solution methods in the most widely used and well-known 
micro/meso traffic simulator packages are presented in Table 4.  

 

Table 4 and the literature review revealed that, thus far, no study has proposed an SB-DSO 
algorithm using common traffic simulators (that can address the traffic flow propagation during 
dynamic network modeling with high accuracy in both micro and mesoscale simulations). Therefore, 
this study developed a new SB-DSO algorithm by implementing the SUMO traffic simulator, in 
which a new swapping algorithm (based on logit route choice model) and a new convergence criterion 
are incorporated.  

4 Methodology 
The simulation-based solution of the DTA problem does not include any closed-form analytical 

solution and typically relies on an iterative procedure. SUMO traffic simulator provides several tools 
and options for solving traffic assignment and route choice problem of vehicles (simulation-based 
approach). duaIterate.py (DLR, 2021) is the solution tool for the SB-DUE problem for micro and 
meso levels in SUMO. This study proposes a new solution framework for the SB-DSO problem based 
on duaIterate.py. The main difference between the proposed algorithm and the current algorithm of 
duaIterate.py is that the proposed algorithm replicates the travel time by a surrogate model of MTT. 
Also, a new swapping algorithm and convergence criterion are presented and tested against classical 
methods. Figure 1 illustrates the proposed solution framework for the SB-DSO problem. As shown in 
Figure 1, the framework consists of two parts: path selection procedure and DNL. For the path 

Table 4: Micro/Meso traffic simulation packages and their available DTA solution methods 

Simulator Developer Scale Available DTA Methods 

Aimsun J Barceló & Ferrer, 1997 Micro/Meso Stochastic Route Choice 

DUE 

CONTRAM Taylor, 2003 Meso 
CORSIM US-DOT, 1995 Micro 

DRACULA R. Liu, 2010 Micro 
DTALite Zhou and Taylor, 2014 Agent-based 
Dynameq Mahut, 2001 Micro 

DynaMIT Ben-Akiva et al., 1997 Meso Converge to observed 
flows 

DynaSMART Jayakrishnan et al., 1994 Meso 

Instantaneous information 
Predictive information 

DSO 

DUE 

DynusT Y. C. Chiu et al., 2011 Meso 
INTEGRATION Van Aerde et al., 1996 Micro/Meso 

MATSIM Dobler and Nagel, 2016 Agent-based 
PARAMICS Smith et al., 1995 Micro 

PTV Vissim Fellendorf, 1996 Micro/Meso 
Stochastic Assignment 

SUMO Lopez et al., 2018 Micro/Meso (Stochastic) DUE 

Mehrabani et al. | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

126



selection procedure, duarouter, which is an available algorithm in SUMO for the calculation of the 
shortest path, is used. For the DNL procedure, the SUMO traffic simulator is used.  

Consider 𝐺(𝑉, 𝐴) as the directed traffic network, which includes a set of links 𝐴 (𝑎 ∈ 𝐴) and a set 
of nodes 𝑉 (𝑣 ∈ 𝑉). 𝐽(𝑅, 𝑆) represents the set of vehicles (demand file: usually imported to sumo by 
𝑇𝑟𝑖𝑝𝑠.𝑋𝑀𝐿 file) between the origin and destination pairs where 𝑅 (𝑟 ∈ 𝑅) and 𝑆 (𝑠 ∈ 𝑆) denote the 
set of all origin nodes and the set of all destination notes, respectively. Hence, 𝑗𝑟−𝑠 is a vehicle that 
travels from origin 𝑟 to destination 𝑠. The problem is stated as the assignment of 𝐽(𝑅, 𝑆) to 𝐺(𝑉, 𝐴). 
The equilibrium condition is computed by iteratively calculating the shortest routes and travel times. 
At each simulation iteration 𝑖 ∈ 𝐼, first, a routing algorithm (Dijkstra, astar, Contraction Hierarchies 
(CH), or CHWrapper) is applied by duarouter to the road network to determine the set of alternatives 
paths, 𝑃𝑗,𝑖

𝑟−𝑠, for each vehicle 𝑗𝑟−𝑠  (at each iteration, a new alternative path set is generated for each 
vehicle). The k-shortest paths are calculated using the previous simulation corresponding link MTT, 
𝑐�̅�

  𝑖−1. Next, a route choice model (Gawron, Logit, or Lohse) is applied to the set of alternative paths, 
𝑃𝑗,𝑖

𝑟−𝑠, to select a path, 𝑝𝑗,𝑖
  𝑟−𝑠 (𝑝𝑗,𝑖

  𝑟−𝑠 ∈ 𝑃𝑗,𝑖
𝑟−𝑠). Then, a swapping algorithm is implemented to reassign a

Figure 1: Framework of the SB-DSO traffic assignment 
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fraction of vehicles at each iteration (not all vehicles change their route necessary during successive 
iterations), ensuring the improvement of the selected path over iterations. Finally, the adjusted 
selected path of each vehicle, 𝑝𝑗,𝑖

∗,𝑟−𝑠 (known as trips.rou.XML file in SUMO), is sent to SUMO to
perform the traffic simulation and consequently calculates the current travel time of each link, 𝑐𝑎

𝑖  
(known as edgedata output in SUMO). The travel times written in this step, 𝑐𝑎

𝑖 , are used as an input in 
the next iteration step. By performing such a process iteratively, the total travel time (TTT) is 
minimized (SO condition).  

4.1 Route Choice Model 
In SUMO, it is possible to choose different route choice models among available alternatives, 

which are Gawron, Logit, or Lohse. In this study, the logit model is selected as the route choice 
model. Thus, the proposed algorithm computes the stochastic SB-DSO solution. The logit model is 
applied to each vehicle’s set of alternative routes, 𝑃𝑗,𝑖

𝑟−𝑠, in which the k-shortest paths for the subject
vehicle are available. The travel times are considered as the cost for each alternative path. The travel 
time of each path is equal to the sum of the travel times of the corresponding links from the previous 
simulation. The logit model formulation is as follows  

𝑝𝑟𝑘,𝑗
𝑖 =

exp (−𝜃𝐶𝑘
𝑖 )

∑ exp (−𝜃𝐶𝑘
𝑖 )𝑘

1

 (1) 

𝐶𝑘
𝑖 = ∑ 𝛿𝑎,𝑘

𝑖

𝒂 ∈ 𝑨
𝑐𝑎

𝑖  (2) 

𝛿𝑎,𝑝
𝑖 = {

1 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑎 𝑖𝑠 𝑜𝑛 𝑝𝑎𝑡ℎ 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3) 
where 𝑃𝑟𝑘,𝑗

𝑖  is the probability of selecting path 𝑘 by vehicle 𝑗 in iteration 𝑖 ; 𝐶𝑘
𝑖  is the travel time 

(cost) of path 𝑘 in iteration 𝑖; and 𝜃 is the logit model scale parameter. Given the multiple alternative 
routes with slightly different travel times, it may be reasonable to select a route other than the strictly 
shortest route (to avoid congestion on that route). Hence, the scale parameter 𝜃 assigns a probability 
for each route alternative. With a high value of theta, logit always selects the route with the least 
travel time, whereas with a low value of theta, logit selects all the routes with almost equal 
probability.  

It should be mentioned that although this study works on the stochastic solution of the traffic 
assignment problem, it is possible to reach the deterministic solution by the same proposed algorithm 
(by replacing the route choice model with All-or-Nothing assignment) in SUMO.  

4.2 Calculation of Marginal Travel Times 
Previous studies have proven that the SO condition can be achieved by replacing the path travel 

time with the path MTT (Hu et al., 2018; Mansourianfar et al., 2021; Patriksson, 2015; Rahman et al., 
2015). There are two ways to calculate the path MTT (Ameli et al., 2020a; Mansourianfar et al., 
2021): 1) global approximation, which represents the changes in the total system travel time caused 
by an additional vehicle that is added to the path at a certain time interval, and 2) local approximation 
(Ghali & Smith, 1995; Peeta & Mahmassani, 1995), which represents the changes in the path travel 
time caused by an additional vehicle that is added to the route at a certain time interval. This approach 
considers the path MTT as a summation of the corresponding link MTTs. Although it has been proven 
that such a local approximation may lead to overestimation of the path MTT (Qian et al., 2012; Shen 
et al., 2007) it is a practical approximation in large-scale networks (Mansourianfar et al., 2021). On 
the other hand, because the global approximation of MTT is computationally expensive and is not 
practical for large-scale DTA, this study implements the local approximation of MTT. To achieve the 
local approximation of path MTT, first, the MTT of each link should be calculated; then, the MTTs of 
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the corresponding links in each path are summed up. Numerous formulations exist in the literature to 
approximate the MTT of the links; however, it may be inappropriate to compare these formulations 
numerically as they use their own traffic flow propagation method and assumptions (Doan & 
Ukkusuri, 2015; Qian et al., 2012; Zhang & Qian, 2020). In addition, the traffic simulators (as the 
DNL model) used in each study are different. Sheffi (Sheffi, 1985) formulated the link MTT as 
follows and defined it as the “marginal contribution of an additional traveler on the 𝑎𝑡ℎ link to the 
TTT on this link.” In other words, MTT is the derivative of the travel time with respect to flow: 

𝑐�̅�(𝑓𝑎) = 𝑐𝑎(𝑓𝑎) + 𝑓𝑎  
𝑑𝑐𝑎(𝑓𝑎)

𝑑𝑓𝑎
 (4) 

This formulation is the sum of the two components. The first component, 𝑐𝑎(𝑓𝑎), is the travel time
experienced by the additional traveler when the total link flow is 𝑓𝑎. This component can be explained
by the average travel time on link 𝑎 . The second component is the multiplication of 𝑑𝑐𝑎(𝑓𝑎)

𝑑𝑓𝑎
, the 

additional travel time burden that the additional traveler inflicts on each of the other travelers, by the 
number of travelers that already exist on the link (𝑓𝑎). Therefore, the effect of one additional user on
all the other travelers is considered by the second component. 

Given that SUMO provides the average travel time of each link, it is not possible to calculate the 
additional travel time that one vehicle inflicts on the link. An alternative approach to compute the link 
MTT is to calculate the average travel time in successive iterations (with a different number of 
vehicles assigned to each link in each iteration) and compute the difference in link average travel 
time. Using this method, the average inflicted additional travel time on the link can be calculated. 
Therefore, in this study, we developed a surrogate model of MTT to achieve SO as follows: 

𝑐�̅�
 𝑖 =  𝑐𝑎

𝑖−1 + 𝑓𝑎
𝑖−1

𝑐𝑎
𝑖−1 − 𝑐𝑎

𝑖−2

𝑓𝑎
𝑖−1 − 𝑓𝑎

𝑖−2
                                                                                                                           (5)

where 𝑐�̅�
 𝑖 is the surrogate MTT of link 𝑎 at simulation step 𝑖; 𝑐𝑎

𝑖−1 and 𝑐𝑎
𝑖−2 are, respectively, the 

travel time (cost) of link 𝑎 at simulation steps 𝑖 − 1 and 𝑖 − 2; and 𝑓𝑎
𝑖−1 and 𝑓𝑎

𝑖−2 are, respectively, the
traffic flow of link 𝑎 at simulation steps 𝑖 − 1 and 𝑖 − 2. The first term of this equation represents the 
average travel time of link 𝑎 and the second term represents the average inflicted additional travel 
time on the link. In other words, the second term of this model indicates the extent to which adding 
one vehicle to a link leads to an increase in the travel time of the vehicles that are already in the link. 
In this way, instead of feeding only the average travel time that each vehicle would experience along a 
route, the additional cost that it imposes on the total travel time by selecting the route is added. Hence, 
the additional travel time that other vehicles must “pay” (on average) is addressed if the subject 
vehicle selects that route. 

4.3 Swapping Algorithm 
Most studies that implement simulation-based traffic assignment methods employ a swapping 

algorithm to reach the optimum value and avoid oscillating. The core idea of swapping algorithms is 
that not all vehicles should necessarily change their path in each iteration; instead, only a fraction of 
vehicles is in the reassignment process. Thus, a proper direction for the next iteration is obtained. 
Most of the previous studies apply the MSA as their swapping algorithm. The conventional MSA is 
calculated as: 

𝑓𝑖 = (
𝑖

𝑖 + 1
) 𝑓𝑖−1 + (

1

𝑖 + 1
) 𝑦𝑖  (6) 

In which 𝑓𝑖  is the path flow distribution of iteration 𝑖 , 𝑦𝑖  is the auxiliary path assignments 
obtained by all-or-nothing assignment, and 𝑖 is the number of iterations. In the primary iterations, the 
value of step size is too large, thus the travel time of vehicles does not reduce after several iterations. 
While in the last iterations the value of step size is too small, which leads to slow convergence speed. 
Therefore, previous studies provided several heuristic algorithms (Ameli et al., 2020b) or extensions 
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of MSA (like Method of Successive Weighted Averages (MSWA) (H. X. Liu et al., 2009) or MSA 
Ranking (MSAR) (Sbayti et al., 2007)) to address the disadvantages of MSA. However, most of the 
previous studies implement these extensions in combination with deterministic traffic assignment (all-
or-nothing assignment which is highly sensitive to the small changes in traffic flow).  

This study proposes a new swapping algorithm for stochastic traffic assignment problems which is 
based on the logit route choice model. The new swapping algorithm is as follows:  
𝑝𝑗,𝑖

∗,𝑟−𝑠 = {
𝑝𝑗,𝑖

𝑟−𝑠  𝑖𝑓 𝑥 ≥  𝜌𝑖 

𝑝𝑗,𝑖−1
∗,𝑟−𝑠    𝑖𝑓 𝑥 < 𝜌𝑖

 (7) 

Where 𝑝𝑗,𝑖
∗,𝑟−𝑠 is the adjusted selected path by vehicle 𝑗 in iteration 𝑖; 𝑝𝑗,𝑖

𝑟−𝑠 is the selected path by 
vehicle 𝑗  in iteration 𝑖  from current logit model; 𝑝𝑗,𝑖−1

∗,𝑟−𝑠  the adjusted selected path by vehicle 𝑗  in 
iteration 𝑖 − 1; 𝑥 is a random variable between 0 and 1; and 𝜌𝑖 is the sequence of step size in each
iteration which can be considered as the probability of keeping the previous adjusted selected path. In 
this study 𝜌𝑖 is predetermined 𝜌𝑖 =

𝑖

𝛾
 ; where 𝑖 is the iteration number, and 𝛾 is a scale parameter. 𝛾 is

a real number that determines the speed of convergence. With a low value of 𝛾, the speed of the 
convergence is fast, but few alternative paths are tested by each vehicle. On the other hand, with a 
high value of 𝛾, the convergence speed is slow, while several alternative paths (which are available in 
the path set) will be tested by each vehicle. Therefore, for stochastic assignments, it can be argued that 
higher values of 𝛾  are preferable. However, for large and medium scale networks, it is 
computationally expensive to wait for high number of iterations. In this study the value of 𝛾 is set to 
100 and 50 for small scale and medium/large scale networks, respectively. This swapping algorithm 
prevents some vehicles, in successive iterations, from changing their routes, allowing them to follow 
the path they have chosen in the previous iteration. This ensures that the algorithm leads to the 
improvement of the selected path by each vehicle. For convenience of description, we name this 
swapping algorithm as “PSwap” (Probabilistic Swapping). PSwap is tested against the revised version 
of MSA in which the auxiliary path is obtained by the logit route choice model. In order to better 
understand the differences between two swapping algorithms, figure 2 shows the (maximum) fraction 
of vehicles that could change their routes per iteration. 

4.4 Convergence Criterion  
Many studies in the past have provided different convergence criteria for the SB-DTA algorithm 

termination. As no closed-form is available for the simulation-based solutions, it is impossible to 
mathematically prove the algorithm's convergence. Therefore, all of the convergence criteria only 
provide some point where the algorithm can be terminated. A common approach in previous studies 
for the calculation of convergence criterion (error) is to calculate the maximum difference between 
the route flows of two iterations (e.g. (Peeta & Mahmassani, 1995)). However, previous studies 

Figure 2: Maximum Fraction of vehicles that change their route per iteration 
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pointed out that, this criterion does not guarantee the equilibrium condition since applying any 
swapping algorithm yield smaller route flow changes in successive iterations by default (Taale & Pel, 
2015). Another common approach presented by previous studies is to calculate the relative gap 
between the current travel times of vehicles in each iteration and the least experienced travel times 
(Ameli et al., 2020b; Mansourianfar et al., 2021). However, the value to which the gap converges is 
not known beforehand, thus it is difficult to determine if convergence is reached (Taale & Pel, 2015).  

As in equilibrium condition, no driver can unilaterally reduce his/her travel time by shifting to 
another route, when the standard deviation of average travel times between successive iterations is 
low, it implies that all remaining alternatives have “almost” the same travel time so the actual DUE 
criterion (or it's DSO equivalent) are basically fulfilled. Therefore, this study considers the relative 
standard deviation of average travel time (in the entire network) as convergence criteria: 

𝑅𝑆𝐷𝑛
𝑖 =

√
1

𝑛
∑ (𝑎𝑣𝑖′ − 𝑎𝑣̅̅̅̅ 𝑛

𝑖 )2𝑖
𝑖′=(𝑖−𝑛)+1

𝑎𝑣̅̅̅̅ 𝑛
 (8) 

𝑎𝑣̅̅̅̅ 𝑛 =
∑ 𝑎𝑣𝑖′

𝑖
𝑖′

𝑛
 (9) 

Where 𝑅𝑆𝐷𝑛
𝑖  is the relative standard deviation of average travel time in the last 𝑛 elements of 𝑖𝑡ℎ 

iteration; 𝑎𝑣𝑖′ is the average travel time of the entire network in iteration 𝑖′; and 𝑎𝑣̅̅̅̅ 𝑛 is the mean of
𝑎𝑣𝑖′ in the last 𝑛 iterations. This criterion evaluates the dispersion of average travel times in last 𝑛
iterations. Low values of 𝑅𝑆𝐷𝑛

𝑖  represent that average travel time does not vary over successive 
iterations; thus, a decent point for termination is found. The proposed algorithm is considered being 
converged (after the minimum number of 10 iterations) if the value of 𝑅𝑆𝐷𝑛

𝑖 , become constant and 
less than 𝜀 (fixed at 0.05 for micro simulations and 0.005 for meso simulations).  

5 Test Networks 
The proposed algorithm was studied in three different networks (Figure 3): (a) small-size Braess 

like network, (b) medium-size abstract Random network, and (c) large size Sioux Falls network.  

Figure 3: Test Networks 
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The Braess and Sioux Falls networks are commonly used as benchmarks in the literature. A 
random network was implemented to evaluate the performance of the algorithm in random unknown 
cases. In the following sections, the results of traffic simulations for the test networks are presented. 
For each network, four scenarios are simulated: (1) SB-DSO-PSwap, (2) SB-DSO-MSA, (3) SB-
DUE-PSwap, (4) SB-DUE-MSA. The TTT in different iterations of each scenario is given first. The 
TTT is considered as the sum of travel times of all vehicles in the network and the waiting times of 
the vehicles which cannot insert into the network during the simulation. Then, traffic-related measures 
(including TTT (s), average speed (AS) (m/s), the average distance traveled (ADT) (m), and average 
time loss (ATL) (s)) of each scenario are evaluated. Finally, to have a better understanding of the 
differences between the proposed SB-DSO and the current SB-DUE, the traffic volume in the best 
iterations is illustrated.  

5.1 Braess Network   
In this study, a network similar to the Braess network (Figure 2 (a)) was simulated in four 

scenarios to evaluate the changes in TTT when the vehicles follow the proposed SB-DSO and DB-
DUE. The microsimulation is performed with the demand of 1000 vehicles/h, departs from node A to 
destination B. Three routes are available for each vehicle. Each route includes a high-speed link (link 
1 or 4), a low-speed link (link 2 or 3), and/or a high-speed shortcut (link 5). To analyze the behavior 
of the proposed algorithm (SB-DSO), the convergence patterns of the algorithms are presented in 
Figure 3 (value of TTT in successive iterations), while figure 4 shows the convergence pattern of the 
SB-DUE algorithm. For the sake of comparison, the fraction of vehicles that change their route per 
iteration is illustrated in figure 6.  

Figure 4: Convergence patterns for Braess network (SB-DSO)

Figure 5: Convergence patterns for Braess network (SB-DUE)
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Figures 4 and 5 show that MSA is dominated by PSwap. The TTT percentage difference (for the 
best iteration) between PSwap and MSA for the SB-DSO algorithm and SB-DUE algorithm are equal 
to 49.19% and 55.74%, respectively, which suggests the superior performance of the PSwap. The 
summary statistics for the system performance under different scenarios (best iterations) are reported 
in Table 5.  

As expected, for both swapping algorithms, the SB-DSO has lower TTT than SB-DUE.  The 
Percentage TTT saving of SB-DSO over SB-DUE varies from 3.91% (for PSwap) and 16.30% (for 
MSA). In addition, an analysis of the data in Table 5 suggests that vehicle compliance with DSO 
routines increases vehicle AS and decreases vehicle ATL.  

Figure 7: Volume of the Braess network

Table 5: Simulation Results for Braess Network 

Scenario 
TTT: Total 

Travel Time (s) 
AS: Average 
Speed (m/s) 

ADT: Average Distance 
Travelled (m) 

ATL: Average 
Time Loss (s) 

SB-DSO-PSwap 120130 8.69 1002.99 49.30 

SB-DSO-MSA 236430 5.40 1007.10 160.82 

SB-DUE-PSwap 125030 8.36 1006.01 56.74 

SB-DUE-MSA 282490 4.85 1009.28 184.00 

Percentage difference between PSwap and MSA (DSO) = 49.19% 
Percentage difference between PSwap and MSA (DUE) = 55.74% 
Percentage difference between DSO and DUE (PSwap) = 3.91% 
Percentage difference between DSO and DUE (MSA) = 16.3% 

Figure 6: Fraction of vehicles that change their route per iteration (Braess Network) 
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To examine the superior performance of SB-DSO in more detail, the volume of the Braess 
network in SB-DSO-PSwap and SB-DUE-PSwap scenarios are illustrated in Figure 7. This figure also 
shows the traffic volume difference between these two scenarios. Figure 7 (c) demonstrates that when 
vehicles follow the SB-DSO, they not only use high-speed links (links 1, 5, and 4) to reach their 
destination, but they also use both high-speed and low-speed links simultaneously. In contrast, in the 
SB-DUE scenario, most vehicles tend to use high-speed links.  

5.2  Random Network 
A Random network was generated in SUMO (Figure 2 (b)) using netgenerate. This network 

consists of 278 edges and 100 junctions. Each edge has a minimum length of 200 and a maximum 
length of 1000 meters. The number of lanes is either one or two for each edge. A random traffic 
demand of 7200 vehicles was generated for a one-hour simulation. These vehicles were randomly 
distributed to the network. Similar to the previous test network, four scenarios were evaluated for the 
Random network: (1) SB-DSO-PSwap, (2) SB-DSO-MSA, (3) SB-DUE-PSwap, and (4) SB-DUE-
MSA. The microsimulation is performed for the scenarios, all of which converged after 17 iterations. 
The convergence pattern of the SB-DSO and SB-DUE algorithms are displayed in Figure 8 and 
Figure 9, respectively. Besides, the fraction of re-routing vehicles per iteration for each scenario is 
given in figure 10.   

Figure 8: Convergence patterns for Random network (SB-DSO)

Figure 9: Convergence patterns for Random network (SB-DUE)
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For both SB-DSO and SB-DUE, the value at convergence for PSwap is lower than MSA. Also, 
PSwap has better performance in terms of stability of the convergence and the TTT average value. 
The TTT percentage difference between PSwap and MSA for SB-DSO and SB-DUE are equal to 
7.95% and 10.53%, respectively, which supports that PSwap has superior acting. The results of the 
optimum iteration for each scenario are presented in Table 6. 

As expected, the TTT value decreased by 2.15% (PSwap) and 4.90% (MSA) in the SB-DSO 
scenario compared to that in the SB-DUE scenario. In addition to the reduction in TTT, we observed a 
decrease of 3.5% (PSwap) and 11% (MSA) in ATL. However, the ADT by vehicles in the SB-DSO 
scenario shows a slight increment over the SB-DUE scenario. This suggests that vehicles do not 
necessarily select routes that have the shortest distance in the SB-DSO scenario but rather select those 
that reduce the travel time of the entire network (TTT). 

Table 6: Simulation Results for Random Network 

Scenario 
TTT: Total 

Travel Time (s) 
AS: Average 
Speed (m/s) 

ADT: Average Distance 
Travelled (m) 

ATL: Average 
Time Loss (s) 

SB-DSO-PSwap 7981776 8.77 6850.82 578.09 

SB-DSO-MSA 8671176 8.52 6571.42 677.58 

SB-DUE-PSwap 8157456 8.70 6787.33 599.06 

SB-DUE-MSA 9118296 8.51 6581.33 761.72 

Percentage difference between PSwap and MSA (DSO) = 7.95% 
Percentage difference between PSwap and MSA (DUE) = 10.53% 

Percentage difference between DSO and DUE (PSwap) = 2.15% 
Percentage difference between DSO and DUE (MSA) = 4.90% 

Figure 11: Volume of the Random network

Figure 10: Fraction of vehicles that change their route per iteration (Random Network)
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Figure 11 shows traffic volume in the Random network in different scenarios. The comparison of 
Figures 11 (a) and Figure 11 (b) reveals that in the SB-DSO scenario, the number of medium-volume 
links is slightly more than that of the SB-DUE scenario. This indicates that in the SB-DSO scenario, 
the traffic volume is distributed throughout the entire network. In contrast, in the SB-DUE scenario, 
only a limited number of short links are used. A similar result can be obtained by observing Figure 8 
(c). In Figure 8 (c), the red highlighted links represent the links used by vehicles in the SB-DSO 
scenario and not in the SB-DUE scenario, while the green highlight indicates the links in which there 
is no difference in traffic volume between the two scenarios.  

5.3 Sioux Falls Network 
The latest case study in this article is the Sioux Falls network (Figure 3 (c)). The total number of 

simulated vehicles was 36000 which were distributed on different origins and destinations based on 
the demand pattern of LeBlanc’s study (LeBlanc et al., 1975). In order to check the performance of 
the proposed algorithm on the mesoscale, the meso simulation feature of SUMO is implemented for 
this test network. As in the previous test networks, four scenarios were analyzed. The SB-DSO-
PSwap and SB-SO-MSA scenarios converged after 35 iterations (Figure 12), while the SB-DUE-
PSwap and SB-DUE-MSA scenarios converged after 25 iterations (Figure 13). The fraction of re-
routing vehicles per iteration is also given in figure 14.  

Figure 12: Convergence patterns for Sioux Falls network (SB-DSO)

Figure 13: Convergence patterns for Sioux Falls network (SB-DUE)
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Similar to previous test networks, PSwap has a better value at convergence than MSA. For the SB-
DSO-PSwap scenario, the value at convergence is 11.64% lower than that of SB-DSO-MSA. For the 
SB-DUE algorithm, we can see a similar behavior where the TTT percentage difference between SB-
DUE-PSwap and SB-DUE-MSA is 4.1%. The results of the meso simulations are presented in Table 
7, which provides traffic-related measures for the Sioux Falls network.  

The simulation results indicate that the proposed SB-DSO traffic assignment leads to a reduction 
of 12.84% (PSwap) and 5.4% (MSA) in TTT and 8.86% (PSwap) and 15% (MSA) in ATL. In 
addition, the AS in SB-DSO was improved compared to that in SB-DUE (6% and 8.15% increase in 
AS for PSwap and MSA, respectively). However, ADT has increased in the DSO condition ( 16% and 
14.7% increment of ADT for PSwap and MSA, respectively).  

Table 7: Simulation Results for Sioux Falls Network 

Scenario 
TTT: Total 

Travel Time (s) 
AS: Average 
Speed (m/s) 

ADT: Average Distance 
Travelled (m) 

ATL: Average 
Time Loss (s) 

SB-DSO-PSwap 97488027.9 12.75 9726.57 479.54 

SB-DSO-MSA 110334105.4 12.75 9833.79 505.72 

SB-DUE-PSwap 111853402.2 11.98 8164.91 526.21 

SB-DUE-MSA 116637655.1 11.71 8384.31 595.16 

Percentage difference between PSwap and MSA (DSO) = 11.64% 
Percentage difference between PSwap and MSA (DUE) = 4.1% 
Percentage difference between DSO and DUE (PSwap) = 12.84% 
Percentage difference between DSO and DUE (MSA) = 5.4% 

Figure 15: Volume of the Sioux Falls network

Figure 14: Fraction of vehicles that change their route per iteration (Sioux Falls Network)
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Figure 15 shows the volume on the Sioux Falls network for the proposed SB-DSO-PSwap and the 
current SB-DUE-PSwap, categorized based on both colors and width, where thicker links indicate 
higher volume. Focusing on the difference between the two traffic assignment methods, Figure 15 (c) 
shows that vehicles are distributed among the entire network in SB-DSO scenarios and do not intend 
to use specific short links that minimize their own travel time (avoiding selfish routing). Instead, they 
select unused links, minimizing the travel time in the entire network. In other words, the presence of 
short minor roads may have a significant impact on SB-DSO versus SB-DUE. This is not because the 
network can handle more load but because shorter roads provide opportunities for selfish shortcuts 
that are prone to jamming.  

6 Conclusion 
SO and UE traffic assignments are among the most important traffic assignment methods and have 

been extensively investigated for several years. Although recent studies suggest that several road 
users (e.g., CAVs) are soon expected to follow the SO principle, most traffic simulation packages do 
not provide it. In addition, the majority of available SO solutions for CAVs are either static or 
analytical which have their own drawbacks. On the other hand, the available simulation-based 
methods are based on the MSA (or its extensions) algorithm, which has its own drawbacks. Therefore, 
this study proposes a new SB-DSO traffic assignment algorithm that replaces the travel times of links 
with a surrogate model of the MTT. The logit route choice model is incorporated in the solution 
algorithm. At each iteration, the route choice model is applied to the path set of each vehicle. A new 
swapping algorithm (Called PSwap) is presented, which is based on the logit route choice model to 
address the disadvantages of MSA (that uses an all-or-nothing assignment). The swapping algorithm 
prevents all vehicles from changing their routes in successive iterations. The proposed algorithm is 
tested on two classical case studies (Braess and Sioux Falls network) and a random network to assess 
its performance (both micro and meso scale). For each test network, four scenarios have been 
simulated: (1) SB-DSO-PSwap, (2) SB-DSO-MSA, (3) SB-DUE-PSwap, and (4) SB-DUE-MSA. The 
results of the simulations show that MSA is dominated by PSwap in all of the scenarios. Also, a 
comparison of the proposed SB-DSO (scenarios 1 and 2) and current SB-DUE (scenarios 3 and 4) 
traffic assignment algorithm is provided. We observed remarkable decreases in the TTT when 
vehicles followed the SB-DSO. The maximum percentage of TTT reduction was for the Braess 
network (16.3%), followed by 12.84% and 4.9% for Sioux Falls and Random networks, respectively. 
In summary, the proposed SB-DSO-PSwap has the least amount of TTT. These results indicate that if 
road users (such as CAVs) follow SO routines in the future, a significant reduction in travel time and 
pollution of the entire network can be obtained, which, accordingly, reduces several costs.  

One of the most critical factors in the superiority of SB-DSO over SB-DUE is the presence of 
short minor roads, as these routes provide opportunities for selfish routing. Therefore, the proposed 
algorithm may not necessarily improve the TTT in networks where short minor roads (or alternative 
routes) are not present. Also, it should be pointed out that the number of teleporting vehicles has a 
considerable impact on the results of the TTT. Therefore, it is not appropriate to evaluate the 
performance of the algorithm if the number of teleporting vehicles is very high.  

The proposed algorithm is freely available under the EPLv2 license on GitHub (Eclipse, 2022) by 
setting --marginal-cost, --marginal-cost.exp, and --convergence-steps options in duaIterate.py. As the 
MTTs in the proposed algorithm are calculated based on a local approximation, it may lead to its 
overestimation. Therefore, it is recommended to remove the second term of the MTT equation in case 
of inappropriate results (by removing --marginal-cost.exp option). This tool helps researchers and 
decision-makers in evaluating the effect of SO-seeking users (e.g., CAVs) on the road network in 
terms of traffic and environment-related issues. Beyond solving the SB-DTA problem by a new 
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swapping algorithm, proposing a surrogate model for MTT is helpful in many road network 
management applications, such as providing marginal cost-based tolls.  

Future studies should estimate the global approximation of MTTs. In this study, the examined 
scenarios were scenarios in which all vehicles followed either DSO or DUE rules; therefore, it is 
suggested that a mixed traffic algorithm should be developed in future research. In addition, owing to 
the importance of the demand level in traffic assignment, researchers are encouraged to assess the 
impact of different demand levels on the proposed SB-DSO traffic assignment algorithm. Another 
direction for future research is the comparison of environmental-related measures in DSO and DUE 
conditions.  
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Abstract 
Rail freight logistics is usually planned and analyzed using a macroscopic aggregated view on 

railway networks and train operations. As a result, disjoint tools have developed for simulating train 
operations which requires a detailed representation of track assets as well as the signaling 
architecture and supply chain networks in logistics analyzing the flow of goods where mode-specific 
capacity and traffic situations are incorporated in an aggregated manner. However, integrating the 
two areas could help evaluating railway-specific operative implications (such as conflicts and 
consequent delays) on the level of transport chains and thus single transport units instead of trains 
or network areas. The simulation tool SUMO is identified to meet criteria from both disciplines. It 
is shown how a respective methodology can be realized in SUMO to create such a simulation 
model. A use case of northwestern Germany shows by the means of exemplary container trajectories 
that the two simulative approaches can be merged. 

1 Introduction 
In view of complex supply chain networks, just-in-time production and growing product 

individualization, the global flow of goods has reached unprecedented complexity. In order to 
understand, evaluate and predict these flows and associated processes respectively, logistics 
simulations can be used to model the flow of goods for specific - often larger - networks or regions. 
The underlying motivation is to identify bottlenecks and critical links within a distribution system 
or transportation network, as well as to analyze the effects of changes in the design of a system in 
order to support decision making. 

Logistics networks, in general, may feature different means of transportation contributing to the 
transport of goods from origin to destination. This study focusses on rail-based transportation 
featuring comparably low emissions and large capacities. It is, however, bound to a certain 
infrastructure-related 
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inflexibility and accompanied by complex routing and capacity planning problems. In contrast, 
conventional truck distribution is fast and flexible. It has, on the other side, limited capacity only and 
accounts for a large share of the CO2 emissions [1]. For this reason, significantly rising the share of 
goods transported by rail is formulated as a goal of the Rail Freight Forward Coalition [2]. 

These individual characteristics go along with different operational circumstances specific to certain 
means of transport. In this context, again, simulation tools are used to model the operational execution 
of logistics processes. In terms of railway transportation, these models often have a stronger focus on 
operative performance indicators such as speed, delay or occupancy rates and are usually built on a far 
higher (often microscopic) level of detail. However, simulation tools rarely combine the detailed 
microscopic perspective required to model delay propagation in train operations and the strategic 
planning horizon of goods transportation in supply networks. In the first case, railway specific 
characteristics such as the signaling system governing infrastructure access and timetable constraints 
need to be incorporated. In the latter case, a far more macroscopic, logistics perspective is adopted 
which allows to compare and assess different routes and transportation options. Rail-specific 
characteristics are considered in coarse-grain resolution and rail freight networks are modeled on a 
graph-theoretical node-edge representation. 

The question arises, if a simulation tool can model the flow of goods in larger railway transportation 
networks on the basis of single units from a logistical perspective but at the same time consider detailed 
railway operations with its specifics. By integrating these two perspectives, a deeper understanding of 
freight railway operations on the level of goods would emerge, uncovering implications from train 
operations on transport chains. As of now, most train simulations consider trains as the smallest units 
to be observed. However, the reason for freight train operations is transporting goods from origin to 
destination in the first place. A combined model, featuring the described aspects, would shift the view 
from trains to goods as the units to be observed. Thus, the conventionally isolated analysis of either 
logistical processes or train operation would be integrated in a holistic approach. This can be compared 
to the change in perspective that has taken place in passenger train operations within the last years: 
important operational indicators such as delay are now often calculated and communicated on the level 
of single, specific passengers in addition to trains [3]. 

In this study, requirements, as well as a methodological framework for the combined simulation of 
train operations and logistical flow of goods are formulated. We show how the agent-based, microscopic 
simulation environment SUMO [4] can be used and adapted to integrate these two perspectives. As a 
result, detailed train operations based on integrated clock-face timetables can be merged with the agent-
based flow of goods, given their demand. 

The paper is arranged as follows: Section 2 gives an overview of related work and existing literature 
from the two different disciplines, as well as interfaces in between. Section 3 describes the proposed 
methodological approach from both an abstract and a technical perspective. In section 4 the proposed 
methodology is applied to a use case based on a freight rail network in northwestern Germany. A proof-
of-concept for combined simulation of operative train simulation and container-based goods 
transportation is provided based on the presentation of trajectories of individual containers and their 
dependency on the underlying operative train simulation. Section 5 discusses the further potential of 
the proposed approach, with a special focus on further evaluation criteria and changes in design of the 
system. 

2  Literature 
Simulation is used for planning, realizing and operationalizing logistic systems. Simulation-based 

approaches contrast analytic and optimization-based methods [5]. The field of logistics simulations we 
are focusing on in this paper can be further grouped into different areas. From a methodological view, 
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agent-based, discrete event and system dynamic simulations can be distinguished [6]. From another 
perspective, logistics simulation approaches can also be categorized by fields of application: One 
important context is to model Supply Chains with the aim of decision support and optimizing processes 
[7]. In this area, agent-based simulations provide detailed insights. They have a strong focus on 
individuals and their interaction within a system and can at the same time be used to model complex 
supply chains (cf. [8] for an overview of different approaches). However, Supply Chain simulation 
often has a rather macroscopic network perspective, frequently addressing network design issues. Other 
objectives of logistic simulation are modeling production systems with the aim of optimizing material 
flow [9]. Last, node-related distribution systems such as yards, terminals or ports are modeled and 
optimized by simulation [10]. In terms of transportation, especially network logistics simulation often 
has an abstract understanding of processes, sometimes not considering specifics of certain means of 
transport but rather systemically modeling transportation by parameters. 

Mode-specific simulations of train operations in railway systems can be divided into microscopic 
and macroscopic approaches [11]. Microscopic simulation models have a strong link to real-life 
operations and focus on the detailed operational context (such as driving dynamics and the 
representation of the signaling system). Usually, a specific timetable is required as input and the effects 
of operational disturbances including the emergence and transfer of delay are studied. However, these 
detailed simulations are often bound to limited network sizes. Prominent examples of tools can be found 
in [12] and [13]. Meso- or macroscopic simulations, by contrast, investigate train operations on a 
station-by-station view. Here, train interactions and delay transfer are integrated and analyzed by means 
of aggregate train-following or headway constraints, making this class of simulation fast and capable 
of analyzing large-scale networks while delimiting the resolution locally [11].  

Simulation applications range from microscopic timetable robustness analysis to capacity planning 
of railway lines, nodes and networks. In timetable assessment, different versions of timetables are 
simulated with the aim of evaluating the stability of timetables in case of disruptions. Their objective is 
to identify optimal timetables and their combination respectively [14]. Capacity assessment, by contrast, 
aims to provide insights into the dependency between traffic load and service quality [15], focusing on 
the available capacity of railway networks, single lines, nodes or a combination thereof [16]. With 
respect to freight logistics, capacity assessment often deals with the insertion of additional trains into 
existing timetable concepts [17 until 19]. While evaluation of traffic with respect to passenger 
trajectories and service experience is common (see, e.g. [20]), the underlying simulation remains based 
on trains as the elementary units, especially in freight transportation.  

There has been some research in the thematic intersection of logistics simulation and railway 
simulation: [6] propose a Multi-Agent GIS Simulation approach for Railway Logistics Optimization 
with the objective of identifying the best possible program. Also, linear programming is frequently used 
to model railway operations in either yards or networks as part of intermodal transport chains, some of 
which model the context of harbors and hinterland traffic [21, 22]. These models, however, focus on 
analytical approaches rather than simulation in an operational sense. There are also agent-based 
simulation approaches in railway research: [23] propose a MATSim-based methodology to model 
railway operations with single-wagonload-units being the agents. While they do consider capacity 
constraints and present an approach suitable for large networks, they do not focus on operational aspects 
such as delay but rather interpret and model the respective network on a node-edge-basis. Their 
approach aims for optimizing production schemes.  
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3 Methodology 
This section identifies requirements a simulation tool must fulfil in order to create a combined 

logistical and railway-specific simulation model and explains the subsequent choice of the simulation 
tool SUMO. It further proposes and illustrates a methodological framework to create a suitable model 
respectively. 

3.1 Requirements of a combined simulation framework for railway 
operations and freight logistics 

A combined simulation model of both a logistics and railway-specific level will have to fulfill 
certain criteria from both disciplines mentioned. Table 1 shows an overview of requirements to such a 
model and from which discipline they derive: 

discipline 
Requirement to a combined model railway logistics 
Processing of timetables x 
Signaling and train control x 
Operative Modeling of rolling stock incl. driving dynamics x 
Import of detailed, microscopic infrastructure x 
Inclusion of capacity constraints x 
Handling of large networks (x) x
Routing of vehicles (trains) x x 
Modeling of single goods (e.g. containers) as agents x 
Merging goods and trains: routing of goods (transport chain) x 
Processing of OD demand on level of goods x 
Extensive output possibilities (e.g., punctuality, reliability, routes, network 
utilization…) 

x x 

Easy adjustments on input criteria to evaluate systemic or individual effects x x 
Acceptable calculation time x x 

Table 1: requirements to a combined model 

Railway-related requirements can be categorized as follows: first, a suitable simulation tool needs 
to model railway operation with its specifics: As signals govern the access to railway infrastructure, 
both their locations and functionality need to be implemented. Further, train-specific driving dynamic 
needs to be implemented in order to correctly model the occupation of infrastructure and how trains 
interact and propagate delay. Basis for both mentioned criteria is a detailed, microscopic infrastructure 
model. Second, the concept of timetabling needs to be implementable in order to model railway 
operations. Here, in addition to relation-wise departure and arrival times, the concept of minimal 
stopping times is of importance. 

Further requirements derive from the logistical perspective, such as the implementation of the flow 
of goods on an individual, agent-based level to enable a detailed evaluation, e.g. of routes or 
transportation options. However, at the same time a network-wide analysis should still be possible by 
aggregating the agent-based output. Furthermore, the assignment of goods to a certain vehicle must be 
implementable as well. This allows the routing of goods, given transportation vehicles and their route. 
Coming from a demand perspective, OD matrices as an input on the level of simulative individuals 
must be processable. As logistical processes often are of complex and interconnected structure, the 
simulation tool must be capable of dealing with larger networks. 
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Last, some criteria have a more general simulative context, such as detailed output possibilities 
fitting the evaluation objective of the model: processable output in order to analyze delay on the basis 
of simulative agents as well as the correlated reliability can be mentioned here. Furthermore, network-
related output (e.g. its utilization) is of importance, as well as routing-related output possibilities such 
as operationalized trajectories. Given all the different criteria from different perspectives, simulation 
and thus calculation time must still be acceptable. 

It can be seen that railway operations planning goes along with detailed and specific operative 
processes (and thus requirements) whereas logistics simulation focusses on modeling and analyzing the 
flow of goods, given a demand and transportation network. 

3.2 The SUMO software package 
The simulation software package SUMO (Simulation of Urban Mobility) is an open-source 

microscopic simulation tool that uses an agent-based simulation approach to model mobility. It was 
originally designed as a digital twin of urban areas and had a focus on private cars. However, extensive 
development has been made in recent years in order to include non-urban use cases and other means of 
transports such as harbor processes [24] or railway operations [25, 26]. Even though operative train 
simulation in SUMO does not cover every single detail of train operation included in specialized railway 
simulation software tools (such as, e.g. RailSys [12], LUKS [27] or OpenTrack [13]), yet, it provides 
all functionalities required to analyze and simulate train operations on a microscopic switch-by-switch 
and signal-by-signal level of the infrastructure. In particular, it features several detailed train following 
models and respective driving dynamics. Moreover, standardized OSM imports including attribute-
related selection is implemented. As normally much fewer train units than cars can be observed in a 
defined area, large railway networks can be simulated as the numbers of units/agents are comparable to 
dense mobility in an urban area. Finally, SUMO allows intermodal routing for passengers in public 
transport, which could possibly be adopted to container routing as well. While SUMO has standardized 
outputs, it does not yet have many agent-specific output possibilities in the sense of combined, multi-
modal transport chains. Here, the existing output can be extended by individual approaches. 

Given the fact that the SUMO package provides functionalities for both railway infrastructure 
modeling and train simulation, as well as agent-based approaches including cross-modal mobility 
patterns incorporating different mobility-related agents such as cars, trains, persons and containers 
amongst others, it already fulfills a wide span of the requirements defined in the previous package. We 
therefore choose SUMO as the fundamental building block of our combined rail freight logistics-
simulation approach and show how it can be used and adapted to meet the criteria for simulating and 
analyzing the trajectories of individual freight units within the context of a rail freight logistics.  

3.3 Methodological approach 
Against the background of the two different disciplines explained in section 2 (logistics and railway 

simulation) and the choice of SUMO as simulation tool (cf. section 3.2), the methodological approach 
to generate a combined simulation model is explained in the following. Figure 1 shows different 
processes, which level they can be assigned to and how they interact to create the proposed model: 

Geischberger and Weik | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

149



Figure 1: methodology to create a combined model 

Train traffic representation 
Various input data is used to create the model. In railway operations, timetables comprise 

information on departure and arrival times of trains as well as their route. Timetables, where trains 
move according to a regular pattern that cyclically repeats after a defined interval (e.g. one hour), are 
referred to as periodic or clock-face timetables. More specifically, integrated clock-face timetables are 
symmetric clock-face timetables where connections between trains in multiple directions are 
coordinated on the network-scale with the aim of reducing transfer times. They are also referred to as 
integrated fixed-interval timetables and often visualized as network timetables (see [28] for an example) 
[29]. These kind of timetables are of importance to both railway-specific and logistical input data, as 
they have deep correlations on a planning and infrastructural level: first, they do not only fix passenger 
transport, but also integrate fixed train paths for freight trains, so called “system paths” [30]. Second, 
they try to mathematically arrange train paths within a network so as to minimize transfer times in the 
nodes accordingly. In terms of input for a simulation model, these kinds of timetables do not only 
contain information on timetables of both passenger and freight trains, but also comprise details on 
logistical connections as follows: freight train paths are usually integrated into the timetable between 
larger shunting yards where freight train wagons are arranged to freight trains. Extracting logistical 
information from system paths and thus defining their stations of origin and destination as logistical 
distribution points means that no further modeling of logistical infrastructure or production systems (in 
the sense of which container is transshipped at which yard) is needed. System paths are rather 
interpreted as potentials for goods to find their way through the system. On a SUMO level, both 
container stops and timetables can be extracted from integrated clock-face timetable data. Information 
on rolling stock serves as parameters for the train following model applied in SUMO and thus the 
driving dynamic of the different trains (e.g. high speed, regional or freight trains).  

In terms of demand, detailed data on the level of single units and their respective origin and 
destination have to be provided. As of now, the proposed approach interprets units in the sense of 
batches of goods or containers and models them as containers in SUMO. 

Rail infrastructure data usage and conversion for usage in SUMO 
Physical infrastructure is imported from Open Street Map via a common interface. For reasons of 

data size, only railway-specific objects are imported in the very first step, such as tracks and signals. 
The gathered data needs extensive conversion and processing in order to be converted to a SUMO 
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model: OSM railway data is converted to a SUMO network by means of the tools SUMO netconvert. 
A major challenge when using publicly accessible data is that directed connections (in the sense of 
which OSM links are connected to each other in which direction) are not “straightened”, meaning that 
directions of tracks can at times lead to dead ends in the system. Two possible ways to handle this can 
be thought of: either to declare all edges as bidirectional ones, allowing trains to use them in both 
directions, or to erase dead ends. The first solution is chosen in the course of the proposed methodology 
for reasons of minimizing manual network correction work and thus human errors. While it might lead 
to a high number of available routes for a certain train, it ensures that a “realistic” route is amongst the 
possible route options. Therefore, depending on the quality of input data and the size of the network, 
this approach might need adjustments in track priorities to ensure that trains use preferred routes as well 
as operational directions and thus deadlocks are avoided. SUMO netconvert provides an algorithm to 
change railway edge priorities on the basis of manually declared priorities of single edges. 

Container routing options 
Timetable data is transferred to SUMO additional-files and route-files. Here, passenger train stops 

can be transferred to public transport stops and freight train stops to container stops. In terms of 
container tours, as of now, static tours are used: this means that every single container has a predefined 
order of container stops, its origin, transshipment stops if applicable and its destination. It is, however, 
not specifically defined which trains the respective containers are assigned to. This allows the flexibility 
to transport containers with any train on a specific route, given capacity and time constraints. Railway 
shunting yards are usually of very complex track topology and its processes subject of various research 
(cf. section 2). Here, transshipment stations are defined with container stops, not considering shunting 
processes in simulation but rather realizing them by process times respectively. 

Simulation model 
The steps described lead to a SUMO simulation model with realistic railway infrastructure, both 

passenger and freight trains running according to timetables and containers assigned to tours of 
container stops. When starting the simulation, trains will enter the network with a specific initial route 
automatically created by SUMO based on shortest path algorithms. This path can, however, be 
influenced by edge priorities as explained above. Freight trains will, if defined, load or unload 
containers at container stops, considering process times as described above. As agent-based 
microscopic simulations focus on individuals interacting, here trains will most probably interact and 
influence each other. This is due to various reasons: first, delays are inevitable in train operation e.g. 
for reasons of unexpected disruptions due to infrastructural or technical issues. Delayed trains have to 
“keep up” to their schedule, but might not have a free slot within the timetable construct anymore, 
especially on congested lines or networks. In this moment, trains will influence each other. This impact 
can be significantly at times, for example when a delayed high-speed train has to follow a slow freight 
train on a mixed-traffic line. SUMO can model this mutual impact (on the basis of driving dynamics, 
timetables and signaling) of trains and will at the same time transfer this information to the containers 
loaded. In this way, container transport can be modeled from a railway-specific perspective, with delay 
implications being transferred onto single units. Thus, a combined train and logistic simulation can be 
created. 

SUMO offers different output functions to create data as input for analysis. In order to show that 
containers logistically behave according to their plan and at the same time are part of railway operations, 
a large output called fcd can be used to track trajectories of both vehicles and persons/containers. As 
this output can be fairly voluminous, it might be suitable to equip only those agents with a so called 
“fcd-device” that should also be part of the analysis. The trajectory information SUMO provides 
comprises coordinates of all/selected agents at every single timestep (1 second). Plotting the lateral 
speed of different container-specific trajectories vs. the simulation time elapsed shows how “smoothly” 
container run through the system and will show train-specific effects such as unplanned stops, delays 
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or deviations. Moreover, container trajectories can be shown following time-distance-lines, a traditional 
way of displaying railway timetables. 

4 Proof of Concept 
The methodology proposed in section 3 to combine logistics and railway simulation in SUMO was 

applied to the network of northwestern Germany and shown on the basis of exemplary container 
trajectories. Figure 2 shows the according railway network in SUMO: 

Figure 2: container route from Kiel to Hamm via Maschen yard (source: SUMO, edited) 

The network was imported and processed according to the methodology described above. Stops and 
train timetable data (including system paths for freight trains) were imported from the so called 
“Deutschlandtakt”, a Germany-wide concept of an integrated clock-face timetable that is to be 
introduced in 2030 [28]. As explained in section 3.3, subsection “container routing options”, train 
stations and yards are defined as container/public transport stops in a SUMO additional-file. Moreover, 
train rides are transferred from the input data to SUMO route-files. Figure 2 shows the specific route of 
a container entering the System in the harbor city of Kiel and being transported by a first train to the 
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large shunting yard of Maschen. This first train is to be seen as the operationalization of the freight train 
system path between Kiel and Maschen, operated every two hours at a specific departure minute. In 
Maschen, it is stored and/or transshipped. A yard-specific process time of 7 hours was assumed. The 
container is then loaded on a second train running on the system path Maschen-Hamm (3 paths in two 
hours) to be transported to its destination. 

The functioning of the combined both logistical and railway-specific simulation can be shown when 
comparing the trajectory of different containers within the system. Figure 3 shows the container-specific 
speed profile of three different containers, all having the same initial route and plan (Figure 2): 

Figure 3: plot of speed over time for three different containers on the relation Kiel-Maschen-Hamm 

The red curve of container 1 shows an undisturbed and executed-as-planned transportation chain. It 
can be seen, that most of the time the speed level ranges around the maximum speed level of the train, 
100 km/h. At times, the level suddenly falls, for example when the train passes a densely intertwined 
node of the network, where allowed speed levels are lower. After arriving in the yard of Maschen, the 
speed of the container decreases to 0 and stays so for roughly 7 hours until the container is processed. 
This yard-intern process is not modeled explicitly, but in such a way that the container stays at the 
container stop until it is loaded again. The subsequent ride with a second train on the system path 
Maschen-Hamm via Bielefeld takes longer than the first one. 

Container 2 has the same route as container 1, but is transported with the system path two hours 
later. The simulation output shows that the train transporting the container encounters some operational 
disruptions: at first, the freight train has to slow down and even fully stop for small moment, because 
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of signaling and blocking restrictions: its path is conflicting with a delayed passenger commuter train 
that shares the route of the freight train of the container for a small segment. Shortly before Maschen, 
the train again encounters implications from other trains, as the very densely operated area around 
Hamburg forces the train to stop and wait until tracks are free: The figure shows, that for these reasons, 
the container arrives in Maschen later than container 1. 

Container 3 encounters an undisturbed ride to Maschen comparably to container 1 (not identical, 
however) but its train is disrupted and has to use an alternative route in the second part of its transport 
chain from Maschen to Hamm. The deviation via Bremen and Osnabrück takes only a little bit longer, 
but has a quite different speed profile, as can be seen with the yellow curve. 

The container trajectories can also be plotted as time-distance-lines, following the conventional way 
to visualize timetables. Figure 4 shows this information: 

Figure 4: time-distance-line of containers on the relation Kiel-Maschen-Hamm 

The figure shows the covered distance of a container (not a train) in correlation to elapsed time. At 
first sight, the curves appear comparably smooth and almost linear. This, however, can be traced back 
to the comparably long observation period of 14 hours here, which “flattens” the curve. Nevertheless, 
operational disruptions with container 2, as described above, can be seen here as well in form of a small 
bend. Also, the path of container 3 is longer in total because of the mentioned deviation of the train 
transporting it; this results in the longer distance covered by the container represented by the green 
curve in Figure 4. 

Both Figure 3 and Figure 4 show that with the means of the simulation tool SUMO, detailed railway-
specific operations and at the same time agent-based logistical transport chains can be modeled and 
analyzed. A combined simulation has large further potential as described in the following section. 
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5 Discussion and future research 
Objective of this paper was to show that operational railway simulation and logistical simulation on 

the basis of single units (containers) can be combined and merged. This was confirmed by a proof-of-
concept based on planned integrated clock-face timetables of northwest Germany. On the basis of three 
exemplary container trajectories with the same initially planned route it was shown that logistical 
processes on the level of individual agents (container chain) can be modeled while at the same time 
considering specifics of railway operation. This means that implications from train operations such as 
delays and trains conflicting with one another can be analyzed not only on the level of trains, but single 
agents transported by trains.  

The shown merged approach can be extended by further research: container chains can be bundled 
and aggregated in order to enable a system-wide analysis. This can help identifying bottlenecks of a 
railway network not only in terms of trains, but also goods transported. By systematically analyzing all 
transport chains within the network, the delay of containers can be further evaluated (in contrast to the 
delay of trains) and both identify and quantify its dependencies to the design of the system. The 
reliability of a railway transportation network can thus be analyzed on the level of that goods which 
initially effected the transport in the first place. This is especially important against the background of 
supply chains and complex production processes, where reliability can be even more important than 
transportation time or speed. In addition to that, dependencies between container delay and 
transshipment process times can further be analyzed. 

The model can also be a starting point for studies on both train- and container-routing. As of now, 
the model did not yet have dynamic intermodal routing implemented, as already possible for passengers 
in SUMO. By adopting this to containers, constant rerouting and changing the initial plan of containers 
can be examined. This could help to more dynamically assign free yard capacities. The model proposed 
might also help to deepen the understanding of sea harbor hinterland traffic in the sense of pondering 
harbor-, yard- and railway capacities against each other. 

Lastly, the model could enable a feedback loop between operation and planning and thus converge 
two traditionally separate levels of realizing transportation directly on the level of larger networks. 
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Abstract

Signal priority is a strategy to handle traffic that adjusts the timing of a traffic signal phases to
achieve a mobility goal, typically to reduce congestion or waiting time. This strategy enables increased
mobility and is usually used in public transport operations; it works by making small modifications to
the phases of a cycle in order to delay the green phase or anticipating the end of the red phase. We build a
detailed simulation of the city center where an industrial partner operated and introduce signal priority
handling to improve operations and mobility for their heavy-duty vehicles. The idea is that when these
vehicles stop at red signs, they incur high consumption to regain speed, and cause conges-tion on the
traffic behind them due to their lower acceleration. Detailed computational experiments demonstrate
that this strategy generates significant gains for the partner fleet and has a side benefit of also improving
fluidity for the surrounding traffic.

1 Introduction

Traffic congestion is a major issue in many cities. Dense urban areas as well as those within city
centers are prone to congestion, which leads to many adverse effects: noise, pollution, decreased
mobility, increased risks of accidents, etc. This is particularly important when heavy-duty
vehicles must traverse these areas. This is often the case when industrial parks are located
within city limits. In this paper, we present a case study of such a city, and with access to large
databases of terrain data, including the latest origin-destination survey of the geographical area,
detailed LiDAR counters, and connected onboard devices on a partner’s fleet, we design transit
signal priority rules in order to alleviate many of these issues.

Signal priority is a strategy that modifies the schedule of traffic lights on signal-controlled
intersections. The goal is to improve fluidity of the axis of interest, without any major disruption
on the surrounding traffic [8]. This strategy is well-known in transit systems, typically for
vehicles in service, allowing them to decrease their travel time as well as improving the adherence
to their schedules [4]. Different strategies and parameters have been tested, mostly related to
the operational performance of bus systems [6]. Using signal priority to alleviate the congestion
caused by heavy-duty vehicles and to decrease their fuel consumption does not seem to have
been largely tested.

In our case study, we collaborate with the city administration and with an industrial partner
who allowed their heavy-duty vehicles to be equipped with GPS and real-time communication
devices. The goal is to design signal preemption rules in order to prevent these heavy vehicles
from stopping too often within the city center due to red lights, giving them priority if required
to ensure congestion is avoided and that their fuel consumption is then optimized. In order to
achieve these goals, we make use of four large datasets:
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1. road network and traffic signal phases,

2. origin-destination matrices of people movement in the metropolitan area,

3. camera counters of traffic,

4. detailed GPS traces and fuel consumption data from the partner fleet.

These different sources of data and how we adjusted them to obtain a representative simu-
lation in SUMO [1] are described in Section 2. In Section 3 we described how we managed the
traffic lights. In Section 4 we present several relevant statistics of the simulation including total
fuel consumed by the fleet of interest and by all the vehicles of the simulation, the time lost in
traffic, among others. Section 5 concludes the paper and suggests future research directions.

2 Data description and adjustments

In this section we describe the data available to us, and how we have adjusted the simulation
parameters to ensure that the simulation model is representative of the real life.

2.1 Road network

The road network of the area of interest was first imported from OpenStreetMaps [7]. This area
covers the territory of the Origin-Destination survey provided to us as presented in the next
section. After several rounds of corrections such as lane numbers, connections, traffic lights,
speed limit, and edge geometry, the graph contains 17 194 segments for 4 643 km and covers 1
965 km2, for a population of about 175 000 inhabitants. A snapshot of the complete region [7] 
is provided in Figure 1.

2.2 Detailed Origin-Destination information

We had access to detailed data from the 2011 origin-destination (O-D) survey on travel habits
conducted by the Transport Systems Modeling Department from the Ministère des transports
du Québec [5]. This survey covers the Trois-Rivières census metropolitan area which encom-
passes 18 municipalities. Each line of this survey represents a number of movements containing
information regarding the origin, destination, departure and arrival times, mode of transporta-
tion, along with socio-demographic information. This large file was obtained from interviews,
and was also treated by statisticians who determine that each one of these trips represents a
number of trips actually happening. So for example, one trip from a given residential area (a
street or a block) toward a commercial area (also as small as a street or a block) is representa-
tive of, as an example, 15 such trips over the same O-D pair, the same approximate time, and
the same mode of transportation.

Overall, the 58 084 lines of this O-D survey represent a total of 471 530 movements (396 523
of them being vehicle movements, others may be bicycle or buses trips for example) per day
in the regions of Ville de Trois-Rivières, Bécancour, Batiscan, Champlain, Grand-Saint-Esprit,

Nicolet, Notre-Dame-du-Mont-Carmel, Saint-Barnabé, Saint-Célestin, Saint-Étienne-des-Grès,
Sainte-Geneviève-de-Batiscan, Saint-Luc-de-Vincennes, Saint-Maurice, Saint-Narcisse, Saint-
Sévère, Wôlinak and Yamachiche. The data from this O-D survey gives a general overview of
the traffic sources and profiles.

We input this data into SUMO by using the attribute fromLonLat and toLonLat on a trip
file. Thereby, each route was created from the latitudes and longitudes of origin and destination
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Figure 1: Interest zone

and we created a complete 24 hours model. To be representative of the types of vehicles, we
used seven different types of vehicles (we generated 75% of passenger vehicles, 15% of sport
utility vehicles, 3% of light vehicles, 1% of light delivery vehicles, 2% of buses, 1% of tractor
trailers type 1, 1% of tractor trailers type 2, and the individual vehicle’s trips of the fleet of
our partner). These proportions were obtained from the city officials which use cameras with
LiDAR technology. These cameras are able to identify the type of vehicles like regular cars,
light trucks, heavy trucks, buses and tractor trailers. Data come from 18 different intersections
which are representative of the heavy circulation in this area. Note that we did not model real
bus lines. We carefully selected the best SUMO consumption model to be representative of the
vehicle’s consumption rates reported by the manufacturers.

By studying the O-D survey data, we observed that departure times were often rounded up
to 15 minutes. To avoid a jagged generation, we took each observation and spread its departure
time to more or less 5 minutes. In the O-D data, each individual observation is associated
with a multiplication factor Fact. This factor means that each line in the sample represents
Fact similar trips in the population. Then we generate Fact movements uniformly distributed
around the departure time within an interval of 10 minutes (5 minutes before and 5 minutes
after). In addition, in order to avoid that all trips depart and arrive from exactly the same
coordinates, we also used a buffer of 500 meters around the departure and arrival locations,
and generated Fact different departure locations and Fact different arrival locations within this
radius.

At this step, the 24h simulation has 396 523 trips and takes 88 341 seconds to run without
the Graphical User Interface, on a computer equipped with Intel® Core� i9-9900K CPU @
3.60GHz and 64GB of RAM. At this stage we keep all the information (location and time) on
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the movements of each original trip even if the simulation was not yet calibrated and adjusted,
and it contained a number of teleports, traffic jams and waiting time.

2.3 Area of interest

We have then reduced the geographical area of O-D survey to concentrate on the Trois-Rivières
city center. In this smaller graph, we have 5 480 edges for a length of 659.85 km and it covers
39 km2. In order to have all vehicle trips passing thought the interest zone, we have analyzed
each of the 396 523 original vehicle trips of the O-D survey to consider only the part of their
path that travels through the area of interest. The function duarouter was used to facilitate the
process. This is depicted in Figure 2, where the area of interest is shown as the white polygon
within the complete map. This region is illustrated in blue in Figure 1. An example of a trip
starting at O and ending at D outside the zone of interest is shown. For this trip, the departure
time at O and the arrival time at D were obtained from original simulation over the complete
O-D zone. When the trip enters the interest zone, we noted its exact location O′ and entering
time t(O′). The trip continues and exits the interest zone at location D′. Thus, in the smaller
simulation we have a trip starting at t(O′) from O′ to D′. For an improved visualization of this
zone, we use satellite image tiles from Google Maps [3].

Figure 2: Zone of interest and trips interception

Note that trips originating and ending outside the zone of interest, for which no part of the
trip travelled through this zone, are then not considered. Obviously, trips that are completely
within the zone of interest remain unchanged. The function cutRoutes.py was used to generate
the reduced trips files. These two procedures (decreasing the zone of interest, and intercepting
the trips within this zone) decreased the size of the graph from 17 194 to 5 480 segments.
Moreover, the number of vehicle trips now considered in the simulation decreased from 396 523
to 262 393.

Finally we ran the dynamic user assignment procedure one-shot.py on the 262 393 routes
with a travel-time updating intervals of 30 seconds to better balance the users’ routes.
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2.4 Camera counters

To make sure that the simulation reproduces the city traffic, we used again up-to-date camera
counters from LiDAR technology, thank to the city officials. These counters were available
from nine intersections and cover 24 road segments on the city’s main boulevard where our
partner’s trucks circulate. These city counters report a total of 88 529 vehicles. They indicate
with very high precision the number and type of vehicles traveling, their speed, direction and
cornering information, among others. At this point, our simulation reports 68 698 vehicles
passing through the same roads, which is about 78% of the observed traffic. This gap can be
explained by the fact that the O-D survey was conducted in 2011 and that the city camera
counts were taken in 2021.

Based on these information, we have calibrated the simulation using the calibrator functions
of SUMO which allow dynamic adaptation of traffic flows, speeds and vehicle parameters. The
calibrator removes vehicles in excess of the specified flow and it inserts new ones to try and
match the counts. We used hourly flows for the calibration. Several iterations were carried out
in order to adjust the simulation counts. The routes of the partners trucks remained unchanged
in the calibration simulations. At the end of the calibration process, we have 87 351 vehicles
passing through the studied intersection, which represents 98.66% of 88 529 trips reported by
the LiDAR counters. To obtain these values, 26 729 trips were added by the calibrator for a
total of 289 122 trips which is now the basis of the initial simulation (see Table 1).

Figure 3 shows the complete traffic profile of the O-D study and the traffic profile over the
simulated region. We can see that both profiles follow the same hourly profile. The simulated
traffic is very close to the O-D one especially outside the peak hours. Both profiles differ in
the peak hours because we do not consider the vehicle movements outside of our region, as
discussed.
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Figure 3: O-D and simulated traffic profiles

Belhassine et al. | SUMO Conf Proc 3 (2022)  "SUMO User Conference 2022"

163



2.5 GPS traces and fuel consumption data

The trucks of our industrial partner are all equipped with high-frequency GPS devices that
stores their location and instantaneous speeds, providing a detailed understanding of their
trips, average speeds, acceleration and deceleration patterns, and how often they stop at red
lights along the way. Moreover, these high-frequency devices are connected to the on-board
computer of the vehicles and also provide us with detailed fuel consumption, acceleration rates,
among other useful data.

The company’s trucks perform many round trips, each for 11.74 km and facing a total of 26
traffic lights. Their trucks travel fully loaded, weighting around 50 tons, and return empty, with
a curb weight of around 25 tons. To better model the vehicle consumption we use two different
SUMO consumption classes (PHEMlight/HDV-TT-D-EU6 and PHEMlight/HDV-TT-D-EU4)
for an average consumption of 119.4 l/100 km when loaded and of 113.8 l/100 km unloaded.
These values are representative of the consumption levels reported by the company. Figure 4a
depicts the path traveled by the company’s vehicle.

2.6 Traffic signal phases

Finally we also obtained from the city the traffic signal phases of all traffic lights in the path
of our partner’s vehicle (see Figure 4b). These phases were carefully implemented in SUMO.
These were corroborated by field observations and video recording of several trips. All others
traffic lights are set to actuated.

At this step we have a simulation based on the data of the O-D survey, where the hourly
profile matches the survey and LiDAR-obtained vehicle counts. Traffic on the main street of
interest was validated with the city counters and the fuel consumption corresponds closely either
to the manufacturer specifications or to our partner’s consumption data. The final simulation
takes 12660 seconds to run without the Graphical User Interface.

(a) Detailed vehicle trip (b) Traffic lights location

Figure 4: Vehicle route and traffic lights (images from [2])
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3 Managing the traffic lights

In order to obtain simulation results that can yield significant savings without affecting too
much the surrounding traffic or changing too much the signal phases, we establish several
signal priority strategies to be simulated. Our goal is to provide the city officials with strategies
that can be used to improve fluidity in the city center, allow fuel economy for the partner and
not cause any disruption on the surrounding traffic.

To dynamically manage the traffic lights, we positioned a number of sensors on the path
followed by the trucks of our partner. To interact with these sensors we use the Traffic Control
Interface (TraCI) which allows us to retrieve the state of the simulation and change the value
of some simulation parameters according to different sets of rules. Despite the synchronization
of the green wave, city officials confirm that traffic on this boulevard is recognized as being
problematic. This is a very busy boulevard and the succession of very close traffic lights causes
several problems.

We positioned 24 sensors on 13 locations on the forward path and 24 sensors on 13 locations
of the truck’s return path. As we will see, the good positioning of each sensor is crucial to
enhance the performance of the simulated network. If the sensor is too close to the traffic light,
the truck may not reach it if too many cars are waiting at the red light. If the sensor is too
far, the light may have time to turn red before the truck has crossed the intersection. In the
following we tested a number of strategies.

Strategy 0: This strategy is the status quo where the sensors are not used. These results are
used as a basis for improvement.

Strategy 1: Under this strategy each sensor is located at 150 meters of the light that it
controls. When a truck reaches the sensor, the light is automatically switched to green.

Strategy 2: In this strategy, the position of the sensor follows a function of the duration of
the green light phases dg and the allowed speed (in meters per second) on the segment towards

it, s. The sensor is located at
dg

2s meters of the traffic light. For a 20 seconds green light and
a 50 km/h speed limit (13.88 m/s), the sensor will be located at 138 meters. The light turns
green as soon as the truck reaches the sensor.

Strategy 3: Under strategy 3 we do not automatically give a green light to the truck but
rather consider the current phase of the traffic light. When the truck reaches the sensor, we
have three cases:

i) if the light is red, we change the lights of the other direction to yellow for α seconds and
then the truck is given a green light;

ii) if the light is green but for less than β seconds, we extend the duration of the green such
that it lasts β seconds; and,

iii) if the light is green for more than β seconds, or if the light is yellow, no action is taken.

These rules are applied to the sensor positioning of Scenario 1. Indeed, as the speed limit
is the same all along the vehicle’s path, the use of a fixed β implies that all the sensors are
positioned at the same distance from the traffic lights. Results are presented in the next section.

4 Simulation results

At this step, the simulation provides a representative digital twin of the city, with a particular
emphasis in the city center where the fleet of trucks of our industrial partner often affect traffic,
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and is impacted by the large number of traffic lights. Our goal is to evaluate how much can be
saved in terms of time, congestion, and fuel, if traffic lights are operated in a coordinated way,
considering the real-time location of the trucks.

Table 1 presents the results of the simulation under the initial Strategy 0. We present the
number of trips, consumption in liters (column Cons.), the distance traveled in kilometers, and
the consumption rate in liters/100 km. This table also presents a column Trips % which shows
for each vehicle type, its percentage of trips with respect to the total number of trips. We
can see that the proportion of generated vehicle of each type closely respects the percentages
presented in Section 2.2. For all vehicle types, the generated percentages are within 0.05%
except for passenger vehicles which is 0.17%. This deviation mainly comes from the calibration
process where the added vehicles to respect the camera counters are of the Passenger vehicle
type.

We detail the findings for each vehicle type: buses, articulated buses, tractor trailers, pas-
senger vehicles, sport utility vehicles, light vehicles, light delivery vehicles, tractor trailers, and
Partner (standing for our partner’s vehicles). In this simulation, 289 590 vehicle trips were in-
serted and only 383 teleports were reported by the simulation (this is reported in Table 5). The
simulation provides a consumption of 166 liters for the company’s trucks and of 195 265 liters
for the whole set of 289 122 trips. We can see that the simulation returns realistic consumption
rates for all vehicles.

Table 1: Initial simulation results under Strategy 0

Vehicle Nb. Trips Cons. Dist. Cons.
types trips % (liters) (km) (l/100 km)

Buses 5 674 1.96% 19 191 25 259 76.0
Articulated buses 5 679 1.96% 19 374 25 232 76.8
Tractor trailers 2 758 0.95% 15 099 12 177 124.0
Passenger vehicle 217 320 75.17% 92 826 883 234 10.5
SUVs 43 260 14.96% 27 634 191 076 14.5
Light vehicle 8 697 3.01% 6 282 38 013 16.5
Light delivery vehicle 2 931 1.01% 4 523 12 789 35.4
Tractor trailers 2 792 0.97% 10 170 12 170 83.6
Partner 11 0.00% 166 129 128.7

Total 289 122 100.00% 195 265 1 200 078 16.27

Table 2 shows the results when the control of the traffic lights is activated under Strategy 1.
Here, whenever one of the partner’s vehicles passes through the sensors, it is granted the green
phase. We can see that 289 540 trips were performed during the simulation, an increase of 418
completed trips (less than 0.14%), and the number of teleports also slightly increases to 387.
However the distance traveled increases by 13 629 km (1.1%). As the distances traveled was
not exactly the same, we perform some adjustments to set the consumption on the same basis.
For example, in the second simulation, the buses traveled 420 km less. In order to compare the
results of two tables we need to increase the consumption accordingly, thus we added 420 km at
the average consumption rate of 75.4 l/100 km for 316.92 liters. Thus the adjusted consumption
is 18 908 liters. We can see that our partner’s vehicle reduces its consumption by 9 litters from
166 to 157. For this scenario, the consumption of the partner’s truck is 119.4 l/100 km when
loaded and 113.8 l/100 km when empty. To this data we add 2.2 liters while the truck is running
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idle for a global consumption of 121.7 l/100 km. This is very close to the annual consumption
level of 125.6 l/100 km reported by the company. For the overall vehicles, the second simulation
reduces the total consumption by 2 893 litters (−1.48%). We can conclude that not only our
partner’s truck benefits from the traffic control but also many of the vehicles running on this
congested road can also benefit from the added green light period. A second-hand benefit is
that the trucks do not stop at red lights having then to slowly regain their speed, avoiding
causing congestion for the vehicles behind them.

Table 2: Results with traffic light control under Strategy 1

Vehicle Nb. Cons. Dist. Cons. Diff. Diff. Adjust. Cons. red.
type trips (liters) (km) (l/100 km) (km) (liters) cons. (liters)

Buses 5 665 18 591 24 838 74.8 -420 316.92 18 908 283
Articulated buses 5 702 18 812 24 886 75.6 -346 263.59 19 076 298
Tractor trailers 2 759 14 692 11 952 122.9 -225 277.85 14 969 130
Passenger vehicle 217 582 90 351 873 820 10.3 -9 414 981.38 91 332 1 494
SUVs 43 300 26 857 188 407 14.3 -2 669 383,27 27 241 393
Light vehicle 8 757 6 210 37 877 16.4 -136 22.38 6 232 50
Light delivery vehicle 2 948 4 411 12 565 35.1 -224 78.76 4 490 33
Tractor trailers 2 816 9 807 11 975 81.9 -195 160.99 9 968 202
Partner 11 157 129 121.7 0 0.00 157 9

Total 289 540 189 887 1 186 449 16.0 -13 629 2 485 192 372 2 893

Table 3 shows that further improvements can be obtained with an optimized positioning of
the sensors. With these sensors the trucks of our partner reduce their consumption by 11 liters
(6.6%) and for the whole vehicle fleet, the consumption reduces by 4 231 liters (2.17%).

Table 3: Results with traffic light control under Strategy 2

Vehicle Nb. Cons. Dist. Cons. Diff. Diff. Adjust. Cons. red.
type trips (liters) (km) (l/100 km) (km) (liters) cons. (liters)

Buses 5 664 18 561 24 892 74.6 -366 275.55 18 836 355
Articulated buses 5 714 18 872 25 062 75.3 -169 128.86 19 001 373
Tractor trailers 2 756 14 878 12 086 123.1 -91 112.31 14 990 109
Passenger vehicle 217 429 89 331 871 530 10.2 -11 704 1214.81 90 546 2 280
SUVs 43 201 26 409 187 165 14.1 -3 910 558.65 26 967 667
Light vehicle 8 728 6 056 37 351 16.2 -663 108.49 6 164 118
Light delivery vehicle 2 945 4 311 12 444 34.6 -344 120.51 4 432 91
Tractor trailers 2 801 9 798 11 995 81.7 -175 144.77 9 943 202
Partner 11 155 129 120.2 0 0.00 155 11

Total 289 249 188 370 1 182 655 15.93 -17 423 2 664 191 034 4 231

Table 4 shows the results when we add the traffic light management rule with α = 3 and
β = 15 seconds. Here we were able to obtain an improved consumption reduction of 4 464 liters
(2.2%). This scenario is also the one producing the most important consumption reduction for
our partner fleet which is now 153 l instead of 166 l under the original scenario.

Some relevant statistics of these simulations are presented in Table 5. We observe that for
almost 300 thousand vehicles simulated, there were only 383 teleports in Scenario 0, for an
average trip duration of 588 s. The time lost in traffic (waiting time) at speeds below 0.1 m/s
was 186 s on average, and the total time loss due to driving below the ideal speeds, which is a
measure of traffic incurred, averaged 313 s per trip. The same statistics for the simulation of
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Table 4: Results with traffic light control and management rules, Strategy 3

Vehicle Nb. Cons. Dist. Cons. Diff. Diff. Adjust. Cons. red.
type trips (liters) (km) (l/100 km) (km) (liters) cons. (liters)

Buses 5 626 18 079 24 547 74 -711 532.15 18 611 580
Articulated buses 5 690 18 581 24 755 75 -477 361.77 18 943 431
Tractor trailers 2 744 14 607 11 958 122 -219 269.61 14 876 223
Passenger vehicle 217 170 89 725 874 377 10 -8 857 919.82 90 645 2 181
SUVs 43 175 26 426 187 026 14 -4 050 578.91 27 005 629
Light vehicle 8 698 6 059 37 293 16 -721 118.12 6 177 105
Light delivery vehicle 2 953 4 320 12 460 35 -328 114.94 4 435 88
Tractor trailers 2 787 9 767 11 941 82 -229 189.45 9 956 214
Partner 11 153 129 118 0 0.00 153 13

Total 288 854 187 716 1 184 487 15.85 -15 591 3 085 190 801 4 464

Scenario 1 show a clear reduction on the time lost in traffic and on the waiting time. Scenario
2, with an optimized location for the sensors, demonstrated that a significant improvement is
possible. Particularly, the number of teleports has decreased and the time loss and waiting
time values have considerably decreased compared to the previous cases. Finally, the different
timing control of the traffic lights as in Scenario 3 shows that the statistics of interest remain
stable with respect to Scenario 2, indicating no signs of deterioration in the simulation as a
result of the improved traffic signal handling.

Table 5: Simulation statistics

Statistic Strategy 0 Strategy 1 Strategy 2 Strategy 3

Total vehicles loaded 292 965 293 475 292 708 292 593
Teleports 383 387 326 324
Duration (s) 588.3 563.01 551.41 553.45
Waiting time (s) 186 170 162 162
Time loss (s) 313.7 292.3 281.4 282.2

5 Conclusions

In this article we have proposed different strategies to manage traffic lights according to the
movements of our partner’s trucks while respecting a detailed simulation serving as a digital
twin of a city. The objective was to improve the fluidity of the journeys of these heavily loaded
trucks while not interfering with local traffic.

Using data from an Origin Destination survey and detailed counts from selected intersec-
tions, we have faithfully reproduced the traffic profile of the area studied and implemented the
phasing of the city’s traffic lights. The reference simulation generates 289 122 trips for a dis-
tance of 1 200 078 km and a consumption of 195 265 litres. The consumption of our partner’s
vehicle is 166 liters under this scenario.

Our results show that by carefully positioning the sensors it is possible to improve not only
the consumption of our partner but also of all the vehicles. The best strategy proposed reduces
the consumption of our partner’s trucks by 13 liters per day and of all the simulated vehicles
by 4 464 liters. These results show that the new method of traffic light management allows an
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overall improvement in improving the fluidity on the boulevard that the trucks traverse and
where a significant part of the traffic of the city takes place.

The city is currently deploying cameras and sensors at the main intersections in its terri-
tory. On the city’s main boulevard where our partner’s trucks circulate, 9 cameras are already
installed out of the 19 that would be needed. The other cameras will be installed shortly since
they will also be used for fire vehicles and ambulances.
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Abstract

This article i s concerned with the performance evaluation of connected, autonomous vehicles
(CAVs) i n a realistic l arge-scale microsimulation scenario. I n particular the ques-tion i s: how much
could a high diffusion of CAVs possibly change (1) the average travel speeds (2) the trip times of all
traffic participants, i ncluding pedestrians, and (3) the en-ergy/fuel consumption? For this purpose,
admittedly favourable assumptions are made: a 100% diffusion of platooning-capable CAVs as
substitution for private cars as well as a high maximum speed of platooned vehicles i n order to
enable platoon formation. The morning rush hour scenario of the metropolitan area of Bologna, Italy
has been selected for assessment. This scenario, which has been created and validated i n previous
works, represents an activity based demand model with travel plans for i ndividual citizens, i n-
cluding all relevant transport modes. The microsimulation i s performed by means of the SUMO
simulator. The entire demand has been generated with the SUMOPy tool. For the platooning of
CAVs, SUMO’s SIMPLA module has been used, which controlls the vehicles via the interactive
TRACI API.

Results show an increased speed and reduced travel time for CAV vehicles, with respect to
human driven cars, in particular in the periphery and less in the center with a dense road
network. However, the reason for improved speeds and travel times is predominantly the higher
maximum speed allowed for vehicles trying to catch up and join a platoon. Furthermore
these higher speed would also be resposible for an increase in fuel consumption of approximately
5%.

In conclusion, CAVs alone are unlikely to reduce congestion i  n an urban area. To make the
platooning concept work, additional technology and i  nfrastructure i  s required i  n order to merge
platoons effectively at freeways and at traffic l ights. The l atter could be simulated with GLOSA
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1 Introduction

Micro-simulating realistic, large scale urban areas is challenging, when considering all modes
of transport, including pedestrians and public transport [9]. Nevertheless, the performance
assessment of connected, autonomous vehicles (CAVs) necessitates a microscopic simulation
approach, especially when it comes to platooning. As stated in [6]: “macroscopic studies
only consider traffic average parameters, this micro approach is initially more logical to study
cooperation between vehicles, to define optimal gaps and speeds, etc”. With platooning, vehicles
are bunched together in trains, where headways between vehicles inside a platoon are shorter
than what is achievable with human driven cars. The first vehicle of a platoon is called the
leader while all the others are follwers. Vehicles trying to join the platoon are called catchup-
followers. It is obvious that the catchup-follower vehicle needs to drive faster than the platoon
in order join it.

The simulation of the formation and dissolution of platoons requires a sufficiently detailed
modeling of the position, speed and acceleration of vehicles on the one hand as well as the
knowledge of the vehicles routes. The vehicle route, which is decided based on link travel times
is used to decide whether vehicles form a platoon or not. This means that there is a strong
inter-dependency between microscopic events and macroscopic quantities (routes, flows and
link speeds), suggesting that a separation between local microscopic simulations and large-scale
macroscopic models would give unrealistic results.

The previously cited article also motivates the use of platooning for CAVs: if autonomous ve-
hicles were to run individually, then they would actually decrease capacity because autonomous
vehicles drive less agressive and have therefore larger headways than human driven vehicles. In
addition, new travel demand is expected to generate as the potential user group of autonomous
vehicles is considerably larger than the one able to actively drive a conventional car. For this
reason, vehicle cooperation and in particular platooning is needed to offset or reverse these
negative effects on the capacity.

The capacity increase of vehicle platoons depends on many inter-related factors, such as

• the platoon length

• achievable headway between vehicles within one platoon

• the effective time gaps between platoons

• the platoon duration, or variation of its length

• the platoon formation

While a vehicle driving as part of a platoon, an on-board distances control system allows short
headways to the car in front, based on the distance and speed of both vehicles. Both quantities
can be transmitted vai V2V communications or directly measuremented via Radar, laser or
optical devices. Headways within a platoon are typically sub-second and are considerably short
compared to what human drives are able to achieve. The distance control system is designed
to satisfy multiple requirements during all possible speed transitions [2] : safety, string stability
and comfort. Concerning safety, there are different vehicle spacing policies. The relevant policies
are the constant time headway policy and constant safety policy. The constant time headway
policy offers a constant, speed independent carrying capacity [12]. However, collisions can
theoretically occur at higher speeds. Despite this drawback, constant safety considerations have
been the headway policy for the design of linear control system for platoon-join manœvers [4].
Fewer literature can be found on feedback controllers that follow the constant safety separation
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policy. A constant safety controller needs by definition a nonlinear, quadratic feedback and
does therefore not fit into concepts of standard linear control theory. A common approach to
overcome this difficulty is the separation into a “safe trajectory generator”, driving a linear
feedback controller [4, 13]. An alternative, with a non-linear control-feedback has also been
proposed [7]. Concerning string stability, it is required that the speed changes of the platoon
leader are not amplified by the following vehicles. In case of linear controller, string stability can
be proven easily [12]. The design of a non-linear feedback controller providing string stability
is more complex, but also possible, for example by means of the Popov criteria [?]. A critical
issue for the string stability is the time delay of the communication or measurement devices: a
delay between an the occurance of speed-change of the lead vehicle and the moment when the
follower vehicle recognizes it, is crucial to string stability. A large delay is typically jeopardizing
string stability. V2V communication for position- and speed communications is typically faster
than measuring via radar. If the leader communicated its speed and position to all followers
simultaneousely, the string stability would also be guaranteed. The issue regarding the inter-
platoon space depends on many factors: a basic requirement for lasting platoons is obviously
that all vehicles in a platoon have a common route, at least in part – the shorter this common
route the the lower is the time vehicles stay together is a platoon. The ability for CAVs to
join a platoon depends also on the provided infrastructor. For example extra lanes or ramps to
accelerate the vehicle before joining the platoon. Concerning comfort criteria, it is necessary
that the control system of CAVs incolved in a platoon guarantees also speed, acceleration and
jerk limits.

Concerning the capacity increase, one needs to distinguish between ideal environments and
real environments (urban environments in the present article). Shladover, (2012) [11] who has
micro-simulated CAVs on a one-lane, intersection-free highway at steady-state traffic flows, has
shown an 80% increase in capacity, assuming all vehicles are CAVs. However, micro-simulating
CAVs in an urban environment with random trips results in much lower capacity gains of
approximately 16%, due to the network-level effect [5]. Clearly, the dynamics in intersections
and the durations of platoons appear to have a significant effect on the capacity [3].

Apart from the performance of the CAVs themselves, there is the question on the impact on
other road users. One particular issue is the interaction with pedestrians on mixed access roads
or at pedestrian crossings, where the average travel speed may reduce for both, pedestrians and
C, dependent on the vehicle flows and pedestrian flows. Changes in travel time will in turn
change demand and consequently flows of vehicles and pedestrians. See [15] for gap acceptance
of pedestrians crossing a road with platooned CAVs.

These examples suggest that, in general, small, microscopic and large-scale macroscopic
models cannot be simulated separately, which means only a large-scale microscopic model will
ensure that microscopic dynamics will correctly determine the traffic flows and vice versa, thus
global, network-level effects needs to be taken into account.

For these reasons, the present work evaluates the performance of platooned CAVs with a
large-scale micro-simulation scenario with a realistic demand, including all relevant modes of
transport. The next section describes some details about the methods and used parameters,
while section 3 presents and discusses the results. Section 4 draws the main conclusion and
points to limitation and potential future research.

2 Methods

This section is separated in two subsections, where the transport scenario and the CAV and
platooning related aspects are explained.
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2.1 The microsimulation scenario

The used validated microsimulation model for the medium size city of Bologna, Italy, with
approximately 500,000 inhabitants is explained in detail in [9]. The entire demand has been
created through the tool SUMOPy [8] while the simulation itself is performed by the SUMO
simulator [1]. in brief, the road network of Bologna city has been converted from OSM to
a SUMO XML format by SUMO’s “netconvert” program and edited manually with SUMOs
“netedit” . In addition, connectivity problems have been identified by matching GPS traces to
the network. Traffic lights are an OSM node attribute, but the signals have been generated by
heuristics. Large traffic light systems in and around the center have been edited manually based
on traffic light plans provided by the city of Bologna. The road-network of the city of Bologna
with surrounding towns is the core simulation area, covering approximately 50 km2. The core
area has a detailed street network, including bikeways and footpath. The entire metropolitan
area of Bologna covers a wider area of 3.703 km2. Figure 1 shows the traffic assignment zones
(TAZs) of the core area from the 2001 national population census. As there is a substantial
traffic between the core simulation area and the extra-urban TAZs, the citys road network
has been manually expanded by a simplified road network – using again SUMO’s netedit and
satellite imaginary.

Figure 1: Bologna core network with TAZ.
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The total number of road links is 32,409 with a total length of 3,316.20km. The share of
major road (with priority level greater 7) is 20.11% of the total length or 667.05km. Moreover,
there are 59,218 link connections and 14,724 intersections, 530 of which are regulated by a traffic
light. The geometric shapes, heights and type of 58,421 buildings in the core simulation area
have also been imported from OSM. Buildings are associated with activity locations of persons
in the synthetic population model. In addition, on-street parking lots have been created with
some heuristics along suitable roads.

The entire public transport service provided by the local operator (Tper) has been realis-
tically modelled within the core simulation area by generating bus lines based on data from
GTFS (General Transit Feed Specification). More specifically, 234 bus lines have been imported
from GTFS for a workday in May 2018 during the time from 6:00 to 9:00 a.m. The service
frequency has been averaged for this time interval for modeling purposes.

Demand has been generated mainly by disaggregating origin-to-destination matrices
(ODMs) valid for a work-day from 7:00 to 8:00. In particular, a virtual population has been
created by disaggregating OD-flows to single buildings, while taking their volume into account
[10]. ODMs of the modes car, scooter, bus and walking has been used to generate the pop-
ulation, but only for demand flows between TAZs inside the core simulation area. Bicycle
demand has been estimated from GPS traces recorded by citizens on a volunteer bases using
Smartphone. Each GPS trace describes the movements of each participating cyclist through a
sequence of time-stamped and geo-referenced Lat/Lon locations. For the used scenario, GPS
traces recorded during the European Cycling Challenge campaign in Bologna in May 2016 have
been used. The GPS traces have been filtered and mapmatched to create bicycle routes as a
sequence of network edges. Only traces during rush hours have been relevant, more precisely
between 8:30 and 10:30 a.m. The number of GPS trips need to be scaled to the effective number
of trips, using a scale factor from a previous publication [59]. Also each GPS trace has been
associated with a building, by analyzing the terminal GPS points.

At this point the assumed home and work location is defined for each person, and also a
“preferred” mode of transport has been associated with each person, depending on the type
of ODM or bike in case of GPS-generated persons. Next, plans have been created for each
person, connecting the building of home with work activity and by involving the preferred
mode. Afterwards some relaxation and calibration has been applied in order to achieve a
higher consistency between mode choice and building location.

An external car demand (cars with origin or destination outside the core area) has been
created by disaggregating ODMs on edges, considering all OD flows between external zones
and zones inside the core area as well as external to external zones that are crossing the core
area. With this method, external ODMs have been created for the modes car, scooters. External
demand for bicycles have been created from again from GPS traces, following the same selection
strategy as used for the OD flows.

Finally the dynamic user equilibrium has been determined for the scenario, optimizing the
plans of the virtual population the trips of the external demand components.

2.2 Implementation of CAVs

The demand for CAVs has been generated by simply substituting all car trips with vehicles
controlled by the algorithms of the SIMPLA [14] module through TRACI. SIMPLA is deciding
over platoon join maneuvers, but it is not controlling the distances between vehicles. Instead,
the distances are controlled by the car follower algorithm that can be specifies as a vtype in
SUMO. The follower algorithms of can be dynamically changed at any time via Traci. This is
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necessary, for example if the vehicle changes from follower to leader or vice versa. Parameters
of follower algorithms in normal/leader and follower/catchup mode are summarized in Table 1.
The speed factor for catchup vehicles is set to two, which means CAVs could go as much as
twice the speed to catch up with the leader. This high number is needed to allow a reasonable
platoon formation within short distances. The default vehicle model is the standard Krauss
model while during platoon operations the Shladover CACC model is used. Platoon update

Table 1: Vehicle type attributes of leader/normal and follower/catchup.

Attribute value as leader/normal value as follower

Length [m] 4.3
Width [m] 1.8
Height [m] 1.5
Passengers 1

Capacity 4
Max. speed [m/s] 50

Speed factor 1.0 2
Speed dev. 0.1

Speed mode 7 1
Max. accel. [m/s2] 2.9 5.0
Max. decel. [m/s2] 3.0

Emergrncy decel. [m/s2] 8.0
Reaction [s] 0.8 0.2

Driver 0.5 0
Min. gap [m] 1.0 0.3

boarding time [s] 4
loading time [s] 4

vClass passenger
Emission type average passenger car

(all fue types)
Impatience 1.0

time has been set to 2s, platoon gap equals 15m, platoon split-up time is 3s, and catchup
distance equals 100m. As there were frequent congestions due to deadlocks at roundabouts
and successive intersections, two SIMPLA underwent two modifications: A vehicle would not
change from normal to follower mode unless

• the common route between the vehicle and the potential leader have at least a minimum
distance (default is 500m)

• the common route between the vehicle and the potential leader have at least a certain
number of edges in common (default is 3)

With these modifications deadlocks on networks with a high node density have been entirely
avoided. However, it has been observed that SIMPLA works only with the standard lane change
model, not with the sublane model.
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3 Results

Essentially the above described scenario has been simulated with normal cars and with CAVs
and the two results have been compared. The results are shown in Tab. 2, distinguishing vehicles
of the virtual population (these are vehicles circulating in the core area) and the vehicles of
external demand (these are vehicles circulating also in the periphery).

Table 2: Performance results for virtual population (core area) and external demand (periph-
ery).

Quantity Normal cars CAVs Difference in %

Completed trips, external demand 44,941 47,590 5,89
Completed trips, virtual population 12,061 12,288 1,88

Av. Trip duration, external demand [s] 969.56 903.87 -6.77
Av. Trip duration, virtual population [s] 646.27 607.26 -6.04
Av. Waits, duration external demand [s] 72.16 65.89 -8,69

Av. Waits, duration virtual population [s] 135.30 130.76 -3.36
Av. speed, external demand [km/h] 45.00 54.25 20.56

Av. speed, virtual population [km/h] 26.21 28.19 7,55

The following observation can be made: for the scenario with CAVs, the completed trips
(within 1 hour simulated time) is higher, the average trip duration is shorter, the wait times are
shorter and the average speeds are higher with respect to the scenario without CAVs. There
is a remarkable difference between the improvements made in the core simulation area (with
a high node density) and the periphery (with a lower node density): the external car trips in
the periphery do clearly profit more of CACs, while the advantages in the dense core area is
less pronounced. The increase in completed trips indicates less congestion due to a higher road
capacity. The increase in average speed (and consequently a decrease in average travel time) is
mainly due to the higher speeds of the catchup followers, but also due to less congestion.

Average velocity and waiting times of bikes and pedestrians did not change significantly
(improvements below 1% difference between normal car and CAVs), which is reasonable because
both modes have their own network and do not interfere much with the road traffic, except at
intersections. The waiting time of pedestrians (this is the time during pedestrians stand still)
increases, but not significantly in the absolute sense (increase from 19.59s with normal cars to
20.30 with CAVs). This short average waiting time of pedestrians seems surprising and needs
to be further investigated. Another reason for this small influence of CAVs on pedestrians could
be because in the core area, where pedestrians are walking, the formation of platoons is less
pronounced, as mentioned above. Also public transport average speed and travel time is almost
unchanged by the presence of CAVs.

Instead, scooter seem to profit of the vehicle platooning with an increase of 5.28% in velocity
and a decrease of 3.84% in trip duration. This means scooters can increase speed by following
catchup vehicles, which do overspeed.

Concerning fuel consumption, the scenario with CAVs consumes 4.73% more fuel with re-
spect to the ordinary car scenario, assuming that both scenarios use the same motor technology.
Emissions are up 4.72% for CO2 and 7.16% for all Particle Matter PMx. Even though CAVs
are expected to have cleaner motors or even full electric, it remains the fact that there seems
to be an increase in energy consumption of CAVs with respect to normal cars, which is in line
with the increase in average speed.
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4 Conclusions

A realistic large-scale micro-simulation scenario during one rush hour in Bologna has been
simulated – with and without CAVs. In the CAV scenario all private car trips of the normal
scenario were substituted by CAVs. The simulated CAVS have been controlled by SIMPLA,
with some modifications that avoid deadlock behavior. One of the most significant parameter
of the platooning algorithm is the catchup speed which can be as much as twice the ordinary
speed. A main limitation of SIMPLA is that it does not run well with the sublane model and
it does not explicitly model communication links –these need to be modelled by parametrizing
the car following model parameters of the used vehicles. SIMPLA has apparently no issues with
string stability, most likely due to the use of simplified car follower models and the absents of
communication delays between the vehicles.

The results indicate that the CAV scenario increases average speed by approx 6% in the
periphery and 2% in the core area, made of a dense street network. Simulations showed that the
presents of CAVs have a very limited effect on the speed and travel time of bikes, pedestrians
and public transport. On the other hand, scooters can profit of the higher speed of catchup
vehicles, which must overspeed in order to reach their lead vehicle.

The higher average speeds of CAVs is also responsible for a higher fuel consumption and
emissions. Therefore, the role of the catchup speed is important as low catchup speeds will
not lead to platoon creation over short distances and too high catchup speeds will lead to an
increase of fuel/energy consumption, and will potentially compromise safety at certain locations.
In summary, the speed gain of a few percent points can only be achieved by allowing extreme
overspeed, otherwise the advantage of platooning would hardly be measurable.

The current study has some important limitations: 1) it considers only one rush hour and 2)
no V2I communication is implemented; it can be assumed that if vehicles could communicate
with traffic lights then this would further boost lane capacity at critical junctions of the network.
For this reason it is planed to include the GLOSA module to adapt traffic light cycles to the
arrival of vehicle platoons. A further project would be to introduce vehicle sharing, with the
consequence that additional empty vehicles would circulate.
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Abstract

Converting OpenStreetMap (OSM) data to a road network suitable for microscopic traffic simula-tion keeps 
being a challenging task: both missing information and excessive details, as well as wrong typologies present in 
the dataset frequently confuses automatic converters. In this paper, we present a method along with a reference 
implementation, Traffic Simulation Map Maker (TSMM), which aims at substantially increasing the automation 
level of road network prototyping by simplifying the OSM data while preserving important topology 
information. The main objective of this work is to enable the study of traffic simulation dynamics at scale using 
real-world road networks, while minimizing the need for solving the long tail of problems related to the road 
network generation. Our proposed approach yields what we believe is a good trade-off between precision and 
automation, making bold yet acceptable decisions that solve most of the errors at the source, i.e., the map. While 
there is definitely a loss in fidelity with respect to the real world, many properties of the road network are 
preserved. We argue that TSMM greatly improves the availability of arbitrarily large and usable road networks 
on top of available OSM maps by reducing the complexity for conversion tools and traffic simulation 
researchers alike. A proof-of-concept study using OSM data from Binjiang, China, demonstrates that TSMM is 
able to generate a road network with well-preserved topological information which avoids the many errors and 
deadlocks that occur when building the network using the original input sources.
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1 Introduction and Motivation
Microscopic traffic simulation is a mature domain which has been studied for decades [1]–[3]. A well-
established traffic scenario is often the basis for a meaningful simulation study. However, building such
a scenario is, in most of the cases, a challenging task, especially when it comes to generating the road
network. Considerable effort is usually required to gather, process, and transform the collected data
from different government agencies and map providers. Achieving a highly automated efficient road
network production is thus becoming more and more pressing in recent years both for academics and
traffic engineering practitioners.

At present, OpenStreetMap (OSM) [4] data is a common data source for the road network generation
to support researchers and practitioners in generating proof of concept scenarios. As a publicly available
platform, OSM offers geographic data for most of the areas of the world in a standardized XML format.
Traffic simulators such as SUMO [5] are able to convert it into simulator-native road network formats.
However, the road networks obtained from a direct conversion of OSM data often contain crucial errors
and inconsistencies due to ambiguous and often erroneous long tail of details and corner cases. Hence,
cumbersome and time-consuming manual efforts for post-processing are thus still necessary, outright
precluding the generation of large scale scenarios.

There are three reasons why converting OSM data directly to a road network for microscopic traffic
simulation is problematic: (i) Intersections are not modeled with an explicit data structure in OSM,
requiring the conversion process to guess relevant information like intersection geometry, waiting lines,
and lane-to-lane connections1. (ii) Considering that most of the OSM data is produced by volunteers,
human errors are very frequent. Incorrect connections, gaps, misclassifications, and broken ways are
common issues found in the road network for a given region [6], which could result in disconnections
and inconsistencies in the traffic simulation. (iii) Variability in how real world geometry is represented
in OSM data is another reason. Although there are conventions, they are not always followed due to
the sheer number of editors and covered areas. For example, some bi-directional roads are represented
by a single bi-directional ways, while others by two separate uni-directional ways. Turn lanes are
sometimes classified separately and sometimes they share the same road type as the joining streets. Such
variability leads to a substantial increase in map data complexity and further aggravates the challenges of
automatically converting OSM data to a road network suitable for microscopic traffic simulation.

In this paper, we present the Traffic Simulation Map Maker (TSMM)2 toolchain that follows a novel
approach to convert OSM data to SUMO networks. So far, researchers attempting to generate a road
network for traffic simulations based on OSM data must first simplify and fill in the data manually. TSMM
substantially increases the automation level of this process. By extracting data from OSM, TSMM can
generate a lane-level SUMO network for any regions. In a step-by-step fashion, the complexity of the
OSM data is gradually reduced by eliminating auxiliary elements. At the same time, most important data
and information is kept and processed to ensure the consistency. TSMM aims to support researchers in
overcoming the challenges caused by incorrect and incomplete data in original OSM map data. The road
network generation process proposed in this work allows to produce a fully connected and positionally
accurate road network through a one-click automated process.

The goal of TSMM is to create error-free road networks at scale. This translates into a higher
priority for correctness compared to realism. The generated road network retains the original road
layout, road classification, and intersection locations, while complex side roads, lane connections within
intersections, ramps, etc., are simplified and represented in configurable templates. Typical use cases of
such simplified networks include, but are not limited to: (i) Generating a road network which features
the typical mix of low and high traffic density roads and can therefore be used in simulation studies of

1https://wiki.openstreetmap.org/wiki/Junctions
2TSMM source code and data repository URL is hosted on Zenodo: https://doi.org/10.5281/zenodo.6482355
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Inter-Vehicle Communication [7] applications. (ii) Providing large-scale road networks for researchers
who are simulating traffic with High Performance Computing frameworks to evaluate the reliability and
performance of relevant designs and algorithms. (iii) Offering general-purpose road networks which can
be used to evaluate traffic policies that are not city-specific and rather target a certain type and scale, e.g.,
a middle size European city or a densely populated Asian metropolitan area.

For usage scenarios which require higher details, on the other hand, we hope that TSMM can
accelerate the process of road network prototyping.

2 Data Representation
OSM is a crowdsourced publicly accessible platform which provides rich Volunteered Geographic
Information (VGI) that is free to use and edit [8]. Since the focus of this paper is to generate road
networks for microscopic traffic simulation, only the following elements regarding the road network in
OSM are relevant: nodes, ways, and relations. We briefly describe these elements in the following.

Nodes: A node is the basic element in the OSM data model. Each node represents a single point and is
defined by a coordinate. Usually each node should have a unique node id.

Ways: A way is the representation of (part of) a street. A way consists of several nodes, which define
the shape of the street. Each way is characterized by a set of tags, defining the typology and
specifications of the street. These tags show, among the others, the road level (e.g., motorway,
primary, trunk) and the number of lanes. Another important tag is oneway. When a way is
tagged as oneway = yes, the way is then uni-directional and only allows vehicles to travel from
its first node to the last one, conversely is then prohibited. Besides real one-way roads in small
districts, dual carriageways are also often marked with this tag and then represented by two
approximate parallel uni-directional ways, each in an opposite direction. However, this will cause
problems and confuses the conversion tools when generating a road network for traffic simulation,
as we will discuss later.

Relations: In the OSM data model, ways are connected by default when they share the same nodes.
That is, vehicles are allowed to travel from one way to another via their common nodes unless
other rules apply. Access restrictions for connected ways can be defined using relations, for
instance, to prohibit U-turns or right turns (with no_u_turn or no_right_turn, respectively).

An example illustrating a junction represented by OSM data is depicted in figure 1a.
Similar to the OSM data model, a SUMO network also consists of nodes and edges, the latter

describing, e.g., streets, bike lanes, or walkways [3]. SUMO provides several tools for generating SUMO
road networks from OSM data: Netconvert and OSMWebWizard are both able to convert OSM data
to SUMO networks, while NETEDIT is a graphical network editor that can be used to manually fill in
missing information and correct errors in the converted network files.

A major problem of converting OSM data to a SUMO network is to identify the association of nodes
to intersections. As shown in figure 1a, one intersection could consist of multiple nodes and ways,
particularly when the ways are modeled by two parallel uni-directional roads with opposing directions.
While this approach for modeling intersections is well suited for navigation or routing services, and allows
for appealing visual map rendering, it poses challenges for the conversion to SUMO road networks.

Automatic conversion using, for instance, Netconvert, requires the correct identification of nodes
and ways that represent regular streets or are part of an intersection. Incorrect identification will lead to

3Map data and OSM tiles © OpenStreetMap contributors; terms: www.openstreetmap.org/copyright

Meng et al. | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

183

www.openstreetmap.org/copyright


(a) original OSM data3 (b) SUMO map after conversion; multiple
intersections are generated instead a com-
plete one

Figure 1: Representation of a intersection in OSM and the result of converting it to SUMO without 
simplification.

inconsistencies, such as the one shown in figure 1b, where a single intersection is interpreted wrongly as 
multiple sub-intersections. This can cause vehicles to misbehave, triggering deadlocks, as we will show 
later, e.g., in figure 12a. Such problems are discussed at length in literature on medium-scale scenarios 
such as the work by Codecá et al. [9] and Rapelli et al. [10] regarding the generation of the SUMO 
Luxembourg and Turin scenarios. A commonly employed solution is therefore manual editing of large 
parts of the network.

3 Related Work

The challenges of road network generation from OSM data has been addressed in prior work. Some 
studies [11], [12] suggest that nodes which represent the same intersection can be integrated into one 
relying on reasoning over geometric connection relations, such as the spacing among the nodes, and 
whether they can form a circuit or not. However, this approach can typically handle intersections 
consisting of only a small number of nodes, and it struggles over complex intersections with extra turn 
lanes. Other researchers presented methods to use the semantic information in the OSM data to help 
locate intersections [7]. However, such methods highly depend on the homogeneous and consistent 
quality of the OSM data available.

Other studies [13], [14] aim to capture parallel dual carriageways in OSM data through machine 
learning. However, the focus of these studies is to identify multi-lane roads for road hierarchy analysis 
rather than traffic simulation. The integration of multi-lane roads, the processing of single-lane roads, as 
well as the identification and representation of intersections for traffic simulation are not in the scope of 
these studies.

In this paper, we present a novel approach that is applicable to a wide variety of cases to simplify the 
OSM data with a strong emphasis on generating an error-free and consistent road network. This is done 
by firstly merging multiple OSM ways (in particular those trying to approximate a median strip separating 
opposing lanes of the same road) into single ways using a buffer method to represent the streets, and then 
using the crossing points among all the simplified ways to represent the i ntersections. In the end, the 
resulting simplified OSM network includes only streets and intersections which can be straightforwardly 
converted to a SUMO network by Netconvert, as discussed before.
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Figure 2: Steps performed by TSMM.

4 Methodology
TSMM takes OSM data as input and produces simplified OSM data as output, which is suited for
conversion with Netconvert. The simplification of the OSM data is performed in a sequence of steps
building upon each other, as illustrated in figure 2. We detail these individual processing phases in the
following.

4.1 Preprocessing
At present, the emphasis of TSMM is solely on generating road networks for motor vehicles. Roads
used primarily by other traffic participants, such as bicycle lanes, crosswalks, and bus lanes, are beyond
the scope of this work. Therefore, the raw OSM data is first pre-processed by filtering out irrelevant
elements. In particular, only roads of type motorway, trunk, primary, secondary, tertiary, and
residential are extracted from the raw OSM data; other types are discarded.

4.2 Simplifying Streets
The first step of simplification is to form lines. Note that a line is not the name of a data structure that
is available in OSM nor in SUMO. Instead, in this paper, we use the concept of a line to refer to an
ordered set of ways; these ways have the same road type and are connected to adjacent ways within the
group trough their first or last node.

Forming lines is straightforward, starting from an arbitrary way, searching forward and backward
for its adjacent ways and, if the angle between them is less than a certain value, adding them to the line.
One notable situation is that it is possible for a way to have multiple other ways connected at its end.
In this case, that way among all connected ways which has the smallest angle with the line will be
selected to continue the line. Exemplary input and output data of this step is shown in figures 3a and 3b,
respectively.

Two approximately parallel lines (such as those highlighted in figure 3b) often represent a dual
carriageway in the real world. Thus, by identifying and merging these into one single line, the raw data
can be substantially simplified. Typically, the two lines in the dual lines are not too far apart since they
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(a) illustration of how a long road with a median strip separating the opposing lanes is commonly modeled in
OSM; different colors illustrate how the road is composed of multiple different OSM way elements

(b) intermediate result after forming lines; different colors illustrate different lines

(c) result after merging dual lines

Figure 3: Simplification of ways in OSM data.

Longest line

Buffer

(a) after creating a buffer based on the
longest line

(b) after deleting lines within the buffer
and creating the next buffer; removed
ways illustrated as dashed lines

(c) after merging all dual lines; removed
ways illustrated as dashed lines

Figure 4: Buffer method for merging dual lines.

are representing the same street. For the same reason, their shape and alignment should also be relatively
similar.

Therefore, we propose a buffer approach to merge the dual lines, as shown in figure 4. We use the
term buffer to denote a polygon with a fixed width, which is generated around a line. First, such a buffer
is generated based on the longest line l in the current map data. All other lines with same road type as
l and are covered by the buffer over a certain percentage with respect to the length will be then deleted
in the map data. Consequently, line l will be then tagged as a bi-directional street. The amount of its
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Algorithm 1 Buffer method for merging dual lines Algorithm
Input: set of all lines, L = {l0, l1, ...}
Output: set of remaining lines, R = {}

while L is not empty do
Pick longest line l from L;
Add l to R;
Generate buffer polygon based on l;
Remove any line from L that is of the same type and of which at least p% length is inside the
buffer;

end while

return R

(a) rendering of side roads in
OSM map3

(b) representation of side roads
(blue) and main roads (black)
with lines

(c) after merging dual lines (d) after merging side roads

Figure 5: Process of merging side roads into a main road.

lanes is thus doubled to ensure a consistent road capacity as before. Next, the buffer is generated starting
from the longest of the remaining lines, and the process is repeated until all lines are processed. The
pseudo-code for the buffer algorithm can be found in algorithm 1.

As shown in figure 3c, all the dual lines in the original OSM data are represented by a single line
each now. As can be seen, the resulting network has a similar road layout compared to the original map
while its complexity is substantially reduced.

One remaining problem are side roads of a different road type than the main road (figures 5a and 5b).
As figure 5c shows, side road and main road are still represented by two approximate parallel lines after
the buffer approach if only roads of the same type are considered. To solve this, the buffer method is thus
applied again – the only slight difference being that, this time, the road merge process also considers any
road which has a “lower” type (e.g., secondary vs. primary) than a given road as being eligible for
merging into the present road. In order to ensure the consistency of the data, the number of lanes of the
main roads is increased with the corresponding lanes amount of side roads, same as the approach taken
by Wang et al. [11].

At this point, the simplification for streets is completed. Next, we focus on the corresponding
operations for generating the intersections.

4.3 Generating intersections
As shown in figure 6a, after the last step, streets are now all represented by only one line. In this case,
the crossing points among the remaining lines (illustrated as dots) are naturally the location of the
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(a) generation of intersections after simplifying streets; the left-
hand rectangle marks an area where a disconnection occurs (fig-
ure 6b); the right-hand rectangle marks an area where the merging
process created a sharp right-turn curve (figure 6c).

(b) disconnec-
tion caused by
missing filtered
out ways

3

1

4

25

6

(c) disconnection and sharp
turn curve caused by simplifying
streets

Figure 6: Illustration of issues for generating intersections.

intersections in real world. Thus, the next step is to calculate the coordinates of these crossing points and 
insert them as nodes into the corresponding ways. While this approach works in most cases, additional 
processing is required for certain issues, as explained below.

Several streets are disconnected after the previous simplification, as is highlighted with the bottom 
left rectangle in figure 6a. One case of such disconnections is shown in figure 6b. In this case, the way 
(dashed line) which connects the other two ways was filtered out during the data pre-processing because 
it is not tagged with an appropriate road type (e.g., unclassified) or tagged as auxiliary elements 
(e.g., link). This caused the break of those two originally connected ways. Such an issue occurs more 
frequently when data is less complete and accurate. Another case of disconnection happens after the 
dual lines merging process, as is illustrated in figure 6c. Originally, line 1 is connected with line 3. 
However, line 3 is merged into line 4 as both lines jointly represent the dual street. This leads to a 
disconnection between line 1 and the dual street in the simplified road network.

Apart from the problem of disconnections, unreasonable intersection shapes (bottom right rectangle 
in figure 6a) caused by the simplification process also need to be considered. The reason for this issue 
is shown in figure 6c as w ell. After line 5  was m erged, line 6  became the complete dual street. 
Unlike line 1, the connection between line 6 and the dual street represented by line 4 and line 3 
is still ensured. However, in the original data, line 6 has a left-turn curve. If the turn curve is directly 
converted to a bi-directional edge in the SUMO network, an intersection with an unreasonable shape will 
be generated: Right-turning vehicles driving from line 6 to line 4 are confronted with a sharp turn 
angle. This can lead to severe congestion in the simulation that is purely an artifact of the unreasonable 
intersection shape.

Therefore, there is an automatic pipeline in TSMM, illustrated in figure 7, which aims to solve the 
issues mentioned above: First, all lines are extended by a certain length at the head and tail ends. If a 
curve is detected there, the extension will be based on the overall angle of line and the curve will be 
subsequently removed. By doing this, the lines remaining in the map will reconnect to the others and 
crossing points can be formed to represent the intersections. Next, among the crossing points formed by 
the extended lines, very closely spaced points can be further merged together and excess trimmed. In 
this manner, intersections that were not able to be captured previously can be created, and sharp turn 
curves can be straightened out to form normal streets. We found that the length the lines need to be 
extended and the proximity parameter for merging intersections play an important role. TSMM suggests 
different values based on the road level, and users can tune them according to the roads characteristics 
(e.g., road density) of their target city.

Regarding the representation of intersections, TSMM provides three different types of templates 
which it instantiates depending on the level of roads that connect to the intersection.
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(a) extending roads along main
direction

(b) removing curves near the
intersection

(c) creating nodes at the inter-
section

(d) merging nearby nodes

Figure 7: Steps in the line extension process.

(a) uncontrolled intersection (b) traffic light controlled intersection (c) grade separated intersection

Figure 8: Classification of intersections.

Uncontrolled intersection (see figure 8a): In the real world, these intersections are regulated only by
right-of-way rules. They are found mostly among low-level streets, like residential ways. For
this type of intersections, no additional operations have to be applied in TSMM. When a node is
shared with more than two ways, by default this is converted to an uncontrolled intersection with
Netconvert.

Traffic light controlled intersection (see figure 8b): Some intersections require traffic lights. The stan-
dard identification of traffic light controlled intersections in Netconvert is through the information
provided by the tags of the nodes. For instance, if a node is tagged with traffic_signals,
the intersection formed by this node will be converted to a traffic light controlled intersection.
Standard traffic light programs will also be provided by Netconvert if there is no additional data
filled in by the users. In addition, with TSMM, users can define which level of intersections should
be controlled by traffic lights. TSMM is then able to identify and tag these additional nodes to
ensure a proper conversion later.

Grade separated intersection (interchange) (see figure 8c): For streets like motorway and highway,
it is necessary to separate the traffic in the vertical grade in order to maintain high driving speeds
of vehicles and maximize traffic throughput. Users of TSMM can therefore define which type of
street should be served with interchange. So far, TSMM always uses clover leaf interchanges to
represent all grade separated intersections.
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(a) before simplifying
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(b) after simplifying

(c) zoomed view of figure 9a (d) zoomed view of figure 9b

Figure 9: Comparison before and after simplifying.

4.4 Network cleaning

Full connectivity of the road network plays an important role in many SUMO simulations, yet mapping 
errors in OSM data can sometimes leave spurious roads in the network. After simplifying the road 
network from the previous steps, TSMM therefore uses the Breadth-first search (BFS) algorithm to group 
all intersections into different clusters according to their connectivity to each other. In the end, the cluster 
with the highest number of intersections will be defined as the true road network – and intersections and 
streets which are not in it will be removed from the road map. In general, the removed parts are supposed 
to occupy only a small proportion, otherwise, the user needs to reconsider the parameters being used.

5 Evaluation

The purpose of this experimental case study is to evaluate the performance of our tool using real OSM 
map data. The road network in Binjiang, a central district of the Chinese city Hangzhou, which covers 
72.2 km2 in total, was tested. The road network contains 161 km roads and 128 intersections, among 
which 28 are grade separated intersections.
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Figure 10: SUMO network of Binjiang.

As shown in figure 9a and figure 9c, the original OSM network mainly consists of dual uni-directional
roads. As can further be seen, primary (in black) roads appear in several places as the side roads of
trunk roads (in blue). This means that the vehicles driving on the trunks should not have conflicts with
traffic from other roads; the connection among them should be achieved through the primary side roads.
However, the design of these side roads is often so complicated and non-standardized that converting
them into a SUMO network directly through Netconvert rarely succeeds. Such poor identification often
even leads to broken roads and deadlocks.

Therefore, as described in section 4, TSMM merges side roads into main roads and inserted clover
leaf interchanges for all the intersections on the merged roads during the simplification process. The
simplification was executed on a mid-range Desktop machine operating at 3.90 GHz taking 21 seconds
with non-optimized code.

Based on the proposed methodology, TSMM is able to simplify the original road network while
retaining the topological information with respect to location of intersections, overall road layout, and
road classifications. In this manner, although the layout visually differs from reality, it still ensures to a
large degree the topology of the road network regarding traffic characteristics (figure 9b and figure 9d).

5.1 Preparation
After the simplification, the OSM road network is fed into Netconvert to be converted to a SUMO
readable network file (figure 10).

For comparison, the non-simplified OSM road network is converted as well. Netconvert itself con-
tains many parameters and switches; for a comprehensive comparison, we converted the non-simplified
road network with two different versions. The first version, same as converting the simplified OSM
network, is converted with default options, as follows:

netconvert --osm-files <osm-file> -o <sumo-network-file>

For the second version, it is converted with additional options which are frequently recommended4

4https://sumo.dlr.de/docs/Networks/Import/OpenStreetMap.html
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Figure 11: Rate of completed trips vs. increasing travel demand. Different road networks can sustain
differently high demand.

for Netconvert. Conversion with these additional parameters is able to simplify the raw OSM data
automatically, joining the nodes heuristically, guessing location of ramps, and inserting traffic lights for
uncontrolled intersections. The parameters are:

netconvert --osm-files <osm-file> -o <sumo-network-file> --geometry.remove
--ramps.guess --junctions.join --tls.guess-signals --tls.discard-simple
--tls.join --tls.default-type actuated

We also prepare traffic demand for the experiments as follows. To ensure the consistency across all 
scenarios, the trips files for each network are taken from the same dataset. In the dataset, a certain amount 
of trip data is stored, where each trip consists of a coordinate pair within the study area, and a randomly 
assigned departure time within the time interval 0–180 min. In the next step, the trip data is converted to 
SUMO readable trips files for each network. The departure time is kept identical to the one in the dataset, 
while the origin and destination places are set to the closest edges to the coordinates.

The simulation time is set to 6 hours, which is sufficient for all the vehicles to finish their trip if there 
is no congestion. The teleporting of the vehicles (the fail-safe procedure employed by SUMO when 
unexpected events such as deadlocks happen) is disabled unless a collision has occurred or if no valid 
route has been found for a vehicle. At the end of each simulation, by analyzing the car counts statistics 
and visually inspecting the network to identify bottlenecks, the performance of each road network can be 
assessed.

5.2 Assessment

As illustrated in figure 11, continuously increasing the initial amount of traffic reveals that the tested road 
networks start to show uncompleted trips when the traffic volume reaches 5000, 10 000, and 100 000 
trips, respectively. Much more so than the quantitative performance of the networks, however, we are 
interested in why bottlenecks materialize.

At the end of the simulation we therefore inspect visualizations of jammed intersections. This analysis 
of the causes of bottlenecks allows to determine whether the congestion is caused by excessive traffic 
volume or by errors in the road network itself.
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(a) a representation of con-
gested intersections at the end
of simulation; converted via de-
fault settings

(b) same intersection as fig-
ure 12a converted via recom-
mended settings

(c) same intersection as fig-
ure 12a converted via TSMM

Figure 12: Analysis of uncompleted trips in the road network converted directly via default settings with
5000 initial trips.

(a) same intersection as fig-
ure 13b converted via default
settings (shown without traffic)

(b) a representation of con-
gested intersections at the end
of simulation; converted via rec-
ommended settings

(c) same intersection as fig-
ure 12b converted via TSMM

Figure 13: Analysis of uncompleted trips in the road network converted directly via recommended
settings with 10 000 initial trips.

The results after the simulation reveal that the non-simplified road network generated using the
default settings has the lowest traffic capacity compared to others. When 5000 cars were imported into
the network as input demand, nearly 400 cars were already unable to complete their trip. Congestion
occurred at many intersections at the end of the simulation. Through observing one of their representatives
(figure 12a), it is revealed that the congestion was not caused by excessive traffic but rather by errors in
the road itself. This is because, by default, Netconvert treats all nodes crossing different ways in OSM
data as intersections; four intersections, each with an independent traffic light controller, are hence created
here. Consequently, when too many vehicles enter this complex multi-intersection area, the vehicles
block each other due to traffic lights and narrow spaces. A deadlock was thus created and henceforth
obstructed all vehicles that were supposed to pass by. On the contrary, the same intersection generated
via recommended parameters (figure 12b) and via TSMM (figure 12c) are free of such deadlocks.

The road network, converted with the recommended parameters via Netconvert shows a remarkable
improvement in the deadlock discussed above. However, the algorithm it uses can only cope with simple
cases when multiple nodes form one intersection in OSM data. It still lacks the ability to address more
complex situations. Thus, at the end of the simulation, unresolved traffic congestion at many intersections
still appeared across several intersections. One of these intersections can be seen in figure 13b. Part of the
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(a) bottlenecks of network converted via TSMM

(b) congested intersection in
left-hand of figure 14a; con-
verted via TSMM

(c) congested intersection in
right-hand of figure 14a; con-
verted via TSMM

Figure 14: Analysis of uncompleted trips in the road network converted via TSMM with 100 000 initial 
trips.

nodes in this widely spaced intersection are clustered together and two independent traffic light controlled 
intersections are generated in the end. Although better than the result converted via default settings 
(figure 13a, shown without traffic), where four intersections are created, a deadlock is still unavoidable 
when a large amount of traffic is flowing into this area. On the contrary, TSMM is able to identify all the 
nodes associated with this intersection properly and generate a deadlock-free intersection (figure 13c).

Still, even the simplified network generated by TSMM is not free of c ongestions. As shown in 
figure 11, however, the simplified road network generated via TSMM can accommodate nearly 100 000 
vehicles to finish their trips. This is a multi-fold increase in capacity compared to the other two networks 
and might hint at less deadlocks. Figure 14a depicts the location where congested vehicles gathered 
after the simulation. By zooming in on these two intersections, as shown in figure 14b and figure 14c, 
respectively, it can be confirmed that the congestion is solely caused by excessive traffic volumes, as 
undesired network errors are not revealed in either area.

Summing up, in our experiments, errors were found in both networks generated without TSMM, 
most owing to the data quality of OSM data. These errors caused deadlocks and further limited the 
capacity that the networks should have reached. As discussed, the errors are mainly caused by the 
failure of identifying the correct OSM nodes to form the intersections, especially in cases involving dual 
carriageways and side roads. This matches exactly with the goals of TSMM. Our proposed approach 
proved its ability to simplify OSM data while preserving the topology of the network (at the cost of a less 
detailed road network representation). After the simplification with TSMM, the generated road network 
not only reaches the largest capacity, but also avoids any deadlocks caused by road network errors.
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(a) original OSM data: Straight
ahead is not allowed in high-
lighted streets.

(b) simplified OSM data: No
turn restriction is applied in
highlighted (yellow) streets.

(c) converted SUMO network:
straight ahead is allowed in
each entry.

Figure 15: At the moment, TSMM is incapable of identifying turn restrictions.

6 Limitations

While already a worthwhile tool for the simplification of OSM data, follow-up research will be carried
out to address some limitations still present in TSMM.

One limitation concerns turn restrictions. Currently, TSMM is discarding turn restrictions modeled in
OSM – both explicitly and implicitly. The simplified road network is always fully connected at every
intersection, i.e., straight ahead, right turn, left turn, and U-turn are all allowed at every intersection. This
is also due to the simplification process. For instance, figure 15a shows an intersection as modeled in the
original OSM data, where traffic on the highlighted road is restricted to right and left turns only; driving
straight through the intersection from north to south or vice versa is not possible. In the simplified road
network generated via TSMM, however, this complex intersection is replaced with one crossing point
(figure 15b). Consequently, the implicit turn restrictions are lost in the final generated SUMO network,
as shown in figure 15c.

Another limitation concerns roundabouts. The method proposed in this paper is not applicable to
roundabouts. In OSM data, a roundabout is always a closed circular loop consisting of one or several
ways. Thus, when forming ways into lines, the algorithm of TSMM would be trapped in an infinite
loop. The current interim approach to avoid an infinite loop is to identify and filter out any roundabout
during the pre-processing phase, and filling it back in after the step of simplifying dual streets. However,
the roundabouts are often cut by extended lines when generating the intersection points. In the future, a
specific algorithm for the roundabouts therefore needs to be proposed.

Yet another limitation concerns extensibility. TSMM is hoped not be limited only to OSM data.
To meet the different needs of map detail, more Application Programming Interfaces (APIs) must be
developed to be able to consume other data sources. Speed limit, lane count, layout of intersections,
and traffic lights can all be configured in an incremental way within the pipeline only if additional data
sources and corresponding APIs for processing them are available.

Lastly, by leveraging validated scenarios such as SUMO Luxembourg [9], quantitative evaluations
of similarity of the generated road network must be performed. The comparison of metrics such as
travel-times and travel-distances will reveal how close the one-click automatically generated road network
via TSMM is to a real one prepared over several months, indicating if TSMM might not just work for
large-scale simulations interested in more macroscopic effects, but also for high-detail simulation.
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7 Conclusion
In this paper, we presented a method along with a reference implementation, Traffic Simulation Map
Maker (TSMM), to substantially increase the automation level of road network prototyping by simplifying
the OpenStreetMap (OSM) data while preserving important topology information. The main objective
was to enable the study of traffic simulation dynamics at scale using real-world road networks, while
minimizing the need for solving the long tail of problems related to the road network generation.

Primarily this is achieved by merging dual carriageways and side roads into single lines, then
instantiating intersection templates. We believe this is a good trade-off between precision and automation
that solves many conversion problems at the source, i.e., the map, most of the errors. While there
is definitely a loss in fidelity with respect to the real world, many properties of the road network are
preserved. We thus argue that TSMM greatly improves the availability of arbitrarily large and usable
road networks on top of available OSM maps by reducing the complexity for conversion tools and traffic
simulation researchers alike.

A proof-of-concept study using OSM data from Binjiang, China demonstrated that TSMM is able to
generate a road network with well-preserved topological information within seconds. Compared to the
non-simplified OSM data, the SUMO network generated from the simplified version effectively avoided
all artificial deadlock situations.

The reference implementation of TSMM is publicly available to interested researchers.2 In future
work, it will be continually upgraded to address more sophisticated situations like roundabouts and to
enhance the realism of the resulting network by incorporating more details.
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Abstract

Nowadays, smart mobility applications could benefit from environment perception, en-abled by
evolving sensor technology and processing capabilities available for traffic entities. On the application
level, in many cases, information about detected objects is required in-stead of the raw sensor data.
Developing and evaluating the impacts of such applications can be done in co-simulation frameworks,
which combine the modeling of different domains such as application, communication, and traffic.
Eclipse MOSAIC is a suitable solution for this task, combining the traffic simulation of Eclipse
SUMO with other simulators, such as the integrated Application Simulator, or OMNeT++ and
ns-3 for modeling commu-nication. However, a model for perceiving surrounding traffic entities,
such as vehicles, traffic signals, and traffic signs, is only available to a limited extent. In this
paper, we introduce an object-level perception module to the MOSAIC Application simulator. It
takes advantage of state-of-the-art spatial indexing methods to get rapid access to traffic objects,
especially moving objects, within a defined field of view. We furthermore evaluate the computational
performance of the indexing techniques as well as the integration with the traffic simulator SUMO
using TraCI and Libsumo. With the aid of this model, novel connected applications that analyze or
share surrounding objects, e.g. for an improved traffic state estimation, can now be evaluated with
Eclipse MOSAIC.

1 Introduction

Safety, efficiency, sustainability - connected vehicles and associated applications are promised
to improve future mobility for more than a decade now. In order to evaluate the impact of these
applications by simulation, we developed the framework Eclipse MOSAIC (formerly VSimRTI),
which combines simulators from the different domains of applications, traffic, communication,
and others, needed for holistic modeling of Intelligent Transport Systems (ITS) [4, 11].

From the view of the distributed applications, especially the MOSAIC Application simulator
plays an essential role as it covers the most important participants in a traffic scenario. For
this purpose, it models several entities, which are connected, and which are equipped with
an application logic. First of all, Vehicles are considered as moving entities, whereas their
movements and states are simulated in a vehicle simulator like PHABMACS [10] or Carla [2],
or a traffic simulator like Eclipse SUMO [9] and synchronized to the Application Simulator. Due
to the bidirectional coupling, applications in the Application Simulator could control probable
state changes, which then influence the behavior in the vehicle or traffic simulator. Pedestrians
are another kind of moving entity. As stationary entities, Traffic Signals are usually also directly
related to the vehicle and traffic simulators, due to their close and also pre-defined interaction
with the moving participants such as vehicles. Additional stationary entities are Charging
Stations, Road Side Units (RSUs) and (novel) Traffic Signs. These entities might be part of

SUMO User Conference 2022
https://doi.org/10.52825/scp.v3i.123
 Authors. This work is licensed under a Creative Commons Attribution 3.0 DE License 
Published: 29 Sept. 2022

Implementation of a Perception Module for
Smart Mobility Applications in Eclipse MOSAIC

Robert Protzmann1, Karl Schrab2, Moritz Schweppenhäuser1, and Ilja Radusch2
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physical infrastructure on or beside streets, but are not necessarily related to the vehicle and
traffic simulator since their interaction might be  part of  the conducted re search and require a
dedicated implementation. Cloud/Edge Servers and Traffic Management Ce nters (which are
specialized Servers) are also stationary, but usually not part of road infrastructure. They realize
interaction with other entities by communication.

With evolving sensor technology and processing capabilities, more and more data are han-
dled by the traffic en tities, en abling no vel mo bility ap plications. Nowadays, ra dar, cameras,
and even LiDAR have found a permanent place in vehicles for the detection of traffic objects
in the surrounding area of the vehicle. The perceived information supports safety applications,
but also efficiency co uld be nefit. One  example is est imating the  traffic state  on th e r oad by
considering surrounding vehicles, e.g., estimating the density on roads. Furthermore, parking
space solutions could be imagined with direct detection by vehicles. Not only vehicles could
be equipped with the perception technology, but also stationary entities like traffic si gnals or
RSUs at certain intersections, or gantries on highways. All in all, there are many constellations
of how traffic entities could perceive each ot her. For the simulation system, perception implies
new interaction possibilities between entities.

On the one hand, common research in the field of s imulated perception sensors has mainly
been motivated by the implementation and validation of Advanced Driver Assistance Systems
(ADAS) [6, 8, 12]. This results in detailed models trying to closely mimic the behavior of
the physical sensors. Hence a vehicle simulator might be the best choice for realization. Yet,
generating such sensor data with a vehicle simulator and handling them in application models
is computationally expensive and might be only applied, when needed. On the other hand,
there are many applications, which rely on pre-processed data like Object Information instead
of Raw Data like sensor images. The object-related data may contain the positions, dimensions,
and directions of other traffic en tities. In turn, research questions, about how such applications
improve traffic effi ciency, might be i nve stigated in l arg e-scale scen arios. To e nab le this  is the
main goal of this paper.

Accordingly, this paper presents a Perception Model on Object-Level in the MOSAIC Ap-
plication Simulator to be used in combination with large-scale traffic si mulations. The imple-
mentation aims for a generic solution with a consistent interface for applications supporting the
seamless exchange of different s imulators such a s Carla, PHABMACS, and SUMO, which are
all coupled to MOSAIC. Yet, it uses most of the features of the traffic and vehicle simulators
themselves. Specifically f or t his p aper, t he implementation d etails a re p resented on t he basis
of SUMO and in turn on SUMOs Traffic Control Interface (TraCI ) and th e newer and faster
solution Libsumo, as well as the available Context Subscriptions to retrieve relevant object
information. These objects will then be maintained by the Application Simulator in a spatial
index for fast search of objects in sight of view. Currently, the solution supports the most
relevant case that vehicles perceive vehicles, meaning moving participants perceive moving par-
ticipants, which implies the highest requirements for the spatial search. We choose a simplified
perception model for the start. Error models or occlusion of traffic ob jects are not in  the scope
of this paper but will be part of further work.

The paper is structured as follows. At first, Section 2 discusses data structures and methods
for fast handling (update and search) of spatial objects. Section 3 presents how the new percep-
tion module is integrated into Eclipse MOSAIC. Specifically, i t c overs t he implementation in
the Application Simulator, but also the interfaces for coupling SUMO. In Section 4, the imple-
mentation is evaluated regarding performance. In fact, we implemented several solutions, which
are compared in different s cenarios. Finally, Section 5 concludes the paper and gives an outlook
for ideas of further integration and also of using the perception module for investigations.
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2 Spatial Search

In the context of mobility simulation, all objects have a specific location on a 2-dimensional
plane (ignoring the altitude). Those objects are static or can move on the plane. Perceiving
other objects (e.g. from the viewpoint of a vehicle) requires an algorithm to find all objects
within a given area. On a 2-dimensional plane, the problem of finding localized objects within
a range can be solved using spatial search algorithms. There mainly exist two different types
of spatial search:

� Finding the k-nearest neighbors given an arbitrary point in the search space.

� Finding a set of objects or points within a given range, which could be a rectangle, a
circle, or any other geometrical shape.

In order to model a perception module supporting moving objects, it requires us to find all
vehicles (or any other object) within the sight of any other vehicle. Therefore, an algorithm for
a spatial range search needs to be considered.

In a very näıve approach, this could easily be solved by checking all simulated objects in a
loop. This approach, however, would become increasingly slow with large object quantities, as
for every vehicle all other existing vehicles (and objects) need to be considered. This always
results in a complexity of O(n2) for n objects. Much faster approaches employ some form of
spatial index to speed-up queries. In general, spatial indexes work by grouping spatially close
objects in some form. A common approach is to use spatial trees, such as K-D-trees, R-trees[5],
or Quad-trees. These data structures allow a fast search of localized objects, resulting in a
complexity of O(log(n)). A major problem with these kinds of data structures is, however, that
they are fast at finding points, but not at updating the structures when objects are moving.
Furthermore, the issue of moving objects can be solved by using a grid-based data structure,
which stores the objects in cells spanned across the map.

The choice of the best suited spatial index highly depends on the type of data, the amount
of data, the dimensionality of the data, and the dynamics of the use case. Therefore, a lot
of research has been conducted to compare different spatial indexes on different datasets. For
example, Kothuri et al.[7] conducted an in-depth comparison of Quad-trees and R-trees on
spatial data and concluded that index building and update operations are faster in Quad-trees,
while query operations perform faster on R-trees on average. In search of a well-suited spatial
index for our purposes, we will further describe and evaluate those approaches.

2.1 Range Search in Spatial Trees

Trees are a simple yet effective structure to find specific data points in a given set. For example,
binary search trees are used to find one-dimensional data, such as objects in a hash table. For
spatial data, e.g. localized objects within a 2-dimensional plane, a special kind of tree is required
to gain similar results. All existing tree-like structures used for spatial search follow the branch-
and-bound principle, which arranges data points within certain bounds on different levels. These
bounds can be used during a search in the tree to discard branches that lay outside the range
to search in.

An R-tree groups nearby points and creates bounding rectangles around those. This pro-
cedure is repeated within each bounding rectangle, representing a second level of the search
tree. Depending on the number of points existing in the search space, this is done multiple
times resulting in m levels. During search for a range (or single point), only those bounding
rectangles of the first level which contain the search range are considered for deeper search.
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A K-D-tree shows a very similar structure. Instead of bounding rectangles, a median line
on one axis through the search space is calculated, dividing the set of points into two halves.
This is again done for each of the two halves but using the other axis. The whole process
is executed several times depending on the number of points, resulting in different levels and
branches to be used during search. The main disadvantage compared to the R-tree is, that no
items can be added or removed without re-building the entire tree.

In a Quad-tree, the search space is divided into four quadrants. This is again done recur-
sively for each quadrant, depending on the number of points inside. This results in a tree with
nodes having zero or four children each. Similar to the R-tree, insert and remove operations can
be implemented efficiently. However, if the resulting tree is quite unbalanced (i.e. the points
in the search space are unevenly distributed), the complexity of all operations search, insert,
remove, can increase up to O(n). Therefore, the Quad-tree requires a suitable configuration
of the size of the quadrants (tile size), which is determined from the initial bounds the tree is
covering.

root

NE SE SW NW

NE SE SW NWNE SE SW NW

NE SE SW NW

Search
Query

Figure 1: Example of a Quad-tree with a split size of 4. Only those quad-tiles which intersect
with the search query are considered.

All tree variants described above are optimized on search, but lack on updating the objects in
the search space. The K-D-tree requires a complete re-build when adding or removing objects,
and the R-tree requires the bounding rectangles to be continuously updated when objects are
moving. The Quad-tree, however, uses fixed tile sizes and could be a good candidate as it gives
room for improvements that are suitable for our use cases. Therefore, we propose to use a
Quad-tree like structure, with the additional properties (see Fig. 1):

� Each node of the Quad-tree stores multiple objects. Only if a maximum number of
objects per node (split size) is exceeded, the node is split and all objects are distributed
into four child quad tiles. Also, if all child quadrants of a node together contain less than
a minimum number of objects per node (join size), all child nodes are joint. The actual
values for split size and join size might depend on the expected total number of objects
present in the search space.

� The previous improvement also supports moving objects. Therefore, we check if the moved
object is still within the bounds of its tile. Only if it is outside, the object is completely
removed from the tree and added again.

2.2 Range Search Using Spatial Grid

A different approach to index spatial data is using a  grid-like structure instead of t rees. In this
case, the search domain is split by a grid into equally sized cells. To address cells by given
coordinates, the x and y-coordinates are converted accordingly. The formula for this conversion
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depends on the size of the grid and the area bounding the spatial data to search for. Adding
or moving data points can be done in O(1) time, as the cell address can be derived from its
coordinates. To find data, all cells intersecting with the search range need to be considered, and
all data points within those cells need to be checked (see Fig. 2). Therefore, the performance of
this index depends on the grid size and the number of data points in each cell. One disadvantage
of this data structure is memory consumption, as cells are always allocated even if they do not
contain any data points. This could be problematic, especially in large-scale scenarios. When
using range queries, the size of the search area (e.g. a rectangle or circle) affects the number
of cells to be considered. It is advised to use range queries not larger than one cell, limiting
queries to four grid cells at maximum.

Figure 2: Searching spatial items using a grid index with a cell size of 50. Objects in cells are
selected according to the search query.

2.3 Finding Traffic Objects in Sight of View

To model a perception facility, we define a field of view for every vehicle. All other traffic
objects within this field of view should be detected by this model with the aid of the previously
described methods for spatial search. Any occlusion or error models are neglected here but
could be added as an additional filter. The field of view is defined by a sight distance h and a
view angle γ, resulting in a circle around the center of the vehicle bound by two vectors (see
Fig. 3). The perception is done in two steps:

1) An axis-aligned minimum bounding rectangle (MBR) around the field of view is calcu-
lated. Using the sight distance h as the radius of a circle around the center position of the
vehicle, vectors b and c are calculated using the opening angle γ. Furthermore, any of the
four additional vectors a⃗0, a⃗1, a⃗2, and a⃗3 with a length of h in both directions of both axes are
considered, if they lie within the opening angle γ (see Fig. 3). Based on these vector points,
the MBR can be easily calculated and is then used to query a range search in the given spatial
index.

2) For all items returned by the spatial range search we check if they are inside the field of
view of the vehicle. For each traffic object m at relative location m⃗, we use the dot product with
vectors b⃗ and c⃗ to determine if object m lies inside or outside the bounds (Eq. 1 and 2). This
approach has the advantage, that it does not rely on trigonometric functions during requests and
can therefore be executed faster. However, this method only works for viewing angles < 180◦.
An additional check by comparing the magnitude of m⃗ with the sight distance h reveals if the
object m is visible or not (Eq. 3).
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c⃗ · m⃗ ≥ 0 (1)

m⃗ · b⃗ ≥ 0 (2)

|m⃗| ≤ h (3)

Figure 3: Field of view as a circle bound by two vectors b⃗ and c⃗ derived from sight distance h 
and a view angle γ. Left: Determining an axis-aligned minimum bounding rectangle (MBR,
red) to use as search query. Right: Using vectors b⃗ and c⃗, and the sight distance h from the 
center of the vehicle, it can easily be checked if traffic ob jects at  m⃗  or  n⃗  are visible.

3 Implementation in Eclipse MOSAIC

The implementation of a perception module in the simulation framework Eclipse MOSAIC
affects various c omponents. To c omprehend o ur d esign d ecisions, we g ive a  b rief overview of
the concepts used in the MOSAIC framework. MOSAIC includes a middleware written in Java,
which couples various simulators with each other. This middleware, the runtime infrastructure
(RTI), uses interactions to exchange data among all coupled facilities. The coupling of an
individual simulator is following the federate and ambassador principle, in which the actual
simulator is wrapped by a federate interface that exchanges information with the ambassador.
The ambassador is therefore coupled directly with the RTI by implementing and employing
provided interfaces. A strict separation of the federate and ambassador is not mandatory,
as a simulator that is already written in Java can be directly integrated into an ambassador
implementation.

Modeling of smart mobility applications for different e ntities i s d one i n t he Application
Simulator bundled with Eclipse MOSAIC. The movements of individual vehicles are usually
modeled in a vehicle or traffic simulation, e. g. wi th PHABMACS or  Ec lipse SU MO. In  order
to provide a perception module for individual applications, the Application Simulator requires
positions of all perceivable objects, especially vehicles in the traffic si mulation. The following
subsections briefly d escribe b oth t he a pplication s imulator a nd t he S UMO c oupling, before
continuing with the actual implementation of the perception module.
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3.1 The MOSAIC Application Simulator

Eclipse MOSAIC supports applications for several entities such as vehicles, pedestrians, traffic
signals, RSUs, servers, traffic management centers, and charging stations. The MOSAIC Ap-
plication Simulator, therefore, provides an API to easily integrate custom application models.
It allows, for one thing, using various facilities available on the respective unit (see Fig. 4). For
example, applications have access to a communication module for building and sending V2X
messages. Additionally, vehicles are provided with a navigation module to calculate routes on
the road network. Furthermore, application code can read vehicle data, such as position, speed,
heading, or sensor data, such as the distance to its leader. This information is usually derived
from the traffic or vehicle simulator coupled with MOSAIC, e.g. SUMO. Additionally, many
vehicle-actions can be triggered, e.g. stopping or re-routing the vehicle, or changing speed and
lanes.

MOSAIC  
RTI ApplicationAmbassador

SumoAmbassador

veh_0 App
A

App
B

veh_1 App
A

App
C

Communication 
Module

Navigation 
Module

Vehicle 
Data
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Data
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Functions

Database

Unit
Simulator

Event
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Event
Manager
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Eclipse SUMOTraCI /  
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Figure 4: Overview of the Application Simulator bundled with Eclipse MOSAIC.

3.2 Coupling Traffic with Eclipse SUMO

In the context of MOSAIC, the traffic simulation of SUMO is used to handle the movements
of individual vehicles. A coupling interface is used to realize the integration since MOSAIC
is written in Java and SUMO in C++. In the current version, the Traffic Control Interface
(TraCI) is used for this purpose. This socket-based protocol allows exchanging information
between SUMO and any other application. The protocol is well-documented and could be
easily adapted by the contributors of MOSAIC and is used for many years. However, the main
issue of this coupling method is its performance, as it hardly depends on the I/O capabilities
of the machine SUMO is running on. To reduce I/O overhead, SUMO uses the concept of
subscriptions, which allows the client to define in advance which data from which vehicles
should be sent via TraCI after each simulation step. This indeed reduces much of the protocol
overhead, but the requested data still must be sent via the socket.

The SumoAmbassador, which implements the TraCI client on the MOSAIC side, could
already be configured in a way, that only vehicles equipped with MOSAIC applications are
subscribed. This is helpful in many use cases, especially in those with low penetration rates.
However, when thinking of perception, the position of all entities (i.e. vehicles) is again required
to insert them into the search space, which would require basic position data for all vehicles to
be subscribed.

Protzmann et al.  | SUMO Conf Proc 3 (2022) "SUMO User Conference 2022" 

205



As an alternative to TraCI , recent developments introduced Libsumo as a second method
to integrate SUMO into Java- or Python-based programs. This library makes use of the SWIG
framework to create bindings for different p rogramming l anguages, s uch a s J ava, a llowing to
integrate SUMO as a native library using the Java Native Interface (JNI). With this method
being used, data is not sent via a socket anymore but is read directly from the memory. This
integration method has been adopted by the MOSAIC coupling implementation of SUMO,
enabling faster simulations, especially when subscribing to many vehicles.

The requirements to use the perception module by MOSAIC applications include, that the
positions of all present vehicles must be known at any time. This implies that the coupling
implementation of SUMO with MOSAIC has to request basic data for all vehicles, such as
position, heading, and speed. To achieve this, basic subscriptions for all vehicles are used in the
TraCI implementation or read directly from SUMO using the Libsumo implementation. In that
context, SUMO already comes with a feature that could solve the problem of object perception
already without the need for dedicated spatial indexing and search in the MOSAIC Application
Simulator. With context subscriptions, any client can subscribe for data of all surrounding
vehicles for a given ego-vehicle. Additionally, SUMO can already filter surrounding vehicles by
defining a  field-of-vision, which is  expected to  give equal results as  our own perception model.
This indeed would reduce the amount of data to read, as only (single and context) subscriptions
for equipped vehicles would be required. However, the main goal is to provide a unified API
in the application simulator regardless of the traffic or  ve hicle simulator us ed. Th erefore, we
decided to implement two solutions: 1) makes use of context subscriptions and the field-of-vision
filter in SUMO, and 2) implements our own perception module which is fed with basic position
data of all vehicles in the simulation. In Section 4.2 the solution of using context subscription
is directly compared with our perception module, which is described in the following.

3.3 Perception Module

The perception module is integrated into the MOSAIC Application Simulator in a way, that
each application has access to it. As a result, every entity can request surrounding objects in
its field o f v iew. Next to vehicles that p erceive other t raffic participants, thi s allows modeling
road side units or traffic si gnals having access to  a sensor de tecting other tr affic obje cts. The
API usage from inside an application can be read in Listing 1.

The spatial index itself, be it Grid or Quad-tree, is only instantiated once and can be
accessed globally by all active perception modules. To avoid unnecessary update calls, e.g. if
the perception is called rarely or not used at all, the index is only updated on request (lazy
loading pattern). To achieve this, we provide a parameter spatialIndexUpdateInterval to
define how long (in simulation time) the index is used for requests without being u pdated. Each
spatial search request comes with a PerceptionRange parameter, which provides a bounding
rectangle as the search range query. The result of the index is then filtered by the perception
module according to its field of view (see Section 2.3).

The actual implementation of the spatial index variants Grid and Quad-tree can be found
in the Eclipse MOSAIC repository [1]. The implementations are interchangeable (see Fig. 5) as
the best-performing index might be chosen dependent on scenario size or view range. A hash
table is used for both implementations to fast update the actual traffic ob jects in  th e index.
The index itself is updated once the location of all traffic ob jects has been ch anged. If  the grid
cell index of the moved object has not changed, or it is still within the bounds of its current
quad-tile respectively, then no update operation for that particular object is performed.
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Listing 1: Activating and using the perception module in a MOSAIC application.

1 public class PerceptionApp extends AbstractApplication {

2

3 @Override

4 public void onStartup () {

5 getOs().getPerceptionModule ().enable(

6 new SimplePerceptionConfiguration (60.0, 200.0)

7 );

8 }

9

10 @Override

11 public void onVehicleUpdated(VehicleData previous , VehicleData updated) {

12 List <VehicleObject > vehicles =

getOs().getPerceptionModule ().getPerceivedVehicles ();

13 // do something with the perceived vehicles

14 }

15

16 }

To optimally perform in different scenarios the Quad-tree can be parametrized. A quad-tile
is not split until more objects than splitSize are stored in that particular tile. If splitSize
is exceeded, four more quad-tile are created and all objects are spread over these according to
their positions. To avoid unnecessary split and join operations, the parameter joinSize defines
when four quad-tiles are joined together. This parameter must be lower than splitSize to
function. Furthermore, the maxDepth parameter is used to determine how many levels of split
quad-tiles can exist at maximum. If the maximum depth is reached, a quad-tile can hold more
than splitSize objects.

Parameters for the Grid index only adjust the width and height of each cell. Therefore, the
actual size of the grid (number of cells) varies with the scenario boundary. The four corners of
the bounding rectangle of the search query are used to find the minimum and maximum row
and column indexes. All objects of the cells within these bounds are collected and filtered to
fit into the search range query.
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Figure 5: Class structure of the perception integration in the MOSAIC Application simulator.
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4 Evaluation

In this section, we compare the performance of the spatial indexes implemented in MOSAIC.
In addition, we also compare our solution with built-in features in SUMO to find out which
implementation is more suitable for specific use cases. For our experiments, we employ various
simulations with MOSAIC coupling the traffic simulation of SUMO. For the actual simulation
of the traffic, we defined two simulation scenarios of different sizes. Firstly, we use a full-day city
scenario with several million vehicles in total, in order to measure the performance on a large
scale. Secondly, we use an inner-city scenario with several hundreds of vehicles with varying
traffic demand, which is a more common size for a mobility simulation.

The Berlin scenario contains traffic demand with around 1,8 million trips during 24 hours
within the whole city of Berlin, Germany. The traffic demand was generated by extracting
80% of vehicle trips from the MATSim Open Berlin [13]. Routes for these trips have been
iteratively calibrated using the duaIterate.py script1. This scenario is furthermore planned
to be published under an open-source license on GitHub [3].

The Charlottenburg scenario covers a smaller area of Berlin. It was created by cutting
out traffic from the Berlin scenario using the cutRoutes.py script1. The simulation duration
was reduced to 12 hours including the morning peak only. In total, this scenario contains 67 000
vehicle trips, with 900 vehicles being present simultaneously at maximum (see Fig. 6).
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Figure 6: Traffic volumes modelled for each simulation scenarios.

Each simulation scenario was configured to run with MOSAIC in order to examine the
different spatial index implementations. The perception module in MOSAIC can only be used
by applications mapped to individual vehicles. We therefore configured a mapping to deploy
a simple application that solely requests the surrounding vehicles within its field of vision in
every simulation step (= every second) (see Listing 2). The field of vision was configured with
a 200m range and an opening angle of 60◦.

Listing 2: Mapping configuration to deploy a perception module on 10% of the vehicles.

1 {
2 "prototypes": [ {
3 "name": "DefaultVehicle",

4 "applications":[

5 "org.eclipse.mosaic.app.tutorial.vehicle.PerceptionApp"

6 ],

7 "weight": 0.10

8 } ]

9 }

1This script is delivered with the SUMO installation [9].
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4.1 Performance of Spatial Indexes

For the performance evaluation of the different index implementations, we defined the following
configurations to compare against each other:

� Trivial - No spatial index. A view check is done for all existing vehicles in a for-loop.

� QuadTreeXX - Quad-tree implementation with a configuration of a maximum depth of
12, and a maximum number of vehicles per leaf/tile of [10, 20, 30, or 40].

� GridYYY - Grid-based index implementation having different cell sizes. The cell size is
either [50, 100, 250, or 500] m in length and height.

For these experiments, 10% of the vehicles are equipped with the perception module. Each
equipped vehicle requests the vehicles in its field of vision in every simulation step. During
simulation, we measure the duration of every call of the atomic operations update, search, and
remove. We furthermore store the current number of vehicles present in the simulation for each
measurement, in order to find a relation between duration and index size.
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Figure 7: Individual and accumulated durations of search or update operations on each spatial
index implementation in the Charlottenburg scenario.
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For a first comparison, we run the Charlottenburg scenario with the nine different index
configurations. Results can be found in Figure 7. Not surprisingly, the search queries require
a lot of time in the trivial approach compared to Grid or Quad-tree. Even in situations with a
low number of vehicles (e.g. less than 200), a spatial index is already much faster. In general,
Grid and Quad-tree show very similar performance results. Search and update performance of
the Grid is slightly better than the Quad-tree. Having a look at the individual configurations
show, that both, lower tile capacity in the Quad-tree and very small cell sizes in the Grid, have
disadvantageous effects on the performance. Best results can be achieved by using a Quad-tree
with a maximum capacity of 20 or 30 vehicles per tile, or a Grid with a medium-large cell size
of 100 or 250 m. Choosing a cell size also most likely depends on the viewing range, as it affects
the number of cells in the Grid to be initially chosen for the range check. However, we did not
investigate the effects of the viewing range on the performance of the Grid. In comparison to
the total simulation time of 240 seconds, the overhead of 4–7 seconds produced by the spatial
index is minimal and does not require further examination.

In a second series of experiments, we configured the Berlin scenario with the Quad-tree and
Grid implementation, and again an equipment rate of 10%. Since this massive scenario already
requires several hours to complete, we skipped the Trivial approach. Figure 8 shows that the
Grid can outperform the Quad-tree in large-scale scenarios. Search operations with the Grid
are 30% faster, update operations show 10% better performance. The total overhead of the
index for search and update operations compared to a total simulation time of roughly nine
hours is found to be at 5% for the Grid, and 6% for the Quad-tree.
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Figure 8: Durations of update and search operations in the Berlin scenario.

4.2 Performance of Coupling with SUMO

The following experiments help to understand the overhead that comes with the coupling of the
traffic simulation of  SUMO. Th is comparison in cludes two as pects. Fi rstly, th e two different
coupling interfaces using TraCI or Libsumo are compared with each other. Secondly, our
implementation of the perception module is compared with the built-in features provided by
the interfaces of SUMO (i.e. context subscriptions), as explained in Section 3.2. We, therefore,
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define the following simulation runs, which will furthermore be executed using the two different
coupling methods:

� No Perception - As a baseline, basic vehicle data is subscribed for [5, 10, 20, 40, 60, 80,
or 100]% of the vehicles, which are equipped with any application. No perception index
is used at all. This allows measuring the total overhead each of the subsequent solutions
requires.

� MOSAIC Perception - Basic vehicle data is subscribed for all vehicles in the simulation.
[5, 10, 20, 40, 60, 80, or 100]% of the vehicles are equipped with a perception module
using a QuadTree20 as a reference for a spatial index implementation.

� SUMO Context Subscriptions - Basic vehicle data is subscribed only for equipped
vehicles. Additionally, context subscriptions are used for equipped vehicles to retrieve
vehicles within the field of vision. The perception module in MOSAIC uses the results
of these context subscriptions rather than building its own spatial index. The equipment
rate is either [5, 10, 20, 40, 60, 80, or 100]%.

The following experiments include simulations of the Charlottenburg scenario. The equip-
ment rate is varied from 5, 10, 20, 40, 60, 80, to 100%. As a coupling method, TraCI is
compared to Libsumo to find the performance improvement this new coupling method comes
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Figure 9: Total simulation duration using TraCI and Libsumo coupling under different equip-
ment rates in the Charlottenburg scenario.
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with. Figure 9 shows, that with an increasing equipment rate, the simulation time of all variants
also increases. The solution which uses the spatial data structures in MOSAIC (i.e. MOSAIC
Perception) exhibits a certain time overhead at all equipment rates. The main reason here is
the required subscriptions of all vehicles in the simulation, which need to be transferred to MO-
SAIC, in case (a) TraCI via TCP. Using SUMOs context subscriptions to obtain surrounding
vehicles (i.e. SUMO Perception) shows a large benefit at lower equipment rates, but inferior
scalability compared to MOSAIC Perception at higher equipment rates. Eventually, in the
100% case the SUMO Perception variant requires twice the time as running SUMO without
any context subscriptions, and almost ten times as long as the 5% case.

Using the new Libsumo coupling interface on the other hand can improve simulation time
significantly (see case (b) in Fig. 9). The simulation time of the MOSAIC Perception case can
be reduced almost by a factor of three. Again, the difference between a low and high equipment
rate is minimal in the MOSAIC Perception case and only depicts the overhead produced due
to application handling and utilizing the spatial index. Comparing with the SUMO Perception
variant, it is already enough to deploy 20% of the vehicles to find better performance with
the MOSAIC Perception. Still, the SUMO Perception case increases simulation time with the
equipment rates.

4.3 Evaluation Summary

In various conducted experiments, we investigated two aspects of the perception module im-
plementation in MOSAIC. For one thing, a detailed examination of the index implementations
Grid and Quad-tree and their configuration options showed, that both variants work well with-
out producing much computational overhead. The Grid performs slightly better, especially in
large scenarios with several thousands of vehicles being simulated in parallel. Here we found,
that middle-sized cells of 100 to 250m work best. The ideal cell size, however, is expected to
depend on the view range and angle as this affects the number of cells being selected during
search. Nevertheless, the Quad-tree implementation still shows good performance even with a
large amount of moving objects in the index, for both update and search operations.

Another aspect is the interaction with SUMO. The amount of data captured from SUMO
during simulation has an immense influence on the overall performance of the simulation, es-
pecially since the perception module implementation in MOSAIC requires the positions of all
existing vehicles. Here we found, that using TraCI results in large overhead, which can mostly
be eliminated by using the new Libsumo interface.

However, we also found that the built-in feature of SUMO, which is able to obtain surround-
ing vehicles as well, shows decreased performance on higher equipment rates. A deeper look
into the actual MOSAIC simulation using a profiler revealed, that most of the additional time
comes not only with the additional results from context subscriptions to read. The simulation
call itself, using Simulation.simulateUntil() requires more than twice as much time as soon
as context subscriptions are added for 40% of the vehicles. Additional time is then spent read-

Experiment Total Simulate
Step

Read single
subscriptions

Read context
subscriptions

MOSAIC
overhead

40% Single subscriptions 187 s 107 s 58 s 0 s 22 s
40% Single subscriptions
+ 40% Context Subscriptions

478 s
(+ 156%)

259 s
(+ 142%)

60 s
(+ 3%)

133 s
(+∞%)

26 s
(+ 18%)

Table 1: Increase of simulation duration due to use of context subscriptions in Libsumo.
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ing the context subscription results using Vehicle.getAllContextSubscriptionResults().
Detailed results of this brief analysis can be found in Table 1.

5 Conclusion and Outlook

Extracting object information from raw sensor data (e.g. Camera) and feeding them into smart
mobility applications can help to improve safety and traffic efficiency. Co-simulation frameworks
such as Eclipse MOSAIC may be used to develop and test such applications. In order to enable
object detection on an application level, the integrated models need to provide information
about surrounding objects. Such objects can be stationary (e.g. traffic signs, traffic signals),
or moving (e.g. vehicles, pedestrians). Obtaining moving objects within a field of view of a
stationary or other moving traffic participant requires a fast method to prevent low-performing
simulations.

In this paper, we solved this problem by introducing a perception module to the Application
Simulator of MOSAIC. For finding moving objects within a given range (e.g. inside the field of
view of another vehicle), we implemented and evaluated different spatial index implementations
based on a grid or Quad-tree. We evaluated the implementation with large-scale simulation
scenarios in combination with the traffic simulation of Eclipse SUMO, with a view to the
computational performance. The perception method using a grid to find surrounding objects
worked best, with varying performance depending on the size of the included cells. Using a
Quad-tree instead resulted in slightly but not significantly slower simulations. The modeling of
perception in MOSAIC required reading basic data (e.g. position) for all moving objects (here
vehicles) from SUMO during the simulation. This led to a bottleneck when the socket interface
TraCI was still used to exchange data. In the course of this paper, we improved the integration
of SUMO by implementing the Libsumo interface. Evaluations showed, that with Libsumo the
simulation time could be improved by a factor of three in the presented scenarios. Only with
the use of Libsumo feasible simulation times are possible in combination with our perception
module implementation.

In following work, we want to use object perception for improving traffic efficiency. Here
we believe that object detection through cameras in vehicles could be used to pre-process and
pre-estimate traffic states on road segments. Such pre-estimated data could be shared and
used to improve overall traffic state estimation, which is currently only achieved by collecting
floating-car-data from a large fleet of vehicles.

In the current implementation of the perception module only moving objects have been
considered. This work will be published with the next release of Eclipse MOSAIC and is already
integrated into the source code repository in [1]. Future work will also allow the perception of
stationary objects, such as traffic signs and signals. Furthermore, additional models which filter
the set of surrounding objects due to occlusion are subject to ongoing work. The traffic scenario
used in the evaluation section of this paper is planned to be published under an open-source
license on GitHub soon [3].
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Abstract 
Simulation of Urban Mobility (SUMO) is a powerful traffic simulation program which can 

work at different scales, from sub-microscopic to macroscopic. Depending on the available input 
dataset, it is possible to build lots of different configurations, changing routing and car-follow 
algorithms, and many parameters. Building a basic SUMO scenario is a multi-step activity 
involving the followings: preparing the transportation network, traffic definition, setting a 
routing algorithm, and running the simulation. The aim of the present work is to show a detailed 
real case study explaining how to build a complete scenario and run simulations, starting from the 
preparation of the network from Open Street Map. The last part of the present paper is about how 
to use the SUMO output files with MongoDB in order to keep track of significant 
information resulting from each simulation. 

1 Introduction 
Transport planning is based on three pillars: demand analysis (the number of movements 

performed by people, either walking or using a vehicle), offer analysis (the transportation network and 
public transport services), and the traffic assignment with the interaction models to get a configuration 
of equilibrium (or a sequence of equilibrium, in the dynamic models) between the demand and the 
offer. In this big picture, it’s understandable that a reliable demand computation is the basis for a good 
simulation; for this purpose, two approaches have commonly been used: the more traditional one is 
the trip-based, also called four-step model, which puts the trips of each vehicle at the core; the second 
one, more recent, is called activity-based because it starts from the analysis of activities performed by 
the users to understand how they will move during the day (McNally, 2000; McNally et al. 2007). 
Hybrid approaches are possible as well. 

Many platforms for traffic simulation are available and they can be grouped by main features: 
commercial versus free and open-source, scale of simulation (if performing macro meso or micro 
simulation), routing algorithms (if trip based or activity based), if altimetry is supported, possibility of 
online interaction, documentation availability, etc.  
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An updated and comprehensive comparison of all the software available for traffic simulation is 
provided in (Ullah et al., 2021). The most popular commercial tools for macro-simulation are Cube 
Voyager, Visum and OmniTRANS, while VISSIM is very common for the micro-simulations. 
Talking about free and open-source solutions for micro-simulation, Matsim 
(https://www.matsim.org/) and SUMO (https://sumo.dlr.de) are the most widely used. 

The present activity was carried out with SUMO (Alvarez Lopez et al., 2018) for many reasons. 
First, it is free and open source (under the Eclipse Public License EPL v.2), is highly portable, and is 
continuously improved by the German Aerospace Center and a huge community of users. Another 
important feature is that it allows to manage a big area micro-simulation, in fact it has been used for 
whole cities (Maiorov et al., 2019; Bachechi et al., 2019): Bologna, Brunswick, Dublin, Ingolstadt, 
Luxembourg, Monaco, Stuttgart, Turin, Cologne (https://sumo.dlr.de/docs/Data/Scenarios.html).  

A simulation built with SUMO is continuous in space (vehicles can be in any position on the 
street) and discrete over time (the mobility model uses uniform time steps), supports multi-modality, 
is highly configurable, and extendible (it’s also possible to add new algorithms). Depending on the 
traffic dataset, SUMO allows to build different types of micro-simulations, from the classic Origin 
Destination Matrices to data from sensors (Po et al. 2019). 

SUMO provides command line tools specific to each of the steps required to build a whole 
simulation. A first confusion can arise from the name, because sumo is the name of the whole 
platform but also the name of the last step, which is the one to run the simulation; there is also the 
command sumo-gui which differs in that it also shows the graphical visualization of the running 
simulation. The sumo platform has a solid and efficient base of algorithms written in C++, but it 
includes also a great number of useful Python scripts to facilitate many operations, working as a sort 
of wrapper over the C++ core.  

All the files required in input to a simulation are in xml format. So, all the procedures related to 
the input file preparation have the target of translating the available information into a set of input xml 
files suitable to be understood by the SUMO world.  

The present paper describes one of the many possible ways to build a sumo micro-simulation, 
referring to a real scenario, the corridor SS195 to Cagliari (Italy), for which some Origin Destination 
Matrices were available; the available input dataset drove the choice toward a classical 4-step model. 
So, this paper shall not be considered as a complete tutorial of this powerful program, for which the 
official website is the best reference (http://sumo.dlr.de/userdoc/), but it shows a detailed roadmap of 
the steps required to get a real-world simulation up and running, enriched with practical tips to 
overcome tricky obstacles along the way, learned by experience.  

Having said that, the following set of files makes up what is usually called a ‘scenario’: 

• Information about the transportation network (in short, net),
• Information about the Traffic Assignment Zones (TAZ),
• Information about the Origin and Destination Matrices (ODM).

These compound the smallest set of input to run a real-world simulation, which could be extended 
with many further information about: buildings, types of vehicles, traffic lights, Public Transport 
Services and bus stops, and so on. 

A SUMO simulation can have many different configurations, based on a great number of 
parameters, some of which are particularly important, such as:  

• route-choice-method (input of the dynamic User Assignment for route building, default
is Gawron), further information at
https://sumo.dlr.de/docs/Demand/Dynamic_User_Assignment.html

• routing-algorithm, the famous Dijkstra is set by default, but other possibilities are alpha
star (astar), Contraction Hierarchies (CH), and CHWrapper, as explained at
https://sumo.dlr.de/docs/Simulation/Routing.html
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• car-following-models (input of sumo/sumo-gui), explained in detail at
https://sumo.dlr.de/docs/Car-Following-Models.html

Providing details about the choice of these and the many other parameters is out of the scope of 
the present paper; it’s important to know that they are the core of a traffic micro-simulation and each 
of them involves further parameters that must be tuned during a careful process of model calibration 
(Krajzewicz et al., 2002; Aminia et al., 2019), when a sort of ground truth dataset is available. The 
official SUMO documentation gives many explanations about them. Being an open source, an 
interesting and evolving research activity consists in further analysis of custom-developed algorithms. 
In this presentation we limit to provide an example of sequence of command lines applied to the real-
world case study. To help beginners, SUMO provides default values for all these parameters. 

This paper doesn’t cover the interactive "Traffic Control Interface" (TraCI), provided by SUMO 
software to allow accessing to a running traffic simulation in order to retrieve values of simulated 
objects and change their behavior "on-line". 

The last part of the present paper proposes a way to model the output dataset of a simulation using 
the Mongo Atlas cloud database in order to allow a quick and effective comparison of the results 
coming from all the simulations related to the same scenario.  

2 Network preparation 
A traffic micro-simulation starts with the choice of the boundaries of the study area. Working on a 

road, like the SS195, which collects traffic flows from a big area and brings it to Cagliari, as the most 
attractive point of that area, cannot be limited only to the road, but needs a careful analysis of the 
whole area involved; in other words, here it is particularly important to analyze a reasonable extension 
of the ‘catchment area’. On the other hand, it is recommended to avoid exaggerating in this operation 
because the bigger is the area, the more time consuming will result, as side effect, working on it. 

2.1 Downloading the map from Open Street Map 
Once the proper area has been carefully chosen, the next step consists in downloading it from 

Open Street Map (openstreetmap.org), in short OSM. 
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Figure 1: Downloading the map from OSM Figure 2: The Traffic Assignment Zones 

 Figure 1 shows the area required for the SS195 road. But when the area is as big as this one, 
OpenStreetMap API answers to the request with the following error message: “You requested too 
many nodes (limit is 50000). Either request a smaller area or use planet.osm”. A work around to this 
problem is selecting the link ‘overpass API’ (shown with a red contour in Figure 1) which allows to 
download the selected bounding box from a mirror of the OpenStreetMap database and in fact the 
downloading will immediately start. 

3 Adding Altimetry to the OSM map with osmosis 
Unfortunately, OSM does not carry elevation data. There are some ways to add them 

(https://sumo.dlr.de/docs/Networks/Elevation.html); for the case study, altitudes have been 
downloaded from Shuttle Radar Topography Mission (SRTM); in particular, for Cagliari the altimetry 
data are in the file N39E009.hgt.zip which includes points from N39 to N40 and from E009 to E010. 

Once this file is available, osmosis must be installed (sudo apt-get install osmosis). First of all, it’s 
better to check the validation of the OSM map file in osmosis, by reading it (the flag –write-null 
avoids any output building): 

osmosis --read-xml SS195_map.osm.xml --write-null 

Then if everything goes well, it’s possible to run osmosis in order to have the altitudes in the osm 
map file, giving the local directory of the SRTM file, and specifying to set the tag element ele for the 
altitude, which is the trick to have the file imported in SUMO (through the command netconvert, as 
explained later): 
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./osmosis --read-xml SS195_map.osm.xml --write-srtm locDir=~/SRTM/ tagName=ele --write-xml
SS195_map_ele.osm.xml 

With this command, the output file SS195_map.osm.xml will have each node element enriched 
with the extra tag about elevation, as shown in Figure 3. 

<node id="31483414" version="1" timestamp="2019-07-12T09:51:28Z" changeset="1"      lat="39.2842393" 
lon="9.0286643"> 
        <tag k="ele" v="6.808519999996889"/> 
</node> 

Figure 3: The detail of a node in the OSM file with the elevation extra tag. 

4 SUMO 
Once the OSM map is ready, it’s time to start using SUMO and its command lines (here after, 

cml) and Python scripts. In fact, as already explained, SUMO is made of tools designed to be used
independently from each other. SUMO installation is explained from the official site web
https://sumo.dlr.de/docs/Installing/index.html.

The presented simulation has been carried out with sumo installed from source code 
(https://github.com/eclipse/sumo) on ubuntu version 20.04, in order to be able to keep it frequently 
updated. 

To have SUMO command lines available, it’s useful to set up the environment variable 
SUMO_HOME in the .bash file: 

export SUMO_HOME=/mypathtosumo/Sources/sumo_sourcecode/ 

Each command could also take information (input files and parameters) from a xml configuration 
file, which maybe would reduce error-proneness; on the other hand, for the case study, all the values 
for each parameter were defined inside the same shell script and all the command lines put in 
sequence inside nested loops in order to run all the possible combinations of parameters. This 
structure allows to run many configurations one after the other and to manage all the parameters 
involved in all the different configurations from just one file. Each command line used will be 
described in the following paragraphs. 

4.1 Netconvert: converting the OSM map into the xml format input for 
SUMO 

The OSM map file, an xml format, needs to be translated into the SUMO xml format (they are 
compliant to two different xml schemas). To do this, the SUMO command line required is netconvert.  

An important flag to add when performing this transformation is –no-turnarounds. Without this 
flag, the vehicles moving in the net, arriving at the end of a road, at the boundary of the map, will 
make a U conversion, going back along the lane in the opposite direction. The netconvert command 
will be: 

netconvert -v –osm.elevation true --osm-files SS195_map_ele.osm --no-turnarounds -o 
SS195_osm_ele.net.xml 
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The network file obtained as output running this command is called SS195_osm_ele.net.xml and 
can be used as network for the rest of operations with SUMO. Optionally, in order to get an improved 
model for the visibility of the roundabouts, two further steps can be done. The first one splits the parts 
of the network into different files: 

netconvert -s SS195_osm_ele.net.xml –plain-output-prefix SS195 

This command produces in output: SS195.edg.xml (file of only edges), SS195.nod.xml (files of 
only nodes), SS195.con.xml (file of only connections), SS195.tll.xml (file of the traffic lights), 
SS195.typ.xml (file of the types). Now, calling again the netconvert command, giving as input all 
these files, produces a better network file in output (as anticipated): 

netconvert -e SS195.edg.xml -n SS195.nod.xml -x SS195.con.xml -i SS195.tll.xml -t SS195.typ.xml -o 
SS195.net.xml 

The output SS195.net.xml is the definitive network file which will be used from now on. 
In order to add some environment elements to the bare map, there is another command line 

provided by SUMO, which is polyconvert. It requires in input three files: the OSM map file 
SS195_map.osm (as downloaded from OSM), the output file of netconvert, which is 
SS195_osm.net.xml, and also a file that is available in the SUMO code, osmPolyconvert.typ.xml, that 
is necessary to define the types of environments. The complete command line will be: 

polyconvert --net-file SS195.net.xml --osm-files SS195_map.osm --type-file 
$SUMO_HOMEdata/typemap/osmPolyconvert.typ.xml -o SS195.poly.xml 

It must be said that there is also a quicker way to perform a starting scenario, using the SUMO 
tool osmWebWizard.py which allows to select the study area. In this case sumo-gui will import the net 
from OSM to run a simulation with randomly generated traffic; this approach can be very useful to 
quickly build all the required set of files, that can be corrected and integrated afterward. 

In any case, the map generated must be carefully checked and corrected through another important 
tool of SUMO, called netedit. Typical mistakes are extra lanes/crossings, missing 
accelerating/decelerating lanes, etc.; netedit allows to correct all of them, by hand and one by one. 

Another useful tool to make things easier is sumopy, a free open-source python library 
(https://github.com/schwoz/sumopy) gathering all the steps required to build a sumo simulation in a 
very comprehensive Graphic User Interface (Schweizer, 2013). Sumopy was used to build the real-
world scenario of the city of Bologna (Schweizer et al., 2021). 

4.2 Polyconvert: building the Traffic Assignment Zones (TAZs) 
When input traffic data about the demand is available, they define an Origin/Destination matrix, in 

terms of number of vehicles moving from each TAZ to the others; to add this information to the 
scenario, a shapefile of the zones must be defined through a GIS editor, like QGIS 
(https://www.qgis.org). A good starting point is the official shapefile of the census regions, from 
where it is possible to group regions into sensible TAZs. Doing this operation, it’s possible that a 
geographical conversion is required to have all the map layers properly matching in QGIS. Typical 
systems are EPSG 3003, 4326, and 32632. When a shapefile doesn’t show this information, the web 
service epsg.io comes in help, revealing the current coordinates system. Knowing the exact 
coordinates system allows to make the proper transformations with QGIS, ending with all the layers 
matching.  
The 49 Traffic Assignment Zones of the real case study are shown in Figure 2. The shapefile of the 
TAZs built with QGIS must be translated into the format required by SUMO, using also the network 
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file SS195_osm.net.xml as input. The conversion of this file to the proper format requires to call again 
the polyconvert cml, this time using other arguments, and specifying the name used for the TAZ 
column: 

      polyconvert -v --shapefile-prefixes TAZs --shapefile.guess-projection true --shapefile.id-column TAZ -n 
SS195.net.xml -o TAZs.taz.xml 

It’s important to note, that in order to work properly, each TAZ zone in the XML file, in addition to 
the boundary definition, must also have at least one edge of the network declared as TAZ source, and 
another as TAZ sink. As suggested by the name, the TAZ sources are all the edges from where the 
trip can start, while the TAZ sinks are all the edges in the Zone where the trips can end. This 
information should be added carefully by hand, directly in the SUMO xml file, which is the output of 
the polyconvert command line. In fact, although there is the python script edgesInDistricts.py (one of 
the available SUMO tools) performing this operation automatically, it adds all the edges in the TAZ 
as sources and as origins, with no distinctions. For the case study, a textual file with a list of the 
tazSources and tazSinks for each TAZ were prepared to be added running a custom Python script. An 
example of the structure of a TAZ xml file is shown in Figure 4. 

<tazs> 
 <taz id = “48” shape=”2995.4312,1572.2758, …” > 
 … 
 <tazSource id=”2940” weight=”0.07”/> 
 <tazSource id=”2946” weight=”0.07”/> 
  … 
 <tazSink id=”2940” weight=”0.07”/> 
 <tazSink id=”2946” weight=”0.07”/> 
  … 

 </taz> 
    … 
</tazs> 

Figure 4: The TAZ file XML format 

4.3 Od2trips: importing the traffic demand from OD matrices into 
individual trips 

Figure 5 shows a very basic vehicle definition used for the case study, considering only cars (in 
SUMO called ‘passenger’) and trucks (generic name for heavy vehicles). Lots of more details could 
be added to specify a long list of vehicles and related features, even pedestrians. 

<additional> 
    <vType id=“passenger” vClass=“passenger” length=”4.60” color=”1,1,1”  
deepartSpeed=”max” /> 
    <vType id=“truck” vClass=“truck” length=”10.22” color=”0,1,1” deepartSpeed=”max” /> 
</additional> 

Figure 5: A basic XML file for vehicle definition 

The Sumo od2trips cml imports the traffic demand, as a list of origin, destination, and number of 
vehicles, into an xml output file made of trips; each trip is defined by an id with starting and ending 
time (included inside the given time-lapse); this command must be run once for each transport mode 
and for each time-lapse and produces as output an xml file for the input transport mode and time-
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lapse. The TAZs file is also required as input for this operation. The following is the command line 
used in the case study to obtain the xml file of the trips of cars inside the 7-8 a.m. time-lapse: 

od2trips -v --taz-files TAZs.taz.xml --vtype passenger --prefix car --od-matrix-files SS195_ODM_7_8_cars.od 
-o $OUTPUT_DIR/SS195_ODM_7_8_cars.odtrips.xml

An OD input file in the O-format, is an example of suitable input for the od2trip command line: 

• any line starting with an asterisk is a comment which is ignored from od2trip,
• the first line is an identification code of the format of the file ($OR;D2),
• the second significant line defines the time-lapse,
• the third line is a scaling factor for the number of vehicles,
• from the fourth line to the end of the file, the format is:

o id of the Origin TAZ,
o id of the Destination TAZ,
o number of vehicles moving during the specific time-lapse from the Origin to the

Destination TAZ.

A sample of the output of the od2trip cml is shown in Figure 6. 

<routes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/routes_file.xsd"> 

    <trip id="61" depart="28800.79" from="0" to="118" fromTaz="1" toTaz="44" departLane="free" 
departSpeed="max"/> 

    <trip id="7048" depart="28801.27" from="4489" to="118" fromTaz="7" toTaz="44" departLane="free" 
departSpeed="max"/> 

    <trip id="2917" depart="28801.88" from="56" to="19" fromTaz="40" toTaz="13" departLane="free" 
departSpeed="max"/> 

    <trip id="268" depart="28802.83" from="3017" to="2879" fromTaz="10" toTaz="8" departLane="free" 
departSpeed="max"/> 

Figure 6: A sample of the Origin-Destination trips file 

4.4 Duarouter: from trips to routes 
The files output of od2trips, one for each transport mode, are the input of the SUMO cml duarouter, 
which for each vehicle builds the complete route, in terms of sequence of edges along with the 
starting time; this file is the input of the simulation with the sumo command (or sumo-gui). 
Calling duarouter an important input parameter is the route-choice-method, which can be Gawron 
(DUA, used by default), logit, or lhose. 
An example of the duarouter command line used for the case study is the following: 

      duarouter -v -n SS195.net.xml --route-files cars.odtrips.xml, SS195_trucks.odtrips.xml  
--additional-files vtypes.xml --xml-validation never --no-step-log true -o SS195_duarouter.odtrips.rou.xml 

A sample of the output of duarouter is shown in Figure 7. As explained in 4.6, the duarouter cml can 
be used as first step of the iterative algorithm to approximate the Dynamic User Equilibrium (DUE). 

<routes xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance 
xsi:noNamespaceSchemaLocation=http://sumo.dlr.de/xsd/routes_file.xsd> 

     <vType id=”passenger” length=4.60” minGap=”2.00” maxSpeed=”30.00” speedFactor=”normc(1.00,0.00)” 
vClass=”passenger” color=”white” carFollowModel=”IDM” accel=”1.0” decel=”1” tau=”1.4” /> 

     <vehicle id=”car8370” type=”passenger” depart=”25200.42” departLane=”free” departSpeed=”max” 
fromTaz=”47” toTaz=”38”> 
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 <route edges=”47874#0 198047874#1 198047874#2 198047906#0 198047906#1 -373339455“ /> 
  </vehicle> 

     <vehicle id=”car61” type=”passenger” depart=”25200.79” departLane=”free” departSpeed=”max” 
fromTaz=”1” toTaz=”43”> 

  <route edges=”27752726#0 27752726#1 116050065 11605029 27752728 666975680 11361107” /> 
 </vehicle> 

      <vehicle id=”car7069” type=”passenger” depart=”25201.27” departLane=”free” departSpeed=”max” 
fromTaz=”46” toTaz=”41”> 

      <route edges=”138413006 26617614#0 26617614#1 26617616 26617617 113611070#0” /> 
  </vehicle> 

Figure 7: A sample of the duarouter output 

4.5 Sumo cml: running the micro-simulation 
The command line sumo runs the simulation without the graphical user interface. To better understand 
this core part, it’s useful to know that sumo performs a time-discrete simulation, where the default 
step (parameter step-length) is 1 second but can be reduced up to 1μs; the simulation model is space-
continuous and the position of each vehicle at each simulation step is defined by the id of the lane and 
the distance from the beginning of that lane. By default, the speed of each vehicle is computed using 
an extension of the stochastic car-following model developed by Stefan Krauss (Krauß, 1998), which 
is faster and simpler than others. SUMO provides also several other algorithms for this task: 
Wiedemann 74 and 99 (the ones used by VISSIM), IDM (very popular), but particularly important is 
the KraussPS version because it uses road slopes in the computation, information obtained from the 
elevation value of the nodes in the network file.  
One of the parameters for sumo is the routing-algorithm, which can be Dijkstra by default (Dijkstra, 
1959), alpha star (in short, astar), CH, CHWrapper. 
When a vehicle is stopped in the traffic jam for too much time (which is another configurable 
parameter), it is automatically moved from its position to another one. It’s possible to avoid this, by 
setting the time-to-teleport parameter to -1. The simulation allows to set a particular action to be taken 
in case of collisions, for instance, send a warning in standard output. The list of all additional files, 
such as information about the buildings, can be passed to the simulation through the additional-files 
flag. 
Another important input is related to the time-lapse, for instance 7-8 A.M., because it must be 
converted into seconds of simulation:  

• start time 7 A.M. = 3600 s * 7 = 25200 s
• end time 8 A.M. = 25200 s + 3600 s = 28800 s

To highlight the relevance of this aspect, it must be said that if start and end time of the simulation are 
not set accordingly to the ones specified in the Origin/Destination file, the simulation will not have 
any vehicle running in the network. 
An example of the sumo command line is the following: 

      sumo -v -n SS195.net.xml --route-files SS195.odtrips.rou.xml --duration-log.statistics true -b 25200 -e 28800 
--time-to-teleport -1 --collision.action warn  --step-length 0.5 --routing-algorithm dijkstra --time-to-impatience -1  
--additional-files SS195.poly.xml 
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4.6 duaIterate.py: the iterative algorithm to approximate the Dynamic 
User Equilibrium (DUE) 

After running duarouter the first time, its output (SS195_duarouter.odtrips.rou.xml, related to all the 
transportation modes, which in this example are cars and trucks) can be given as input to a python 
script, duaIterate.py, which performs Gawron’s algorithm (Gawron, 1998) by calling both commands, 
duarouter and sumo (already explained in previous paragraphs), iteratively in order to approximate 
the Dynamic User Equilibrium (DUE), where the number of iterations depends on the scenario. A 
scheme of this process is shown in Figure 8. 

Figure 8: A scheme of how duaIterate.py works. 

An important thing to know is that when duaIterate.py is run, the input parameters for the sumo 
command are distinguished from the ones for duarouter by the prefix sumo–. 
A key parameter for duaIterate.py is the max-convergence-deviation: at each iteration the standard 
deviation related to the average travel time is computed allowing to use convergence as threshold to 
stop the iterations. 
An example of this command for the case study is reported here after: 

    $SUMO_HOME/tools/assign/duaIterate.py --router-verbose -n SS195.net.xml -D TAZs.taz.xml -r 
SS195.odtrips.rou.xml -l 50 -b 25200 -e 28800 --max-convergence-deviation 0.01 sumo--step-length 0.5 sumo--
routing-algorithm dijkstra sumo--vehroute-output vehroute.xml 

4.7 Running a simulation with sumo-gui 
The command sumo-gui, as already mentioned, provides a graphical user interface (GUI) which 
allows to watch the vehicles moving in the network during a simulation. In the GUI it’s possible to set 
the colours of vehicles and lanes according to various criteria. Effective choices are: 

• to be able to watch the simulation, set the delay time to 100, otherwise it runs too fast
• to have an idea of the jammed edges, the colour of vehicles can be set according to speed

(red when stopped, etc.)
• to set a constant size for the vehicles, which otherwise are too small.

Figure 9 shows how to achieve this configuration in the sumo GUI. 
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Figure 9: How to get a more readable simulation 

During the simulation, while the vehicles are moving, many useful operations are possible. One of 
these consists in closing an edge, or only a lane, in order to analyse the effects on the traffic flow; 
another useful feature is following a vehicle in its route (for instance, to follow an emergency 
vehicle).  
Figure 10 shows a particular of the running simulation. 
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4.8 The xml files output of a simulation 
The user can choose how much information get as output of a simulation, which will be written after 
the simulation ends, by specifying some parameters in the input to the cml: 

• tripinfo-output, to have detailed information about the trips, such as: departure speed,
arrival speed, duration, waiting time, time-loss, etc.

• vehroute-output, to have detailed information for each vehicle: vehicle id, departure,
route (a list of all the edges), arrival, fromTaz, toTaz, etc.

• fcd-output, to have the floating car data, i.e., the coordinates of each vehicle at each
instant of the simulation (a very big data file)

• summary, to have some general information for each step of the simulation: number of
vehicles running, mean speed, mean travel time, etc.

To sum up, the previous parameters can be given as input to run the simulation with the graphical user 
interface, through the following cml: 

      sumo-gui -v -n SS195.net.xml --route-files SS195.odtrips.rou.xml --duration-log.statistics true -b 25200 -e 
28800 --time-to-teleport -1 --collision.action warn  --step-length 0.5 --routing-algorithm dijkstra --time-to-
impatience -1  --additional-files SS195.poly.xml  --tripinfo-output SS195.tripinfo.out.xml  --vehroute-output 
SS195.vehrou.out.xml --summary SS195_summary.out.xml 

SUMO provides many Python scripts to read these output files (in the directory sumo/tools/output/), 
which can also be used as a starting point to customize a solution accordingly to specific 
requirements. Particularly useful in this task is the Python library sumolib, included in the tools of 
SUMO. 
Figure 11 shows a scheme which summarises the main 5 steps required to build a traffic micro-
simulation with SUMO. 
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5 A way to store information about simulations into MongoDB 
A research activity of calibration, changing parameters many times can become difficult to be 

managed unless a way to record the important information about each run is put in place.  
In fact, elaborating statistics and Key Performance Indices (travel time, number of vehicles, 

average speed, time-loss, etc.)  is easier with the help of a database. Figure 12 shows a scheme of 
input files of a simulation, output files and its parsing through a custom python code to save the 
related information in a database. 

Figure 12: input and output files of a simulation 

For the case study MongoDB was used, after a data modeling analysis tailored to the specific 
application case of simulation recording. A simple combination of the Python libraries pymongo and 
the sumo library sumolib allow to save locally or to Atlas (in cloud) a complete set of information 
about each simulation (as shown in Figure 13).  
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The python code steps to be implemented are summarized here after: 
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• step 1: build a simulation dictionary, called sim, with all the input parameters;
• step 2: build a TAZ dictionary (reads TAZ names from a csv/txt file);
• step 3: build a dictionary with the statistics from SS195.summary.out.xml file and get

average simulation performance indicators from last line in summary.out.xml file;
• step 4: build a list of information about each vehicle, called all_vehicles_list, getting

information from output files SS195_vehroute.out.xml and SS195_tripinfo.out.xml,
adding the names of the TAZs from the dictionary built in step 2;

• step 5: the previous steps collect all the data, while this last step stores all the data in the
MongoDB Atlas cloud database (as shown in the python method in Figure 14).

# step 5: store all simulation info in a new collection of db 
def store_in_mongodb(SUMO_DB_NAME, sim, all_vehicles_list, statistics): 
     myclient =      pymongo.MongoClient(“mongodb+srv://root:PSSWD@cluster0.plnvt.mongodb.net/” + 
SUMO_DB_NAME + “?retryWrites=true&w=majority”) 
    dblist=myclient[SUMO_DB_NAME] 
    mycollection=mydb[“simulations”] 
    simulation = {‘params’:sim, ‘output’:all_vehicles_list, ‘statistics’:statistics} 
    sim_id = mycollection.insert_one(simulation) 
    print(‘sim_id = %s’ % sim_id.inserted_id) 
    return sim_id.inserted_id 

Figure 14: A python script to store the information about a simulation in the MongoDB Atlas cloud DB. 

6 Conclusions and Future work 
A real case study was presented as an example of how a micro-simulation scenario can be built 

with a map from Open Street Map and the traffic simulation platform SUMO. A detailed description 
was provided, starting from the network preparation, the definition of the Traffic Assignment Zones, 
and the trips obtained from Origin-Destination Matrices. A micro-simulation was run and some 
suggestions about how to use the output files and store the important information in a Mongo 
database.   

This activity could be further developed in many directions: extending the study area, collecting 
further ground truth demand data to work on model calibration, considering public transport services, 
etc.  

The SUMO platform is plenty of tools properly developed to import data collected by sensors or 
coming from video cameras, even from drones. These data would also allow a more detailed 
definition of the vehicles that could be used not only to better model the traffic, but also to compute 
the emission of pollutants. All these developments would provide a useful support to decision makers 
to prevent events of traffic congestions and environmental risks. 
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