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Abstract. This work investigates the relationships between process parameters and the oc-
currence of structure loss in Czochralski silicon ingots using machine learning. Subsets of fea-
tures are identified from a dataset of over 14,000 ingots and are used to train random forests 
to predict structure loss with high accuracy. Multiple rounds of feature importance analysis and 
refinement are conducted to isolate the process parameters that may have the most significant 
impact in the occurrence of structure loss. Partial dependence analysis is employed to examine 
how variations in particular parameters might affect the likelihood of structure loss happening. 
The results show that the most predictive features of structure loss are primarily recorded late 
in the process. These features are often influenced by manual interventions or reflect the out-
come of structure loss itself. In contrast, early-stage parameters exhibit limited predictive 
power, suggesting that either early indicators of structure loss are not captured in the available 
data or that structure loss originates from events occurring later in the growth process. While 
not predictive in a preventive sense, the model effectively detects deviations from normal op-
eration, thereby demonstrating the value of machine learning for uncovering complex patterns 
in manufacturing processes data. 
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1. Introduction

Silicon-based photovoltaics hold 95% of the solar energy market share, with over 96% of these 
silicon solar cells being monocrystalline due to their higher efficiency and lower defects level 
[1]. Monocrystalline wafers are sliced from single-crystal silicon ingots produced via the Czo-
chralski (Cz) process [2], a method for silicon growth that has experienced considerable pro-
gress in recent years. 

The increasing demand for silicon has created a requirement for larger ingot diameters 
and crucible sizes, presenting challenges in the Czochralski silicon growth method. A consid-
erable number of Czochralski silicon ingots is remelted primarily due to dislocations formed 
during growth, a phenomenon often referred to as structure loss (SL) [3, 4]. Understanding 
how SL relates to operational conditions and process parameters during the crystal pulling is 
crucial, as even small increments in yield can have significant economic benefits. To achieve 
this, the present work proposes the use of machine learning (ML) to perform a correlation study 
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and investigate whether certain process parameters are associated with an increased likeli-
hood of SL. The goal of this study is to understand which parameters, or combinations of pa-
rameters, contribute to a higher risk of SL. This will ultimately enable better control of the Cz 
process and reduce the occurrence of structure loss. 

This work is structured as follows: section 2 introduces the problem of structure loss during 
the Cz process. Section 3 presents the workflow and methodology employed in the correlation 
study. Section 4 highlights the findings obtained with the methodology. Finally, Section 5 gives 
the main conclusions. 

2. Solar Cell Silicon Ingot Production and Structure Loss

The Cz method for single-crystal growth has evolved significantly over the past 50 years and 
is now a key process for both the photovoltaics and microelectronic industry.  The process 
starts with a seed of a single crystal with a well-defined crystallographic orientation being 
dipped into the melt and gradually pulled vertically to the surface. The silicon melt solidifies on 
the seed and adopts its orientation. Precise control of the temperature and the pulling speed 
is implemented to ensure the formation of a dislocation-free monocrystalline crystal ingot [2, 
5]. The main advantage of monocrystalline silicon cells lies in their high efficiency, which is due 
to the material’s purity and low defect density. 

One of the crucial challenges of the Cz method is the loss of the dislocation-free structure 
during growth. This phenomenon is often referred to as SL, and it affects a considerable per-
centage of the grown ingots at different growth stages. Remelting the affected ingots is the 
only available solution in the industry, which ultimately decreases the production yield [5, 6]. 
The root causes for SL occurring during the process are diverse, as illustrated in Figure 1, 
where three different types of SL are shown. Each example corresponds to a different under-
lying mechanism. For instance, the structure loss in Figure 1b was triggered by a particle—
possibly silicon carbide (SiC)—impacting the growing monocrystalline lattice, leading to a vis-
ible transition to multicrystalline silicon. 

Figure 1. Optical microscope images of three structure loss categories: (a) diameter fluctuations be-
fore the structure loss. (b) Particle hit at the growth front results in nucleation of multicrystalline Si. (c) 

Cut (notch) in the growth ridge [5]. 

3. Machine Learning Methodology for Czochralski Process Analysis

Although the mechanisms by which structure loss appears have been studied, its underlying 
causes remain to be understood. The Cz process involves a large number of tightly coupled 
parameters, many of which change dynamically during growth and may interact in nonlinear 
ways. This complexity makes it difficult to isolate cause-effect relationships using traditional 
analysis methods. In this context, machine learning (ML) is a promising approach, as it excels 
at identifying hidden patterns and interactions in high-dimensional datasets without requiring 
explicit physical models [7]. In particular, ML methods may be used to uncover potential cor-
relations between process parameters and the occurrence of SL, offering a data-driven per-
spective on this problem. 

2



Garcia et al. | SiliconPV Conf Proc 3 (2025) "SiliconPV 2025, 15th International Conference on Crystalline Silicon 
Photovoltaics" 

Figure 2. Diagram of the machine learning pipeline employed for the correlation study.  

In this work, a subset of ML algorithms, called classifiers, was trained on data correspond-
ing to 14000 n-type industrial silicon ingots grown with melt recharging. The data contains 
process parameters for Cz ingots grown in 20-inch and 22-inch crucibles, covering information 
of different process parameters, ranging from pulling speeds to the concentration of interstitial 
oxygen at different ingot positions. A total of 64 process- and material-related variables were 
utilized as input features for the machine learning model, including both operational settings 
(e.g., heater power, pulling speed) and measured material properties (e.g., resistivity, oxygen 
concentration) recorded at two different ingot positions. The hypothesis is that if one parame-
ter, or combination of parameters, is related to the occurrence of SL, then a ML classifier may 
be able to learn this relationship and distinguish between ingots with and without structure loss. 
To test this hypothesis, a machine learning pipeline was implemented, as illustrated in Figure 
2, and described as follows 

1. Data Grouping: To preserve confidentiality, all parameter values were first normalized. 
Datasets were constructed with 64 process parameters plus one column indicating 
whether SL had occurred or not. SL events were identified through post-growth visual 
inspection of the silicon ingots by experienced quality control personnel. Then, the da-
tasets were organized into subsets based on logical groupings. For example, process 
parameters, like pull and crucible speeds, were put together, and the measurement of 
defect concentrations, such as interstitial oxygen or substitutional carbon, along the 
ingot, were put together in a different subset. Each subset represents a distinct cate-
gory of features potentially linked to SL. Randomly sampled subsets were also em-
ployed to account for potential non-obvious interactions between Cz process parame-
ters. 

2. Classification with Random Forests: For each subset, a Random Forest (RF) clas-
sifier was trained to predict the occurrence of SL. RF is an ensemble method that builds 
multiple decision trees on bootstrapped samples of the data, each using a random sub-
set of features [7]. Predictions are made via majority vote. This approach is robust to 
overfitting, can handle both numerical and categorical data, and provides insight into 
feature relevance. RF was chosen for its robustness and interpretability, the latter being 
particularly important for understanding which features drive the model’s predictions 
and may therefore correlate with SL. Under-sampling techniques were used to account 
for class imbalances. 

3. Feature Importance Analysis: For subsets showing promising predictive perfor-
mance, feature importance was evaluated using permutation importance. This tech-
nique measures the decrease in predictive accuracy when a feature’s values are ran-
domly shuffled [8], thereby estimating its relative contribution to the model’s perfor-
mance. Feature importance analysis allowed for the identification of the most influential 
features within each subset and to understand which parameters were most strongly 
associated with SL. It should be noted that permutation importance is context-depend-
ent, as the importance of a feature can change depending on which other features are 
present. 

4. Partial Dependence Analysis: The two most influential features of each run were se-
lected for a Partial Dependence analysis to examine how variations in these features 
might affect the probability of SL, both individually and in combination. A partial de-
pendence plot shows the effect of one or two features on the predicted probability of 
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SL, and helps visualize threshold behavior, monotonic trends, or interaction effects, 
although it assumes feature independence. 

4. Results 

The machine learning classification methodology was run multiple times with different subsets 
of parameters. The performance of the random forest models is reported using precision, re-
call, and F1-score metrics, which capture the model’s ability to correctly identify structure loss 
events. Precision refers to the proportion of predicted positives that are correct, recall to the 
proportion of actual positives correctly identified, and the F1-score is the harmonic mean of 
precision and recall. Feature importance and interaction effects are also summarized. The pa-
rameter names are labeled with P1 and P2, indicating whether they were recorded at the seed-
end or at the tail, respectively. Table 1 summarizes the list of parameters used in this section 
for the correlation study. 

Table 1. Variable names and descriptions of the parameters used for the displayed results. 

Variable Name Description 
P1 Seed end 

P2 Tail 
CrucibleProducer Manufacturer of crucible used in the Cz pull-

ing 
Resistivity_P2 Resistivity at position 2 

BottomHeaterPower_P2 Power of secondary heater at position 2 
GasFlow_P2 Gas flow at position 2 

MainPressure_P2 Main pressure at position 2 
MainPower_P2 Power of main heater at position 2 
TestWafer_P1 Exact cut position of characterization wafer 

(P1) 
CrucibleLiftSpeed_P1 Crucible lift speed at position 1 

Resisitivity_P1 Resistivity at position 1 
CarbonConcentration_P2 Carbon concentration at position 2 

ABCD_encoded Ingot number per run 
A/B_encoded First / last ingot per run 

CrucibleLiftSpeed_P2 Crucible lift speed at position 2 
SeedSpeed_P2 Seed pulling speed at position 2 

MainPressure_P1 Main pressure at position 1 

Table 2 shows the results of the RF classifier applied to a subset of parameters containing 
data on the ingot run (ABCD_encoded; with values A, B, C and D, representing four runs) and 
the crucible producer (CrucibleProducer; with values A and B, representing two different 
suppliers). The classifier performs better at identifying non-SL events (class 0) but struggles 
to correctly identify SL (class 1), as indicated by the low precision and F1-score values for 
class 1. This is understandable given that there is a class imbalance between the two catego-
ries in the dataset. 

Table 2. Metrics for each class for the data subset containing the ingot run and crucible types. Here, 0 
represents non-SL and 1 represents SL. 

SL Precision Recall F1-Score 
0 0.87 0.66 0.75 
1 0.16 0.38 0.22 
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The results presented in Table 2 suggest that there is no correlation between the ingot run 
and the crucible employed and SL. This may be applicable to the current dataset, given that 
only two types of crucibles with similar qualities were employed. However, it is counterintuitive, 
as one would expect that a crucible containing a large number of impurities would contaminate 
the silicon melt resulting in SL due to particle hit [3]. From this argument, one can conclude 
that an approach solely based on machine learning may be insufficient to predict structure 
loss. 

Table 3 and Figure 3 show the classification results and feature importance analysis for a 
model trained on a subset containing two parameters: the resistivity measured at the tail (P2) 
and the power supplied to the bottom heater at the end of the body growth. The confusion 
matrix confirms that the model achieves high accuracy in identifying non-SL cases, with a pre-
cision of 0.92 and recall of 0.99. Performance on the SL identification is lower, with a precision 
of 0.86, recall of 0.51, and an F1-score of 0.64. The permutation importance plot indicates that 
Resistivity_P2 contributes most significantly to the model’s predictions, while Bottom-
HeaterPower_P2 plays a smaller role. 

Table 3. Metrics for each class for the data subset containing the resistivity measured at the tail and 
power from bottom heater measured at the end of the pulling process. 

These results point to a high correlation between structure loss and parameters recorded 
during the final stage of growth. This trend is general for most parameters recorded at P2. It is 
worth noting that not all parameters were measured in situ during the pulling process. While 
some parameters, like heater power settings, gas flows and pull speeds, are recorded in real-
time, others – such as resistivity – are measured ex situ on the grown ingot at room tempera-
ture. This distinction is important to consider when interpreting the results, as ex situ measure-
ments reflect the final state of the ingot and may be indicative of SL rather than predictive of 
its occurrence. A straightforward example: significantly smaller ingot weight or length often 
directly indicate that the pulling process was interrupted prematurely, likely due to SL occur-
ring. 

Other P2 parameters carry more indirect information about structure loss. For instance, 
the resistivity (Figure 3) measured at P2 reflects the doping concentration.  Since the resistivity 
changes along the ingot length according to Scheil's equation, the value of the resistivity im-
plicitly encodes how long the ingot was pulled before termination. This explains why subsets 
of data containing information on the resistivity at P2 achieve relative high precision. 

The pipeline was also applied to a set containing the crucible lift, seed and average pulling 
speeds. The classification results are shown in Table 4, while the feature importance analysis 
for these parameters is shown in Figure 4. Table 4 shows that the model performs well at 
identifying non-SL events (precision = 0.94) but struggles to correctly identify SL events (pre-
cision = 0.16). This is the same behavior observed in Table 2 regarding the identification of SL 
events. 

SL Precision Recall F1-Score 
0 0.92 0.99 0.95 
1 0.86 0.51 0.64 
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Figure 3. Model performance and feature importance for predicting structure loss. The confusion ma-
trix shows that the Random Forest classifier achieves high accuracy for the majority class (normal op-
eration). Performance for the minority class (occurrence of SL) is lower. The permutation importance 
bar plot indicates that Resistivity_P2 contributes most significantly to the model's predictions in 

this subset, while BottomHeaterPower_P2 plays a comparatively minor role. 

The feature importance analysis, shown in Figure 4, reveals that the crucible lift speed at 
position 2 (CrucibleLiftSpeed_P2) contributes most significantly to the model’s predic-
tions, followed by the seed speed at position 2 (SeedSpeed_P2). However, the relatively low 
overall importance values indicate that these parameters alone do not strongly predict struc-
ture loss. Notably, the seed pulling speed at position 1, while included in the model, exhibits a 
negligible contribution to predictive power. This is again a counterintuitive result, as a faster 
seed pulling speed at the beginning of the process should correlate with a higher risk of ingot 
breakage and subsequent structure loss. The lack of a discernible relationship between the 
seed speed at P1 and the occurrence of SL reinforces the argument that the current method-
ology may be limited in its ability to capture early-stage indicators of defects, as argued earlier 
with the results presented in Table 2. 

Table 4. Metrics for each class for the data subset containing the seed, crucible lift and average pull-
ing speeds. 

SL Precision Recall F1-Score 
0 0.94 0.24 0.39 
1 0.16 0.91 0.28 

Figure 5 compares feature importance values derived from subsets of process parameters 
measured at the start (P1) and end (P2) of the ingot growth process. As noted above, param-
eters recorded at P2—such as gas flow, chamber pressure, and carbon concentration—
demonstrate substantially higher importance in predicting structure loss. However, these pa-
rameters likely reflect manual interventions performed after structure loss has occurred. For 
instance, an operator may adjust heater power upon a visual detection of SL or in an attempt 
to prevent it. Responses to SL introduce deviations from standard operation, and it appears 
that the random forest model consistently identifies these anomalies. However, the model does 
not find a strong correlation between parameters measured at the start of the pull. This sug-
gests that either early indicators of SL are not present from the dataset, or that SL is triggered 
by events occurring later in the process. Interestingly, Figure 5b shows the carbon concentra-
tion at P2 as the most important feature of the employed subset of data, related to SL. This 
may explain the type of SL mechanism occurring. Due to segregation during solidification, 
carbon tends to accumulate toward the ingot tail. Elevated carbon concentrations increase the 
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likelihood of silicon carbide (SiC) particle formation. Such particles can disrupt the monocrys-
talline lattice—possibly explaining that these instances of structure loss were of the particle hit 
kind. It should be noted, however, that this would normally require carbon concentrations ex-
ceeding the solubility limit, and very few of the investigated samples had carbon concentrations 
above 5 ppma at the tail. 

Figure 4. The permutation importance bar plot for the seed and crucible lift speeds at P2. The results 
show that CrucibleLiftSpeed_P2 contributes most significantly to the model's predictions in this 

subset, with SeedSpeed_P2 playing a comparatively minor role. 

Figure 5. Feature importance comparison between process parameters recorded at the beginning 
(P1) and the end (P2) of the ingot production process. Late-stage parameters show significantly higher 

importance in predicting structure loss. 

 

(a) (b) 
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Figure 6. Feature importance comparison for operational parameters (a, up). Partial dependence plot 
of the two most influential parameters of this run (b, down): crucible lift speed and gas flow during tail-
ing (P2). The contour lines indicate predicted probability of SL based on those two features. The irreg-

ular contour shapes indicate feature interaction. 

Finally, Figure 6a displays feature importance values derived from a subset of process 
parameters that includes gas flow and crucible lift speed during tailing (P2), as well as main 
pressure during crowning (P1). The graph highlights the significantly higher importance of the 
first two parameters compared to main pressure at the beginning of the pulling process. The 
model interprets that the values of these parameters are outside of what would be considered 
normal operation. In SL cases, this deviation reflects a different P2 position, i.e., that the pulling 
process was terminated earlier than expected. Nevertheless, as these two parameters appear 
to be the most influential of the subset of data, a partial dependence analysis was performed. 
The goal was to examine how variations in these features might affect the probability of SL. 
Figure 6b shows the 2D partial dependence plot for gas flow and crucible lift speed, illustrating 
their combined effect on the predicted probability of structure loss. Recall that the values of 
these parameters have been normalized to preserve confidentiality. The surface plot does not 
show a simple relation between the parameters but rather discontinuities, ridges and valleys. 
This behavior may be linked to abrupt manual intervention, likely by operators, and reinforce 
the notion that some features recorded at P2 encode reactive changes made after structure 
loss has already occurred. 

5. Conclusions and Outlook 

This work has conducted a correlation analysis between the Czochralski pulling process pa-
rameters and the occurrence of structure loss using machine learning. The methodology suc-
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cessfully identified structure loss events, but most of the predictive capabilities came from pa-
rameters recorded after structure loss. Therefore, the model is best suited for post-process 
analysis of structure loss, rather than real-time prediction. In contrast, pulling parameters rec-
orded early in the process show little correlation with structure loss. This suggests that either 
structure loss is triggered by events occurring later in the pulling, or that early indicators of 
structure loss are absent from the dataset. One notable limitation of the presented approach 
is the feature importance analysis being context dependent. The importance of a given param-
eter changes depending on which other parameters are input in the model. See, e.g., the im-
portance of the gas flow parameter during tailing (GasFlow_P2) in Figures 5 and 6. The im-
portance values are 0.16 and 0.31, respectively. The significant difference in value is due to 
changes in the feature subset used for training. This reflects that permutation importance is 
not absolute and, therefore, future work will focus on exploring different techniques within ex-
plainable AI, such as SHapley Additive exPlanations (SHAP) values, for more robust, interac-
tion-aware interpretation. 
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