

Numerical Analysis of Metal Poly-Si Contact in TOPCon Solar Cells Through Device Simulations Using Sentaurs TCAD

Savita Kashyap^{1,2,*} , Shiladitya Acharyya³ , Durga Prasad Khatri^{1,2} ,
Pradeep Padhamnath⁴ , and Anil Kottantharayil^{1,2}

¹National Centre for Photovoltaic Research and Education, Indian Institute of Technology Bombay, Mumbai, 400076, India

²Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India

³SAMGESS, Indian Institute of Engineering Science and Technology, Shibpur

⁴AGH University of Krakow, al. Adama Mickiewicza 30 30-059 Poland

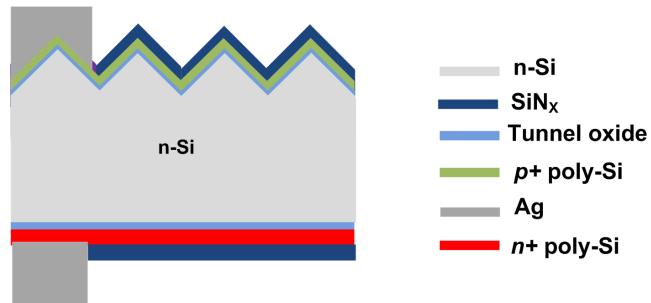
*Correspondence: Savita Kashyap: savitakashyap473@gmail.com, savitakashyap@iitb.ac.in

Abstract. Tunnel oxide passivated contact (TOPCon) is an emerging technology for highly efficient with excellent passivation photovoltaic (PV) devices. However, a standard TOPCon cell suffers from insufficient efficiency gain and recombination losses due to the presence of a direct metal-crystalline silicon contact. Therefore, bifacial configurations with advanced passivated structures have been considered in this research work. In this work, the performance of bifacial TOPCon device with double-side (DS) TOPCon structures, integrated with poly-Si, is explored and modeled using Sentaurs TCAD software. The reported study develops a framework to obtain state-of-the-art bifacial TOPCon structures with optimized input parameters and considering tunneling structures. The impact of collective front/rear SiN_x layer thickness (from 50 to 100 nm) and p+ poly Si thickness (from 20 to 100 nm) on the performance of bifacial-DS TOPCon solar is studied and analyzed for optimized PV performance. This research study reveals that optimizing the p+ poly-Si thickness enhances carrier collection with minimal bulk recombination losses. The PV performance of DS structure indicates that incorporating DS carrier selective contacts increases the PV efficiency. Also, the detailed analysis of bifacial TOPCon structure reveals that suppressing the recombination by incorporating tunneling structures on both sides can be the key strategy to improve PV performance with an optimized efficiency of 26.3%. The reported study set a clear direction for higher PV performance by incorporating a tunneling approach in next-generation c-Si solar cells at low cost.

Keywords: Bifacial, Silicon, Simulations, Solar Cell, TOPCon

1. Introduction

Nowadays, poly-Si based advanced solar cells known as tunnel oxide passivated contact (TOPCon) cells have emerged as effective solutions for high photovoltaic (PV) performance [1], [2]. These structures received more consideration due to their excellent passivation performance, high stability, low recombination current density, reduced contact resistivity, and higher selectivity of charge carriers by decoupling the recombination-active areas from the Si substrate [3]. The development of high-efficiency solar cells is important to meet the rising demands for electricity globally. Thus, increasing the PV devices efficiency further lowers the


levelized cost of energy (LCOE) for solar-generated power and increases energy generation [4]. In the 1980s, the concept of poly-Si passivating contacts was initially proposed, which set the stage for the advancement of passivated contact technologies [5], [6]. With a 23% efficiency in silicon PV, the TOPCon structure, which was first developed by Fraunhofer ISE in 2014, was a significant achievement [7], [8]. Afterwards, in 2017, the idea of a selective emitter was considered for TOPCon structure by Fraunhofer ISE to develop the PV technology and set a new lab-scale efficiency record of 25.7% [9]. Trina Solar developed the first 24.58% commercial TOPCon solar cell for industrial-scale usage in 2019 and made a significant advancement on a 244.62 cm² area [10]. Recently, a theoretical efficiency limit of 28.7% has been reported [11]. By using the latest laser-enhanced contact optimization (LECO) process at optimized sintering temperature of 790 °C, authors have achieved 25.98% efficient TOPCon device [12]. Wang et al. [13] obtained 25.1% efficiency using Jolywood Special Injected Metallization (JSIM) firing process which reduces the line resistance of first finger because of customised paste utilisation. Jinko et al. [14] reported 26.4% efficient n-type TOPCon having area of 334.9 cm². Whereas, However, the industrial efficiency range of TOPCon solar cells falls between 24% to 25% suggesting that TOPCon devices still have an option for further improving the conversion efficiency. These devices are unique owing to their combination of a strongly doped poly-Si layer and an ultrathin interfacial oxide (SiO_x) layer. Due to their rapid industry adoption and current position as the dominant technology in the market, single-side (SS) and double-side (DS) passivated contacts are the subject of the majority of device simulations [15]. The presence of poly-Si layer on the rear side of commercially manufactured TOPCon devices is limited due to parasitic absorption issues [16], [17]. However, there has been increasing interest in including the TOPCon layer on the front side of solar cells, either as a thin coating of poly-Si covering the full surface or as a layer of poly-Si that is limited to the area directly beneath the front metal contacts termed as double side (DS)-TOPCon solar cells [18]. As per industrial research, DS-TOPCon cells are considered to be appropriate as bottom cells for Si-perovskite tandem devices, which may result in higher V_{OC} exceeding 730 mV [19]. Hence, DS-TOPCon devices have gained much attention due to potential for attaining >26% efficiency [20].

Previous published studies revealed that approximately 50% of recombination happens due to front side of the TOPCon structure, making it an important area for improvement. The research community has put a lot of effort into addressing FF and V_{OC} losses with optimized solutions in order to enhance the PV performance of TOPCon devices. Zhou et al. [21] have reported that by reducing the front surface field recombination and contact area, an increment in PV performance has been achieved. Wang et al. [12] reported 25.97% efficient TOPCon solar cell by including the laser-enhanced contact optimization (LECO) process with low recombination current density (J_o). Whereas, Liu et al. [22] have achieved 25.17% conversion efficiency with optimized p⁺ layer boron concentration of 8.68×10^{18} atom/cm³ with a depth of 0.53 μm, while the concentration in p⁺⁺ layer is 2.35×10^{19} atom/cm³ with a depth of 0.82 μm. As per the literature, it is observed that PV performance of TOPCon solar cells is highly influenced by structural parameters such as wafer thickness, half-finger pitch, and bulk lifetime of the c-Si substrate etc.

In this contribution, the performance of bifacial TOPCon solar cell with double-sided (DS) passivating contacts has been designed, studied and analyzed using Sentaurus TCAD software. The reported bifacial structure design has passivating contacts on both sides, termed as double-sided (DS) topology. The PV performance of the reported device is analyzed through PV parameters (Power conversion efficiency; PCE, open circuit voltage; V_{OC}, short current density, J_{SC} and Fill factor; FF). The modeling results based on published experimental data provide insights into optimization pathways for high-efficiency TOPCon cells.

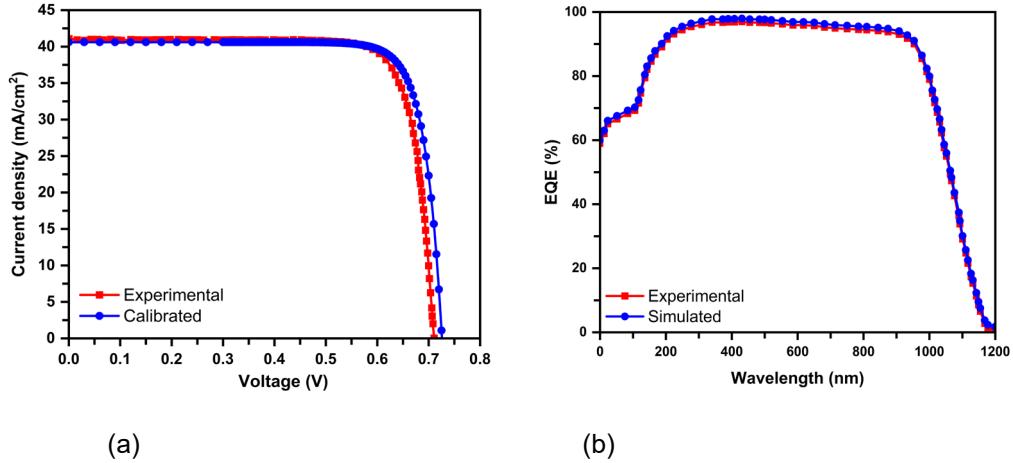
2. Simulation Framework

The device simulations for TOPCon solar cell are performed using industry-processed Sentaurus TCAD software. The cross-sectional schematic view of bifacial DS-TOPCon structures is depicted in Figure 1. Whereas, all the input parameters that are used for device simulations are tabulated in Table 1 and the models are mentioned in Table 2. All device simulations are performed under standard test conditions (STC): AM1.5G solar spectrum at 300 K [23]. Optical simulations are performed to generate the optical generation profiles using a ray tracer model before performing the electrical simulations. For designing the devices, *n*-type Si wafer (doping $5 \times 10^{15} \text{ cm}^{-3}$, resistivity: $\sim 1 \Omega\text{-cm}$) is taken as the substrate (absorber) of 130 μm . The same doping can be calculated and verified through material properties from PVCDROM [24], [25]. Initially, optimized substrate thickness of 130 μm is considered to achieve the higher PV performance as predicted in the ITRPV-2024 [15]. For TOPCon devices, the tunnel oxide layer sandwiched between poly-Si and Si-substrate plays a vital role in passivation and charge carrier transport. The optimized thickness of $\text{SiO}_x/\text{Poly-Si}$ on rear side of the device is 1.2 nm/120 nm for bifacial DS-TOPCon is considered. Here, half-finger width solar cells are investigated using TCAD simulations. Further, silicon nitride (SiN_x) is employed on front side owing to its dual role as antireflection coating and passivation. To fully utilize the bifaciality concept, a dielectric stack (oxide/poly-Si/ SiN_x) is incorporated on rear side to reabsorb the reflected light. Different models, such as Richter for auger recombination [26], Klaassen model for mobility [27] and Schenk bandgap narrowing model [28] for heavily doped areas. Also, the non-local carrier tunneling model [29] accounts for the tunneling of charge carriers.

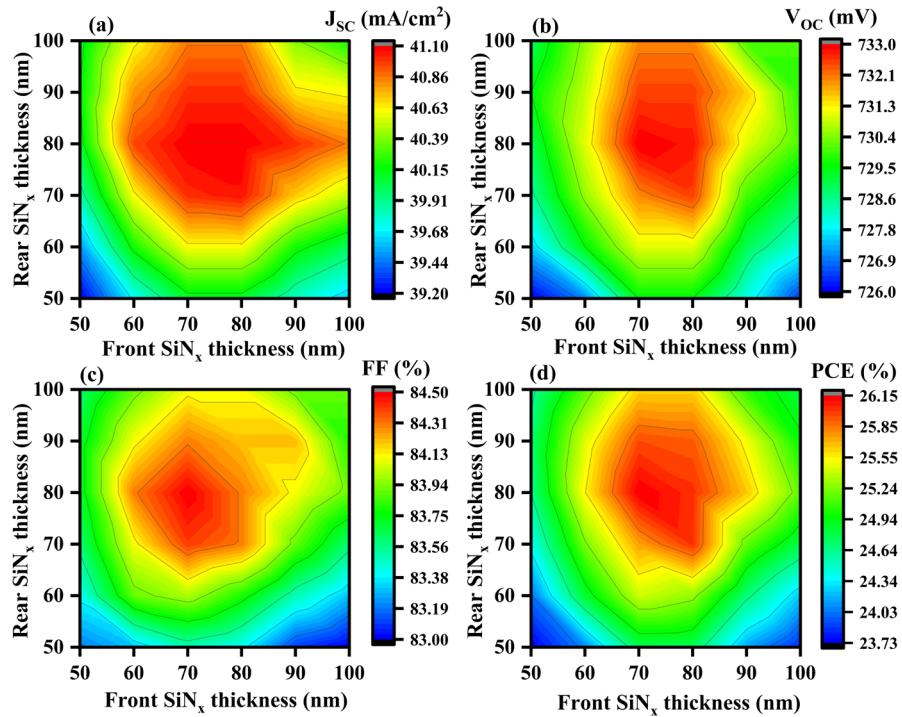
Figure 1. The schematic view of bifacial double-side (DS) TOPCon solar cells (not to scale)

Table 1. Input and modeling parameters used in TCAD device simulations.

Parameter Description	n-TOPCon (DS; Bifacial)
Bulk thickness (μm)	130 [30]
Bulk lifetime (ms)	10 [18, 31]
Bulk resistivity ($\Omega\text{-cm}$)	~ 2 [22, 32]
Substrate doping (cm^{-3})	5×10^{15}
Front <i>p</i> ⁺ poly-Si Doping (cm^{-3})	1×10^{20}
Thickness of front tunnel oxide (nm)	1.2
Calibrated front <i>p</i> ⁺ poly-Si thickness (nm)	150 nm [3]
Front <i>p</i> ⁺ poly-Si thickness after calibration (nm)	Variable
Front poly-Si/SiO _x interface SRV (cm/s)	0.9
Front poly-Si defect density (cm^{-3})	10^{17}
Rear <i>n</i> ⁺ poly-Si thickness (nm)	120 [33]
Rear poly-Si/SiO _x interface SRV (cm/s)	1
Rear poly-Si defect density (cm^{-3})	10^{17}
Rear <i>n</i> ⁺ poly-Si Doping (cm^{-3})	2×10^{20} [33]
Thickness of rear tunnel oxide (nm)	1.2 [22]
Silicon nitride thickness on front/rear (nm)	Variable


Table 2. Summary of models used for device simulations.

Non-local carrier tunneling model	Stodolny [29]
Mobility	Klaassen [27]
Auger recombination (300 K)	Richter [26]
Bandgap narrowing	Schenk [28]
Light Source and Temperature	AM15.G intensity 1kW/m ² [34] at 300K
Effective tunneling mass	$m_{te} = 0.40m_o$, $m_{th} = 0.32m_o$ [35], [36]


3. Results and discussion

Initially, the calibration of the bifacial n-TOPCon device (single side TOPCon structure) has been performed as per experimental results reported in literature [3], along with tabulated models in Table 1. A calibrated and experimental illuminated current-density (JV) and external quantum efficiency (EQE) curves have been obtained, as shown in Fig. 2 (a-b). Authors have reported 23.01% efficiency [3] through experimental study, but by considering the same reported experimental input parameters, we have obtained 23.70% efficiency using TCAD models. The close alignment of PV performance via a calibration study shows the accuracy of physical models and input parameters. As per Fig. 2, simulated V_{oc} is slightly higher than experimental because the model was first calibrated using a bulk lifetime of 8 ms, following Ref. [3], which reproduced the experimental device performance with only a small deviation. For consistency, a bulk lifetime of 10 ms was then used in all subsequent simulations to represent slightly improved wafer quality and to standardize the analysis across all parametric studies.

Here, the performance of bifacial DS-TOPCon is investigated by doing the parametric optimization. It is noteworthy that n+ passivating contacts offer low contact resistivity to electrons while blocking the path of holes. Similarly, p+ passivating contact enables hole tunnelling and acts as a barrier for electrons. In this manner, DS-TOPCon structures avoid the charge carrier recombination by facilitating the tunnelling of electrons from rear side and holes from front side. Thus, this reported bifacial DS-TOPCon enhances the device performance with double-side TOPCon concept. Along with this, as PV industry is rapidly moving towards ultra-thin wafers owing to higher flexibility, lower material usage cost and less energy consumption during wafer production, it becomes important to look into how PV performance is affected with variations in device parameters. So, after performing the calibration for bifacial SS-TOPCon device (as depicted in Figure 2), we made the changes in structure to make it bifacial DS-TOPCon by following the same models and input parameters as tabulated in Table 1 while keeping the p⁺ poly-Si thickness at 35 nm.

Figure 2. (a) Illuminated JV curve and (b) EQE of calibrated bifacial n-TOPCon solar cell; calibration is done with experimental data [3]

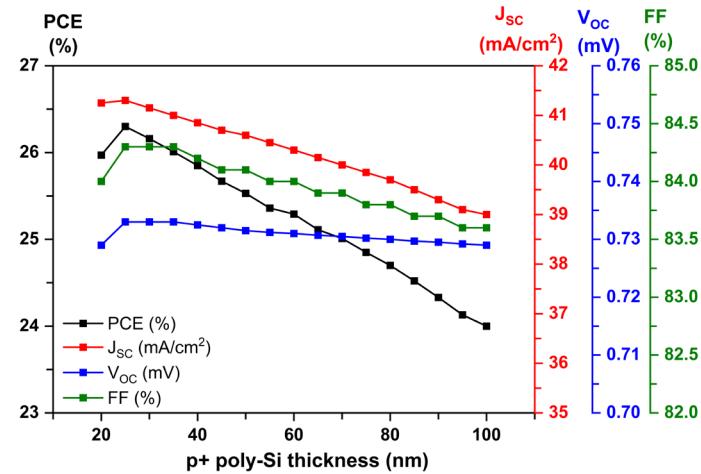


Figure 3. The collective impact of front and rear SiN_x thickness on PV parameters (a) J_{SC} , (b) V_{OC} , (c) FF and (d) PCE

The influence of collective front and rear SiN_x thickness (from 50 to 100 nm) has been studied and analyzed as given in Figure 3 (a-d). As SiN_x is used for ARC and passivation purposes, its optimal thickness significantly influences the PV performance. To visualize the SiN_x thickness, collective variations for both front and rear have been performed. From the obtained results, it has been observed that maximum light trapping and higher PV performance (PCE) are achieved when thicknesses are in the range of 70-80 nm for both front and rear SiN_x thickness.

If the thickness is too thin, then PCE will reduce due to a reduction in J_{SC} , having higher optical losses with minimal variation in V_{OC} and FF. If its thickness is too thick, then it could hinder the penetration of silver paste during screen printing and result in higher contact re-

sistance. Through these collective analyses, the optimized thickness for both and rear SiN_x is 70 nm/70 nm, which provides better PV performance (26.15%).

Figure 4. The influence of p^+ poly-Si thickness on PV parameters (a) J_{sc} , (b) V_{oc} , (c) FF and (d) PCE

After optimizing the SiN_x thicknesses, the influence of front p^+ poly-Si thickness from 20 to 100 nm has been studied, as it also affects thermal stability. If the thickness of p^+ poly-Si is too thick, then it will result in higher recombination due to oxide disruption, boron penetration at high firing temperatures and higher parasitic absorption losses [37, 38]. From the results, it has been noticed that J_{sc} decreases at higher thickness because of parasitic absorption and the highest V_{oc} is obtained when the thickness of the poly-Si layer is between 20-30 nm. While such thicknesses have been experimented with earlier with some success, firing stability and metal penetration through the poly-Si layer remain areas of concern [39]. Similarly, FF decreases due to higher series resistance. The impact of all three parameters is reflected in conversion efficiency (Fig. 4(d)). It can be seen that the optimized p^+ poly-Si thickness ~ 25 nm [40] which results in highest efficiency (26.3%).

4. Conclusion

In this study, bifacial TOPCon structure with double-sided passivating contacts has been designed and simulated through the Sentaurus TCAD tool. The performance of bifacial-DS TOPCon is studied and analyzed by varying the input parameters. From the results, it is found that optimization of input parameters plays an important role in maximizing the PV performance. It has also been observed that the incorporation of passivating contacts on both sides results in better performance with minimum recombination losses, better passivation and improved carrier collection efficiency. The optimized PV performance of bifacial-DS TOPCon is 26.3% at 70 nm/70 nm of SiN_x thickness on both front and rear sides by including 130 μm optimized substrate thickness. The reported research work confirms the viability of the device structure through TCAD simulations. The concept of laser-enhanced contact optimization (LECO) process could be included in the proposed devices for further enhancement of PV performance in the future.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the first author.

Author contributions

Savita Kashyap: Conceptualization, Methodology, Software, Data Curation, Formal Analysis, Investigation, Visualization, Writing – Original Draft

Shiladitya Acharyya: Software, Investigation, Technical Support (Sentaurus TCAD)

Durga Prasad Khatri: Software, Investigation, Technical Support (Gridler Metallization Analysis)

Pradeep Padhamnath: Formal analysis, Methodology, Conceptualization, Writing – Review & Editing

Anil Kottanthalayil: Funding Acquisition, Supervision, Validation, Formal Analysis, Writing – Review & Editing

Competing interests

The authors declare that they have no competing interests.

Funding

This research is supported by the Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India to Savita Kashyap under Institute Postdoctoral Fellowship Scheme.

Acknowledgement

The authors acknowledge Synopsys Inc. for the Sentaurus software licenses. SK acknowledges a post-doctoral fellowship from IIT Bombay. AK acknowledges Bank of Baroda for the Circular Economy, Green Energy and Sustainability Chair Professorship.

References

- [1] T. Gao et al., "An industrially viable TOPCon structure with both ultra-thin SiO_x and n+-poly-Si processed by PECVD for p-type c-Si solar cells," *Solar Energy Materials and Solar Cells*, vol. 200, p. 109926, 2019, doi: <https://doi.org/10.1016/j.solmat.2019.109926>
- [2] S. W. Glunz et al., "Silicon-based passivating contacts: The TOPCon route," *Progress in Photovoltaics: Research and Applications*, vol. 31, no. 4, pp. 341-359, 2023, doi: <https://doi.org/10.1002/pip.3522>
- [3] M. Firat et al., "Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts," *Solar Energy Materials and Solar Cells*, vol. 236, p. 111544, 2022, doi: <https://doi.org/10.1016/j.solmat.2021.111544>
- [4] T. M. Mahim, A. Rahim, and M. M. Rahman, "Review of mono-and bifacial photovoltaic technologies: A comparative study," *IEEE Journal of Photovoltaics*, 2024, doi: [10.1109/JPHOTOV.2024.3366698](https://doi.org/10.1109/JPHOTOV.2024.3366698)
- [5] G. Yang, A. Ingenito, O. Isabella, and M. Zeman, "IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts," *Solar Energy Materials and Solar Cells*, vol. 158, pp. 84-90, 2016, doi: <https://doi.org/10.1016/j.solmat.2016.05.041>
- [6] G. Yang, A. Ingenito, N. van Hameren, O. Isabella, and M. Zeman, "Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells," *Applied Physics Letters*, vol. 108, no. 3, 2016, doi: <https://doi.org/10.1063/1.4940364>

[7] F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, "Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics," *Solar energy materials and solar cells*, vol. 120, pp. 270-274, 2014, doi: <https://doi.org/10.1016/j.solmat.2013.09.017>

[8] F. Feldmann, M. Simon, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, "Carrier-selective contacts for Si solar cells," *Applied Physics Letters*, vol. 104, no. 18, 2014, doi: <https://doi.org/10.1063/1.4875904>

[9] A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, and S. W. Glunz, "n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation," *Solar Energy Materials and Solar Cells*, vol. 173, pp. 96-105, 2017, doi: <https://doi.org/10.1016/j.solmat.2017.05.042>

[10] Y. Chen et al., "25% large-area industrial silicon solar cell: learning from history and future perspective," in *36th European Photovoltaic Solar Energy Conference and Exhibition*, 2019, pp. 294-299.

[11] W. Long et al., "On the limiting efficiency for silicon heterojunction solar cells," *Solar energy materials and solar cells*, vol. 231, p. 111291, 2021, doi: <https://doi.org/10.1016/j.solmat.2021.111291>

[12] Q. Wang et al., "Impact of laser-enhanced contact optimization on n-TOPCon solar cells' performance and efficiency: Experimental and simulated insights," *Solar Energy Materials and Solar Cells*, vol. 285, p. 113526, 2025, doi: <https://doi.org/10.1016/j.solmat.2025.113526>

[13] X. Wang et al., "Higher-Efficiency TOPCon Solar Cells in Mass Production Enabled by Laser-Assisted Firing: Advanced Loss Analysis and Near-Term Efficiency Potential," *Progress in Photovoltaics: Research and Applications*, vol. 33, no. 7, pp. 771-781, 2025, doi: <https://doi.org/10.1002/pip.3921>

[14] SHANGRAO, "JinkoSolar's High-efficiency N-Type Monocrystalline Silicon Solar Cell Sets New Record with Maximum Conversion Efficiency of 26.89% ", 30/10/2023 2023. [Online]. Available: <https://ir.jinkosolar.com/news-releases/news-release-details/jinkosolars-high-efficiency-n-type-monocrystalline-silicon-3>

[15] D. M. Fischer. (2024) International technology roadmap for photovoltaic (ITRPV). Available: <https://metsolar.eu/blog/itrvp-international-technology-roadmap-for-photovoltaic-2024-is-now-available/>

[16] A. Fell et al., "Modeling parasitic absorption in silicon solar cells with a near-surface absorption parameter," *Solar Energy Materials and Solar Cells*, vol. 236, p. 111534, 2022, doi: <https://doi.org/10.1016/j.solmat.2021.111534>

[17] D. Chen et al., "24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design," *Solar Energy Materials and Solar Cells*, vol. 206, p. 110258, 2020, doi: <https://doi.org/10.1016/j.solmat.2019.110258>

[18] W.-J. Choi et al., "Development of APCVD BSG and POCI 3 Codiffusion Process for Double-Side TOPCon Solar Cell Precursor Fabrication," *IEEE Journal of Photovoltaics*, 2024, doi: <10.1109/JPHOTOV.2024.3423814>

[19] W.-J. Choi et al., "Fabrication and Detailed Analysis of 22.0% Rear Junction Double-side TOPCon Solar Cell with Front SiO_x/Polysilicon Selective Emitter," in *2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC)*, 2024: IEEE, pp. 1778-1782, doi: <10.1109/PVSC57443.2024.10749511>

[20] A. Richter et al., "Both sides contacted silicon solar cells: options for approaching 26% efficiency," in *36th European PV Solar Energy Conference and Exhibition*, 2019: France Marseille.

[21] Z. Zhou et al., "Optimizing strategy of bifacial TOPCon solar cells with front-side local passivation contact realized by numerical simulation," *Solar Energy Materials and Solar Cells*, vol. 278, p. 113189, 2024, doi: <https://doi.org/10.1016/j.solmat.2024.113189>

[22] X. Liu et al., "High-efficiency TOPCon solar cell with superior P+ and P++ layer via one-step processing," *Solar Energy*, vol. 271, p. 112448, 2024, doi: <https://doi.org/10.1016/j.solener.2024.112448>

[23] R. R. D. Center. "National Renewable Energy Laboratory." <http://rredc.nrel.gov/solar/spectra/am1.5/> (accessed 04/03/2025)

[24] W. Thurber, R. Mattis, Y. Liu, and J. Filliben, "Resistivity-dopant density relationship for phosphorus-doped silicon," *Journal of the Electrochemical Society*, vol. 127, no. 8, p. 1807, 1980, doi: <https://iopscience.iop.org/article/10.1149/1.2130006>

[25] PV education, PVcdrom, General Properties of Silicon [Online] Available: <https://www.pveducation.org/pvcdrom/materials/general-properties-of-silicon>

[26] A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, "Improved quantitative description of Auger recombination in crystalline silicon," *Physical Review B—Condensed Matter and Materials Physics*, vol. 86, no. 16, p. 165202, 2012, doi: <https://doi.org/10.1103/PhysRevB.86.165202>

[27] D. B. Klaassen, "A unified mobility model for device simulation—I. Model equations and concentration dependence," *Solid-State Electronics*, vol. 35, no. 7, pp. 953-959, 1992, doi: [https://doi.org/10.1016/0038-1101\(92\)90325-7](https://doi.org/10.1016/0038-1101(92)90325-7)

[28] A. Schenk, "Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation," *Journal of Applied Physics*, vol. 84, no. 7, pp. 3684-3695, 1998, doi: <https://doi.org/10.1063/1.368545>

[29] Anon et al. (2019) Sentaurus device user guide. Available: <http://www.synopsys.com>

[30] J. Feng et al., "Enabling 95% bifaciality of efficient TOPCon solar cells by rear-side selective sunken pyramid structure and zebra-crossing passivation contact," *Solar Energy Materials and Solar Cells*, vol. 292, p. 113809, 2025, doi: <https://doi.org/10.1016/j.solmat.2025.113809>

[31] R. Zhong, P. Padhamnath, W.-J. Choi, Y.-W. Ok, S. Dasgupta, and A. Rohatgi, "Detailed investigation of electrical and optical properties of textured n-type and roughened p-type tunnel oxide passivated contacts for screen-printed double-side passivated contact silicon solar cell application," *Thin Solid Films*, vol. 783, p. 140046, 2023, doi: <https://doi.org/10.1016/j.tsf.2023.140046>

[32] P. Zheng et al., "Detailed loss analysis of 24.8% large-area screen-printed n-type solar cell with polysilicon passivating contact," *Cell Reports Physical Science*, vol. 2, no. 10, 2021, doi: <https://doi.org/10.1016/j.xrpp.2021.100603>

[33] W. Chen et al., "Influence of rear surface pyramid base microstructure on industrial n-TOPCon solar cell performances," *Solar Energy*, vol. 247, pp. 24-31, 2022, doi: <https://doi.org/10.1016/j.solener.2022.10.017>

[34] J. Bhajipale, A. Kottanharayil, and K. Sreejith, "TCAD based numerical exploration of industrially feasible tunnel oxide passivated contact on p-type silicon," *Solar Energy*, vol. 253, pp. 231-239, 2023, doi: <https://doi.org/10.1016/j.solener.2023.02.040>

[35] M. Nicolai, M. Zanuccoli, F. Feldmann, M. Hermle, and C. Fiegna, "Analysis of silicon solar cells with poly-Si/SiO_x carrier-selective base and emitter contacts," *IEEE Journal of Photovoltaics*, vol. 8, no. 1, pp. 103-109, 2017, doi: [10.1109/JPHOTOV.2017.2775142](https://doi.org/10.1109/JPHOTOV.2017.2775142)

[36] F. Feldmann, C. Reichel, R. Müller, and M. Hermle, "The application of poly-Si/SiO_x contacts as passivated top/rear contacts in Si solar cells," *Solar Energy Materials and Solar Cells*, vol. 159, pp. 265-271, 2017, doi: <https://doi.org/10.1016/j.solmat.2016.09.015>

[37] C. Madumelu et al., "Assessing the stability of p+ and n+ polysilicon passivating contacts with various capping layers on p-type wafers," *Solar Energy Materials and Solar Cells*, vol. 253, p. 112245, 2023, doi: <https://doi.org/10.1016/j.solmat.2023.112245>

[38] D. Kang, H. C. Sio, D. Yan, J. Stuckelberger, X. Zhang, and D. Macdonald, "Firing stability of phosphorus-doped polysilicon passivating contacts: factors affecting the degradation behavior," *Solar Energy Materials and Solar Cells*, vol. 234, p. 111407, 2022, doi: <https://doi.org/10.1016/j.solmat.2021.111407>

[39] P. Padhamnath, "Development of Advanced Screen-Printed and Fire-Through Metallization for Polysilicon Based Passivated Contact Solar Cells," Ph.D., National University of Singapore (Singapore), Republic of Singapore, 31777720, 2021. [Online]. Available: <https://www.proquest.com/dissertations-theses/development-advanced-screen-printed-fire-through/docview/3143977963/se-2?accountid=27542>

[40] M. Lozac'h, S. Nunomura, and K. Matsubara, "Double-sided TOPCon solar cells on textured wafer with ALD SiO_x layer," *Solar Energy Materials and Solar Cells*, vol. 207, p. 110357, 2020, doi: <https://doi.org/10.1016/j.solmat.2019.110357>