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Abstract. Concentrated solar power (CSP) plants have great potential for clean energy pro-
duction, but their electricity cost is higher than that of noncontrollable renewable energy 
sources. The main ways to lower the electricity cost are equipment cost reduction and plant 
efficiency increase. Looking at the power unit, the closed supercritical CO2 (sCO2) cycles offer 
the efficiency advantage over both the steam Rankine and helium Brayton cycles at high tur-
bine inlet temperatures. Further improvement could be achieved by increasing the critical tem-
peratures using mixtures, allowing condensation at temperatures typical for air-cooled conden-
sers. The sCO2 and CO2 mixture cycles are significantly affected by the performance of the 
recuperative system and require high pressures (comparable to steam cycles). An increase in 
efficiency compensates for higher complexity in the design and construction of the plant, ac-
cording to the authors. High thermal power together with high pressures and temperatures 
demand customized CO2 heat exchanger designs, which makes them a major part of power 
cycle specific cost. This paper provides a robust technological solution for the implementation 
of the above cycles in an industrial setup based on shell-and-tube heat exchangers. Based on 
the thermohydraulic and mechanical design of EMbaffle® Technology, heat exchangers weight 
reduction can be quantified in the range of 30 to 60% depending on the application, with addi-
tional advantages in terms of logistics and installation (footprint, foundations, etc…). Using the 
CO2+SiCl4 mixture instead of pure sCO2 leads to a lower weight of primary and high-tempera-
ture heat exchangers, while the weight of low-temperature heat exchanger increases. 

Keywords: Shell and Tube Heat Exchanger, sCO2, CO2+SiCl4 Mixture, Trans-Critical Cycle, 
EMbaffle, No Tube in Window 

1. Introduction

Concentrated solar power (CSP) plants generate thermal power as an intermediate step be-
tween solar radiation and electricity and therefore can use cheap thermal energy storage. This 
makes them a flexible dispatchable source of renewable energy. However, the actual cost of 
electricity from CSP plants is higher than from photovoltaic or wind power plants [1], but their 
power generation depends on weather conditions and is uncontrollable. The CSP electricity 
cost reduction can be pursued by reducing the cost of equipment and increasing the generation 
efficiency. The closed supercritical CO2 (sCO2) cycles offer an efficiency advantage over both 
the steam Rankine and helium Brayton cycles at turbine inlet temperature (TIT) > 600°C [2]. 
One of the ways to improve their efficiency is to move towards the CO2 mixture cycles, which 
have higher critical temperatures and allow condensation even at 50°C [3]. To improve the 
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sCO2 cycle performance, a SiCl4 dopant, which could be stable up to 900°C [4], has been 
considered. Bubble points and liquid density of the CO2+SiCl4 mixture have recently been 
measured by Doninelli et al. [5] allowing for the calculation of cycle performance: the use of a 
CO2+SiCl4 mixture instead of sCO2 increased the efficiency of the recompression cycle at 
700°C TIT by 1.3%. Pure SiCl4 thermal conductivity and viscosity have been accurately mod-
eled using the friction theory [6], [7] therefore allowing for the characterization of the heat ex-
changers performance. The sCO2-based cycles are significantly affected by the recuperative 
system and require high pressures (comparable to supercritical steam cycles). High thermal 
power together with high pressures and temperatures leads to sCO2 heat exchangers' complex 
designs. They can account for up to 70% of CSP power cycle specific cost [8], which makes 
them a critical piece of equipment for sCO2 and CO2 mixture cycles. For recuperative heat 
exchangers of sCO2 cycles printed circuit heat exchangers (PCHE) are usually considered in 
the literature. However, the cost difference between PCHE and non-PCHE is little [9] and the 
maximum thermal power of existing PCHE does not exceed 50 MWth with significant chal-
lenges in scale-up [10]. Therefore, shell and tube heat exchangers were considered for current 
high-power application (multiple hundred MWth range). This paper aims to identify a robust 
technological solution for the implementation of the above cycles in an industrial setup. This 
work is part of the EU-funded TOPCSP project, which aims to improve the design of the different 
systems of a CSP plant [11]. Estimation of performance of alternative equipment technologies 
upon heat transfer surface and material mass basis may provide additional insight to users 
and plant designers aimed at maximizing exchangers' cost reduction. 

2. Methodology 

The duty of heat exchangers was calculated to achieve the power cycle electric output of 
around 100 MWe based on a CSP with solar multiple of 2.4 and design power to the receiver 
of 670 MWth similar to Crescent Dunes plant according to SAM default solar tower CSP plant 
[12]. Both sCO2 and CO2+SiCl4 mixture cycles were considered in recompression layout (RC) 
with the CO2+SiCl4 mixture also considered in the simple recuperated cycle (SC) at 550°C TIT 
and 250 bar maximum pressure. The mixture cycles parameters were optimized based on 
electrical efficiency with a minimum cycle temperature equal to 50°C [3]. For recompression 
and simple mixture cycles the working fluid molar composition (CO2/SiCl4) was chosen to be 
91/9 and 80/20 respectively based on electrical efficiency optimization as can be seen in Fig-
ure 1. For the sCO2 recompression cycle, the optimized minimum pressure was 110 bar with 
the recompression fraction equal to 0.286. 

(a)  (b)  (c)  
Figure 1. Layout (a) and T-s diagram (b) of recuperated CO2+SiCl4 mixture simple cycle, (c) cycles 

electrical efficiency and PHE inlet temperature vs CO2 molar fraction at 550°C TIT 

The properties of solar salt were calculated according to [13], while for calculating sCO2 
properties Span-Wagner EoS was used [14]. The CO2+SiCl4 mixture properties were calcu-
lated using Peng-Robinson EoS [15] and friction theory models [6], [7] with binary interaction 
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parameter equal to 0.06098 [5]. The resulting properties tables were transferred to HTRI with 
30 maximum allowable temperature steps and 5 bar pressure steps. 

The primary heat exchanger (PHE) and recuperators, including high and low-temperature 
recuperators (HTR and LTR), have been designed in detail using the shell-and-tube heat ex-
changer (STHE) in conventional configuration and using the EMbaffle® technology [16]. The 
main advantages of EMbaffle® technology are due to the pure countercurrent flow, low 
shellside pressure drops, and no flow-induced vibrations. This leads to a more compact size 
of EMbaffle® technology under a wide range of process design conditions. The input parame-
ters for heat exchanger designs are shown in Table 1. Pressure drops were assumed accord-
ing to literature [5]. 

Table 1. Heat exchangers design parameters 

All STHEs were designed according to TEMA standards [17] using HTRI v.9.1 [18]. The 
maximum weight of the bundle was assumed to be within 160 tons with a shell outer maximum 
diameter of 4 m due to transport limitations. The flow with the highest pressure was located on 
the tube side. The fouling resistance was assumed to be 1.76x10-4 m2K/W on the solar salt 
side and 8.81x10-5 m2K/W for the sCO2 and CO2 mixture side [19]. The tubes outside diameters 
were assumed to be equal to 15.875 mm or 5/8" for all cases. The mechanical design was 
performed according to Section VIII ASME Div.1 with PV Elite [20]. Adequate materials have 
been identified for the considered fluids. For PHE Alloy 625 was chosen for channels and 
tubesheets, SS347H for tubes and shell, while for HTR and LTR 9Cr and carbon steel (CS) 
were used respectively [21], [22], [23]. 

3. Results 

The main criteria for heat exchanger comparison is usually heat transfer surface, which for 
many applications allows for accurate cost prediction [24]. However, in the case of CO2 cycles 
high pressures and temperatures are present, which makes weight a better indicator of the 
final cost. Due to high pressures throughout the cycle heat exchanger parts, like channels, 
covers, and tubesheets, make a significant portion of the final heat exchanger weight. The 
weight of these elements depends among other parameters on the diameter of shells, which 
is determined by throughput area and therefore by the maximum accommodating volume flow, 
governed by the allowable pressure drop, the material availability and the fabrication technol-
ogy constraints. The solar salt volume flow is below 1 m3/s and is much smaller compared to 
the sCO2 and CO2+SiCl4 mixture flows as can be seen in Figure 2. This is due to the similar 
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heat capacity and the tenfold difference in density of cold and hot fluids which leads to the 
small pressure drop in the salt side. 

The cold fluid mass flow in PHE is smaller in the case of mixture power cycles due to the 
lower temperature of the cold fluid at the PHE inlet (Table 1). The mixture of CO2+SiCl4 also 
has a higher density than sCO2 in PHE conditions. These two effects lead to around 50 and 
25% smaller volume flow in the case of mixture simple and recompression power cycles PHE 
and to smaller shell and channel diameters. The HTR and LTR heat exchangers hot side vol-
ume flows are not so sensitive to the fluid chemical composition because of the mixture lower 
pressure. However, HTR and LTR cold side volume flows are around 20-25% smaller for the 
CO2+SiCl4 recompression cycle compared to the sCO2 one. 

Figure 2. Volume flows in heat exchangers 

The heat exchangers duty was calculated within 0.4% of the design value, while all pres-
sure drops were within the allowed limits. In the case of conventional STHE, a No Tubes In 
Window (NTIW) baffle design with supports was adopted to prevent vibrations and reduce shell 
side pressure drop. The results of the STHE design are shown in Table 2. 
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Table 2. Heat exchangers design results 

As can be seen from Figure 3 in the case of PHE due to the use of solar salt on the shell 
side relatively high heat transfer coefficients are seen in all cases which leads to similar heat 
exchange areas. In the case of recuperators, there is a significant increase in the shell side 
heat transfer coefficient due to the use of EMbaffle® technology. 

Figure 3. The heat transfer coefficient of heat exchangers 

The product of effective area and heat transfer coefficient (UA) is used for cost estimation 
in multiple models for sCO2 heat exchangers [9], therefore it was used in this study too. Nota-
bly, the dependence between the area and UA for EMbaffle® technology has a much lower 
slope compared to the conventional design as seen in Figure 4. In the case of recuperators, 
EMbaffle® technology has a clear advantage and consistently lower heat exchange area for 
the same UA. For PHE the area is very similar in all considered cases due to similar heat 
transfer coefficients. However, adopting the same number of shells in PHE, the EMbaffle® so-
lution would allow for the reduction of the shell's internal diameter, which is important for the 
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selected material use and transportation costs. Moreover, EMbaffle® versus NTIW optimized 
designs require fewer shells in most cases (Figure 5). 

Figure 4. The heat exchangers area vs UA 

The transition from sCO2 to CO2+SiCl4 mixture cycles does not significantly change the 
PHE and recuperative system area. As can be seen from Figure 5 in the case of a mixture 
recompression cycle the bigger part of the recuperative STHE area is represented by LTR, 
which is made from cheaper material. It is also important to mention the big deviation in the 
number of shells between conventional and EMbaffle® designs in the case of the recuperator 
and HTR for CO2+SiCl4 mixture cycles. Due to the vibrations occurring in the shell side, the 
flow speed is limited, which leads to underutilization of hot stream pressure drop and higher 
than expected heat exchange area.  

Figure 5. The area and number of shells of heat exchangers 

The results of the mechanical design for a single shell are shown in Figure 6. In the case 
of sCO2, as the number of shells is similar in both designs, the weight of the EMbaffle® single 
shell is lower. Moving to mixtures, although the single shell with conventional design becomes 
lighter, the total number of shells significantly increases compared to EMbaffle. The higher 
heat transfer rate and the larger accommodated surface per shell diameter of the EMbaffle 
technology lead to the higher contribution of tubes in the single shell weight in all considered 
cases. This means that a bigger percentage of materials is spent on heat exchange surfaces, 
which leads to significant savings in high-temperature applications such as PHE. 
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Figure 6. The weight distribution of one shell components 

The total weights of the heat exchangers considered are shown in Figure 7. One can see 
a significant weight reduction using EMbaffle® technology, especially for recuperative systems. 
The difference between the technologies increases with the UA as it was in the case of the 
area dependence on the UA shown in Figure 4. This will lead to the overestimation of cost 
correlations based on conventional STHE UA. However, the weight savings moving to EMbaf-
fle® grow faster than area savings, which is determined by the higher material percentage 
being spent on tubes, meaning heat exchange surface (as shown in Figure 6). 

Figure 7. Heat exchangers mass against the UA 

The material saving is especially important in the case of PHE since it uses an expensive 
nickel-based alloy 625. Using the EMbaffle® leads to the reduction of Alloy 625 and 347H use 
by 61 and 28% in the case of sCO2 PHE, 31 and 36% for CO2+SiCl4 simple cycle PHE, 56 and 
27% for CO2+SiCl4 recompression cycle PHE (Figure 7). For the recuperative system, the 
weight reduction is 37 and 41% for sCO2 low and high temperature parts respectively, 44% for 
the recuperator, 56 and 59% for CO2+SiCl4 LTR and HTR. 

There is a 15% and 6% reduction in PHE weight mass using conventional and EMbaffle® 
design, with 24 and 14% reduction in Alloy 625 weight moving from sCO2 to CO2+SiCl4 mixture 
in the recompression cycle. This is due to the mixture's lower volume flow as shown in Figure 
2, which leads to a lower throughput area, meaning fewer shells in parallel or smaller shell 
diameters. For HTR the mass reduction is 24 and 47% for conventional and EMbaffle® designs 
and is due to the heat exchange area reduction of 28 and 36% respectively. In the case of 
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LTR, the use of a mixture leads to the increase of weight by 56 and 10% for conventional and 
EMbaffle® designs, while the area increases by 16 and 32% respectively. Since 9Cr-1Mo steel 
used in HTR is more expensive than carbon steel in LTR, the final cost of the recuperative 
system could be similar or lower in the case of the CO2+SiCl4 mixture recompression cycle. 

Figure 8. The material mass distribution of heat exchangers 

4. Conclusions 

In this paper shell and tube heat exchanger implementation for sCO2 and CO2+SiCl4 cycles 
was investigated. Materials were chosen and thermal design followed by mechanical design 
was carried out to determine the heat exchange area, number of shells, weight of components, 
and materials used. 

In the case of primary heat exchangers, the effective heat exchange area is almost the 
same for all considered technologies and cycles; however, by using EMbaffle® one can get 
smaller diameter shells maintaining the same pressure drop and lack of vibrations. For recu-
perators, the use of EMbaffle® allows for a smaller effective heat exchange area and smaller 
throughput area which translates to smaller shell diameters or fewer shells used. Therefore, in 
all cases, the use of EMbaffle® technology leads to lower weight in expensive alloys. 

All considered primary heat exchangers have a similar UA and area. However, due to the 
lower mass flow and higher density of the CO2+SiCl4 mixture compared to sCO2 the throughput 
area and therefore number of shells in parallel or shell diameter are smaller in mixture cycles. 
This leads to the reduction of recompression cycle primary heat exchanger weight by 15 and 
6% using conventional and EMbaffle® technology, with 24 and 14% reduction in Alloy 625. The 
transition from sCO2 to CO2+SiCl4 in the recompression cycle leads to the redistribution of UA, 
area, and weight from the high-temperature recuperator to the low-temperature recuperator, 
which will lead to a similar or smaller overall cost or recuperative system. 

Additional experimental investigation of enhanced-tubes geometries in EMbaffle® heat 
exchangers is ongoing at the B&R industrial site to validate performance over pressure drops 
improvement for next deployments. 
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