SolarPACES 2024, 30th International Conference on Concentrating Solar Power, Thermal, and Chemical Energy
Systems

Solar Collector Systems

https://doi.org/10.52825/solarpaces.v3i.2378

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License
Published: 28 Nov. 2025

A Novel Indoor Approach of Artificial Soiling
Deposition: Achieving Desired Soil Density and
Uniformity

Ashraf Issalih"" "/ Peter King' "/, and Mounia Karim?

Cranfield University Cranfield, UK
2Derby University Derby, UK

*Correspondence: Ashraf Issalih, Ashraf.Issalih@cranfield.ac.uk

Abstract. This work introduces a new indoor method for the artificial soiling of solar reflectors,
employing a closed-loop wind tunnel chamber to replicate controlled deposition methods in a
laboratory setting. The experimental setup includes dispersing a constant dust amount and
allows manipulation of deposition to examine the impact of airflow speeds (1, 3, and 4.5 m/s),
dust concentration and various humidity levels. The results show significant improvements of
artificial soiling deposition, leading to more uniform deposition on the mirror surfaces and
allowing a repeatable test.
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1. Introduction

Soiling has a direct impact on the efficiency of concentrated solar power (CSP) plants, leading
to the decrease of mirror reflectance [1]. The performance of mirrors in CSP plants can be
significantly affected by reflection losses, resulting in a decrease of up to 30% within one week
[2]. Operations and maintenance (O&M) costs comprise approximately 14—17% of the overall
levelized cost of electricity (LCOE) in a CSP plant, and must therefore be minimised [3], [4].
Using samples of CSP mirrors or PV cover glass and exposing them outdoors is a standard
experimental method to evaluate soiling through the measurement of specular reflectance for
CSP or the transmission for PV [5], [6].

Direct soiling monitoring is costly and time-consuming, and project planners need more
comprehensive worldwide data when choosing a site. Furthermore, testing degradation takes
years to accurately simulate outdoor degrading mechanisms without going over specific
thresholds that might result in unreal side effects. Additionally, outdoor soiling studies are
typically unpredictable and can lack control [7].

By contrast, in one instance outside soiling was repeated in the laboratory and generated
results with good correlation (Average Pearson r = 0.65) to outdoor soiling data across various
locations [8]. Indoor soiling platforms may accelerate the procedure to less than a few hours,
resulting in lowering the duration of testing [9]. Despite these benefits, there is limited research
done on indoor soiling [10]. Additionally, research following dust deposition and subsequent
cleaning are still limited and this topic is still unclear [11]. Therefore, this research proposes a
new indoor method capable of examining the impact of various wind speed mechanisms on
soiling deposition on reflectors.
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2. Methodology

A closed loop return wind tunnel chamber was constructed from transparent acrylic sheet, with
dimensions of 28.5 x 36 x 80 cm, as displayed in Figure 1 and Figure 2. Inside the chamber,
upstream and downstream guide vanes reduce turbulence inside the test section. This type of
wind tunnel advantages includes greater flow quality control via corner turning vanes and
screens [12]. The chamber is prepared with a pair of small fans that provide a controlled stream
of air, capable of being changed to speeds between 1 and 4.5 (m/s). The closed-loop structure
allows an ongoing flow of stable and homogenized air within the chamber, producing a
constant and regulated environment for experiments [13].
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Figure 1. Soiling experimental chamber
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Figure 2. Soiling experimental chamber diagram

In this study, natural dust composed mainly of quartz and silicates was used as an artificial
soiling representative, with characterization of grain size distribution to ensure its relevance to
real-world deposition conditions. Preparation began with a drying process to remove any
moisture content in the sand, followed by sieving to < 63 pym according to the existing air flow
ability to transport the sand particles, with consideration of the increased influence on
deposition of small size particles. Mirror samples from AGC glass were prepared with
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dimensions of 10 cm x 10 cm and 1 mm thickness. The mirror sample was placed horizontally
within the chamber.

At the beginning of the experiment, the fan was adjusted to provide the intended airflow
speed (low, medium, high), and was allowed to settle for 1 minute and 30 seconds, to have a
homogenous, stable flow air (this time was determined from previous experiments within the
chamber). Using this period allowed for a consistent stabilisation airflow for each trial, reducing
variability between runs. A humidifier was used to create a mist cloud over the mirror surface
prior to soiling deposition. The dust, once emitted by an air compressor, was transported by
the dry or wet airflow towards the mirror sample located in the test section.

Uniformity and repeatability assessment are crucial for evaluating the effectiveness of the
soiling deposition technique. The mass of the mirror samples was measured both before and
after each soiling cycle. At five specific locations on the samples, a Condor reflectometer was
used to measure the mirror samples reflectance and microscope images were captured. This
gives a further insight into the variability of the soiling process across the samples.

3. Results and Discussion

The result of the experiments revealed effectively controlled dust density and clear
relationships between control parameters and the achieved density. The technique effectively
achieved a homogeneous soil density, ensuring consistency throughout the mirror surfaces
and minimal fluctuation in the distribution of dust

3.1 Mass deposition and reflectance

The mass deposition density and average specular reflectance values for different wind
speeds are shown in Table 1.

Table 1. The influence of different wind speeds on mass deposition and reflectance of mirrors

Sampel . Mass Deposition Average Standard.
P Wind Speed Densityp(glmz) Reflectange (%) Deviation
(mls)

1 1 2.490 72 0.026
2 1 2.636 77 0.011
3 1 2.530 70 0.010
4 3 1.433 80 0.0119
5 3 1.334 79 0.012
6 3 1.124 78 0.0159
7 4.5 0.652 88.2 0.010
8 4.5 0.715 88 0.010
9 4.5 0.467 88.9 0.004

The results showed that the design of the experiment consistently achieved the desired
soil density over several attempts. The large advantage of this artificial soiling method is that
experiments can be repeated conducted under defined conditions. The study found a clear link
between airborne dust levels and the amount of dust deposited on the mirror surfaces. Higher
dust concentrations released in the air led to greater dust accumulation on the mirrors, while
lower airborne dust resulted in reduced deposition, as demonstrated in Figure 3 and Figure 4.

Additionally, the results show that relative humidity enhance to increase the soiling rate
on surface, as shown in Figure 5.
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Figure 3. Influence of different air speeds and high dust concentration on mass deposition
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Figure 4. Influence of different air speeds and low dust concentration on mass deposition
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Figure 5. Influence of different air speeds and relative humidity on mass deposition
3.2 Microscopy
The technique effectively achieved a homogeneous soil density, ensuring great consistency

across the mirror surfaces and minimum fluctuation in the distribution of soiling. Figure 6 and
Figure 7 provide a visual representation of surface analysis.
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Figure 7. Captured microscopy Images for five different points on mirror sample

The experimental results demonstrate the repeatability of deposition density and provide
a detailed uniformity analysis. These findings indicated that there is a correlation between
these factors and the extreme density of the soil accumulated on the surface. Increasing the
mass of dust released into the airflow leads to increased dust loading on mirror surfaces, while
its reduction decreased the soiling accumulated. Higher airflow velocities aided the movement
and dispersion of dust particles, resulting in more uniformity and less deposition on the mirror
surfaces. In contrast, decreased velocities resulted in the concentrated collection of dust
particles. Furthermore, a high level of relative humidity causes dust particles to clump together
and accumulate on surfaces, whereas a lower relative humidity results in a lower-level
dispersion of dust particles.

The key findings demonstrate that the method effectively controlled soil density,
highlighted clear relationships between controlled artificial weather parameters (wind speed,
relative humidity and particulate matter), and achieved density, confirmed repeatability of
density control, and provided a detailed uniformity analysis. Particularly, the approach
achieved a consistent dust density, in terms of correlation between wind speed and soiling
density with R-squared values ranging from a minimum of 69% to a maximum of 97.7%. This
indicates a good fit across different soiling amounts. Additionally, reflectance analysis of the
mirrors demonstrated high uniformity across the test surfaces, with standard deviation very low
variability (as shown in Table 1).
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4. Conclusion

This study has developed and tested a novel technique for depositing a controlled layer of
simulated dust indoors using a specialized apparatus, with the aim of achieving an ideal density
and consistency across mirror surfaces. This establishes a direct correlation between the
specific settings used and the uniform density achieved. This paper offers a dependable and
repeatable method for recreating dust accumulation scenarios in a controlled environment.
The developed approach addresses a significant challenge in existing methods by enabling
precise control over soiling conditions. This control enhances the accuracy and reliability of
CSP performance testing. The achievement of consistent and uniform soil deposition facilitates
a more precise evaluation of the impact of dirt on solar energy systems, resulting in improved
cleaning schedules and maintenance procedures.
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