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Abstract. An artificial intelligence (AI) aided generative design workflow for the optimization of 
cavity receivers for concentrated solar thermal (CST) energy systems is presented. The work-
flow integrates the Non-dominated Sorting Genetic Algorithm III (NSGA-III) with generative 
design methodologies and optical evaluation through Monte-Carlo ray-tracing in an interoper-
able way, to optically optimize the geometry of cavity receivers according to a set of objective 
functions for a given heliostat field. As a demonstrator test case, the workflow is used to provide 
an optimal geometrical design of a cavity receiver given the Cyprus Institute’s PROTEAS he-
liostat field. It is shown that the workflow is able to generate unconventional, non-intuitive and 
efficient receiver designs in an automated manner, which are often not conceived by traditional 
design approaches.

Keywords: Concentrated Solar Power, Concentrated Solar Thermal, Thermal Receivers, 
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1. Introduction

The rapid advancements in the field of Artificial Intelligence (AI) are significantly contributing 
to the progress in science and technology. Utilization of AI techniques in the renewable energy 
sector has given rise to a wide number of applications, with approaches ranging from weather 
forecasting and predictive control, to transforming design and optimization of components and 
systems [1]. Furthermore, the increased accessibility of high-performance computing (HPC) 
provides the necessary computational resources for AI to reach its full potential, which in turn 
enables the development and deployment of large-scale, data-intensive AI applications, facili-
tating research and innovation in AI-related fields. AI has been identified and proven as a val-
uable tool for addressing challenges within the concentrating solar thermal (CST) sector [2], 
including the design and optimization of heliostat fields and related thermal components [3], 
maintenance and diagnostics [4], and system design and optimization [5]. In the context of 
engineering design, the integration of computer-based intelligence and generative design lies 
in the ability to use AI algorithms to automate the creation, optimization, and evaluation of 
design solutions through intelligent decision-making, allowing for more efficient and innovative 
design processes. This paper presents a novel AI-based methodology for the generative de-
sign of CST tower receivers for the geometrical design of cavity receiver. Each step of the fully 
automated methodology is presented, and the application of the methodology for the optimi-
zation of a cavity receiver is demonstrated for a given north-type heliostat field. 
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2. The AI-based generative design methodology 

A simplified representation of the AI-based receiver generative design methodology developed 
is shown in Figure 1. The design process starts with the definition of the CST tower configura-
tion and includes the definition of all parameters that constitute the plant. They include: (1) the 
heliostat field along its properties (mirror reflectivity, tracking type, etc); (2) an initial receiver 
geometry parametrization; (3) the atmospheric conditions; (4) the geographic location of the 
plant; and (5) the sun’s position and the corresponding direct normal irradiation (DNI) at a given 
time or at a set of sun positions that define a typical meteorological year. In sequence, a Monte-
Carlo ray-tracing scene that fully replicates the configuration of the plant is automatically con-
structed, in which the optical performance of the receiver is numerically evaluated. The Free/Li-
bre and Open Source Software (FLOSS) Tonatiuh++ ray tracer [6] is used in this step. Next, 
the AI-based, non-dominated sorting genetic algorithm III (NSGA-III) takes over for multi-ob-
jective multi-variable evaluation of the candidate receiver geometries according to the set ob-
jective functions. One remarkable feature of NSGA-III is the implementation of the crowding 
distance method, which promotes the exploration of the pareto front by avoiding locality. Con-
sequently, a new receiver design population is automatically generated and fed back into the 
initial step for re-evaluation. The result is a multidimensional (according to the number of set 
objective functions) pareto front with candidate receiver geometries. The candidate receiver 
geometries are generated through multiple axial control cross-sections (defined by one or more 
parameters) along the receiver’s length, which are subsequently interpolated to generate the 
surface mesh of the receiver geometry. During this interpolation step, spatial resolution can be 
defined to determine the geometry’s resolution. The individual steps of the workflow are pre-
sented in sections that follow. 

Figure 1. Overview of the AI-based generative design workflow 

3. The demonstration test case  

For demonstrating the methodology, the Cyprus Institute’s (CYI) PROTEAS heliostat field 
[7] has been employed. The PROTEAS’ heliostat field is composed of 50 CSIRO single rectan-
gular facet heliostats, each of 5 m2 in mirror area, totaling thus a mirror area of 250 m2. The 
heliostats are arranged along 5 rows on a slightly hilly terrain as shown in Figure 2. The PRO-
TEAS heliostat field and tower, a) actual configuration, b) the Tonatiuh++ 
raytracing scene developed as an exact replica.The field is equipped with an 18 m tall tower, 
hosting a cavity receiver whose inlet aperture center is located at 14 m. A single aiming point 
aiming strategy is adopted, with the aiming point being the center of the inlet aperture of the 
receiver. 
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For the purposes of the workflow, an exact ray-tracing PROTEAS scene has been devel-
oped in Tonatiuh++ Monte-Carlo ray tracer, as shown in Figure 2b. In the details of the ray-
tracing scene, the Buie sunshape was selected with a circumsolar ratio (CSR) of 2%, while the 
reflectivity of the heliostat’s mirrors was set to 95% with mirror slope error deviation of 2 mrad. 
During the optimization process, a single point aiming point and sun position (180° azimuth 
and 70° elevation) has been employed with a nominal value of Direct Normal Irradiation (DNI) 
equal to 1000 W/m2. A clear day polynomial distribution model was adopted for the atmos-
pheric attenuation [8]. Finally, the reflectivity of the internal surfaces of the receiver was set to 
60%. 

(a) (b) 

Figure 2. The PROTEAS heliostat field and tower, a) actual configuration, b) the Tonatiuh++ 
raytracing scene developed as an exact replica. 

4. Parametrization of the receiver geometry 

As described in section 2, the candidate receiver geometries are generated through multiple 
axial control cross-sections (defined by one or more parameters) along the receiver’s length, 
which are subsequently interpolated to generate the surface mesh of each candidate receiver 
geometry. Two different parametrization methods being valid for cavity receivers have been 
investigated in this study, the axisymmetric type receivers and the biplane symmetry type re-
ceivers. Both parametrization methods are based on multiple axial control cross-sections along 
the length of the receiver, which are later interpolated to generate the receiver design.  

4.1 Axisymmetric receivers 

The control cross-sections of the axisymmetric receiver parametrization method are circumfer-
ences defined by two variables per each cross-section, i.e. the cross-section axial Z-axis co-
ordinate along the receiver’s length, and the circumference radius as shown in Figure 3a. 
Given a set of multiple axial control cross-sections and their corresponding location along the 
receive length, the Akima interpolation [9] scheme is performed between the different sections 
to generate the profile of the receiver. The result is a generatrix interpolation that when rotated 
around the central axis running along the length of the receiver, generates a revolved axisym-
metric receiver geometry as shown in Figure 3c. 

4.2 Bi-planar symmetry receivers 

In this receiver parametrization method, the control cross-sections are rounded corner rectan-
gles, defined by four variables: the axial Z-axis coordinate along the receiver’s length, the width 
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(x-axis) and height (y-axis) coordinates, and the corners radius. Similarly to axisymmetric re-
ceivers, the Akima interpolation scheme is performed between the different sections to gener-
ate the shape of the receiver. An example control cross-section and receiver shape are shown 
in Figure 4. 

(a) (b) (c) 

Figure 3. Receiver axisymmetric parametrization method, a) control cross-section b) Cross-section 
Akima Interpolation, c) revolved receiver geometry obtained as an object of rotation. 

For both parametrization methods, the resolution of the obtained receiver geometries was 
controlled during the Akima interpolation step. At a following step, the resulted receiver geom-
etries are then exported as wavefront object file format (i.e. obj) meshes, which were then 
automatically imported in the PROTEAS Tonatiuh++ scene to perform the necessary optical 
simulations. Each candidate receiver geometry was automatically spatially positioned at the 
location of the receiver, matching the center of the receiver inlet aperture to the heliostat field 
aiming point.  

(a) (b) 

Figure 4. Bi-plane symmetry parametrization, a) Control cross-section. b) Receiver geometry 

5. The Non-dominated Sorting Algorithm III (NSGA-III) 

Derived from the evolution theory defined by Darwin, genetic algorithms (GAs) are metaheu-
ristic search and optimization algorithms in which a population (i.e. a set of receiver candidates) 
is firstly generated; the individuals (i.e. receivers) composing the population are evaluated; the 
best performers individuals are considered as the parents that will combine its characteristics 
(genes) to create the individuals of the next generation in the reproduction process. Each indi-
vidual in the population is considered a solution, i.e. a receiver design, and its parametrization 
are the genes that may be passed to the next generation individuals. The ”non-dominated 
sorting genetic algorithm (NSGA)” [10] constitutes a variant of GAs, that are able to better 
address multi-objective optimization problems. NSGA incorporates the concept of non-domi-
nated sorting to rank the best solutions in a population. In this formulation, a solution is con-
sidered to dominate if it outperforms, and the best solutions are then the non-dominated ones. 
Considering that an individual is not-dominated if no other, in the population, has a better eval-
uation in at least one objective function while the other objective function evaluation is equal 
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or worse. In that case, the first front is composed of all the individuals that are not dominated 
in the population; the second front are the non-dominated solutions in the population when the 
first front individuals are extracted from the population; and so, until all the individuals are 
sorted in multiple fronts. The optimization problem presented in this article is bounded by three 
objectives functions as it is discussed later on, thus the NSGA-III formulation [11] was deemed 
to be the best approach to be integrated in the optimization workflow.  

5.1 Objective functions 

The optimization workflow seeks to find the optimal cavity receiver geometry for the given he-
liostat field based on three objective functions: maximization of the power absorbed by the 
receiver, maximization of the uniformity of the heat flux distribution at the internal surfaces of 
the receiver, and minimization of the receiver’s area, which is directly related to receiver cost. 
The power absorbed by the receiver is the sum of all rays absorbed at the receiver’s internal 
surface multiplied by the power carried by each ray: 

 max 𝑃𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 =  𝑃𝑟𝑎𝑦 ∗  ∑ 𝑟𝑎𝑦𝑠𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 (1) 

A non-uniform heat flux distribution, can lead to sudden temperature gradients resulting to 
structural failure of the receiver. Thus, a metric expressing the standard deviation of the heat 
flux (𝐻𝐹𝑠𝑡𝑑) at all faces (𝐹) conforming the receiver surface mesh, being (ℎ𝑓𝑖) the heat flux in 
each face (𝑖) and (ℎ𝑓̅̅̅̅ ) the average heat flux in the receiver was derived as follows: 

 
min 𝐻𝐹𝑠𝑡𝑑 = √∑ (ℎ𝑓𝑖 −  ℎ𝑓̅̅̅̅ )

2𝐹
𝑖=1

𝐹
 (2) 

An immensely large receiver will capture the maximum available power while achieving a 
good uniformity value in the 𝐻𝐹𝑠𝑡𝑑 metric, however this will lead to increased receiver cost. For 
that reason, the third objective function seeks for the minimization of the receiver absorbing 
area as follows: 

 
min 𝐴𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = ∑ 𝐴𝑖

𝐹

𝑖=1

 (3) 

5.2 Search Space - Variables bounds 

The receiver parametrization methods as described in section 3, allow for a large design space 
to be explored to find optimal receiver designs. This implies large combinatorics, demanding 
thus enormous computational efforts for evaluating all the generated designs, given the fact 
that all receiver candidates are optically simulated and evaluated through computationally ex-
pensive Monte-Carlo ray-tracing. Combinatorics reduction is a key factor to minimize the com-
putational cost and time required for the NSGA-III to converge. For that reason, the search 
space must be adequately dimensioned. 

The maximum axial coordinate, i.e. the receiver length, is bounded to a maximum of 3 m, 
and, while each control cross-section (𝑠) can be along the z-axis in any position, its position 
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must be always in an increasing order. The maximum circumference radius (𝐶𝑅𝑠) (in the ax-
isymmetric receiver parametrization), height (𝐻𝑠) and width (𝑊𝑠) coordinate; and radius (𝑅𝑠)  
(in the bi-plane symmetry parametrization) can have a maximum value of 2 m. In addition, the 
decimal precision is stablished to ±1 cm to avoid the evaluation of almost identical receiver 
designs that in practice will have the same performance. The entire search space is summa-
rized in equations (4)-(9). 

5.3 Hyperparameters 

During the initialization of the NSGA-III, inherent hyperparameter values were defined, includ-
ing reference directions, population and offspring sizes, crossover and mutation probabilities, 
etc. The lack of information regarding the performance of metaheuristic algorithms in the exact 
problem being tackled in this study led to the use of standard approaches as commonly em-
ployed in the literature. The reference directions structure used are the known as “Das and 
Dennis” [12] for a three-dimensional space and 5 partitions. A population size of 500 individuals 
is employed, with this size being larger than the usual population size employed in literature 
(i.e. close to 200), to avoid the discard of possible different design topologies competing 
against each other along the generations. The offspring size was set to 500 to avoid elitism 
during the first generations, allowing a faster convergence of the algorithm. The probabilities 
employed during the cross-over and mutation operators are set to 0.6. 

6. Results and discussion 

Figures 5a and 5c depict the evolution of the NSGA-III algorithm along the generations by 
means of pareto optimal fronts, for the axisymmetric and bi-planar symmetry receivers respec-
tively. The 3D pareto front is plotted against the three set objective functions, i.e. the flux uni-
formity, the power absorbed and the surface area of the receiver. It can be seen that by starting 
from random receiver geometries, the algorithm is converging to optimal receiver designs in 
approximately 60 generations. Respectively, Figures 5b and 5d only show the evaluated re-
ceiver designs ranked per front, since the algorithm is discarding bad performing receiver can-
didate geometries in every generation.  

As examples of optimal receiver designs, Figure 6 depicts two selected receiver geome-
tries as generated for the axisymmetric and bi-planar symmetry receivers respectively. The 
axis-symmetric receiver shown in Figure 6a has an absorbing surface area of 22.64 m2, allow-
ing a power absorption of 200.7 kW with a corresponding heat flux distribution 𝐻𝐹𝑠𝑡𝑑 of 9.9 
kW/m2 and an optical efficiency of 92.5%. On the other hand, the bi-plane symmetry receiver 
has an absorbing surface area of 22.68 m2, absorbs a power of 207.3 kW with an 𝐻𝐹𝑠𝑡𝑑 of 9.5 
kW/m2, while achieving an optical efficiency of 93.4%.  

 𝑍𝑠−1  < 𝑍𝑠  < 𝑍𝑠+1 (4) 

 0.00 ≤ 𝑍𝑚𝑎𝑥  ≤ 3.00 (5) 

 0.00 ≤ 𝐶𝑅𝑠  ≤ 2.00      𝑓𝑜𝑟 𝑠 = 1, … , 𝑆 (6) 

 0.00 ≤ 𝑅𝑠  ≤ 2.00      𝑓𝑜𝑟 𝑠 = 1, … , 𝑆 (7) 

 0.00 ≤ 𝐻𝑠  ≤ 2.00      𝑓𝑜𝑟 𝑠 = 1, … , 𝑆 (8) 

 0.00 ≤ 𝑊𝑠  ≤ 2.00      𝑓𝑜𝑟 𝑠 = 1, … , 𝑆 (9) 
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The bi-plane symmetry parametrization receiver performs slightly better than the axis-
symmetric receiver, allowing a 3.2% more power absorbed in with a slightly more uniform heat 
flux distribution, corresponding to a 4% decrease in 𝐻𝐹𝑠𝑡𝑑. It is evident that due to the increased 
flexibility of the bi-planar receiver parametrization method, the algorithm can explore a wider 
variety of receiver geometry candidate solutions, when compared to the axisymmetric receiver 
parametrization in which the receiver geometry is just an object of rotation. 

(a) (b) 

(c) (d) 

Figure 5. NSGA-III evolution and all evaluated receivers, a) Axisymmetric NSGA-III evolution. b) Ax-
isymmetric fronts. c) Bi-plane symmetry NSGA-III evolution. d) Bi-plane symmetry fronts 

Although the material reflectivity is set to 60%, the optical efficiencies of the generated 
receiver geometries are higher than 92%. This means, that according to the set objective func-
tions, the algorithm seeks to create a ‘’light trap’’, generating designs that ensure multiple re-
flections inside the receiver cavity in order to maximize the flux uniformity on the receiver sur-
faces, while, at the same time minimizing the size of the inlet aperture of the cavity to limit as 
much as possible the number of rays that are reflected back into the environment, i.e. to max-
imize the power absorption. Of course, the fact that a single point aiming strategy is employed 
with no heliostat tracking errors, along with the fact that optical simulations are performed for 
a single sun position, also contribute towards the generation of such optimal receiver geome-
tries. As a reference of the performance of the two receiver optimal designs, Figure 7 depicts 
examples of the Tonatiuh++ ray-tracing scene in which the two optimal receiver geometries 
are positioned at the receiver spatial location.   
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7. Conclusions 

A workflow integrating synergies between artificial intelligence and generative design ap-
proaches have been employed in the present study for the geometrical optimization of cavity 
receivers. Starting from a set of completely random geometries, the methodology has proven 
to be able to converge to receiver geometries that are meaningful with respect to the set ob-
jective functions and the respective search space bounds. Although the methodology em-
ployed here is applied to the geometrical design optimization of cavity receivers for CST sys-
tems, the workflow can be similarly applied to other Concentrating Solar Thermal (CST) com-
ponents, such as the optimization of external receivers, secondary reflectors of Linear Fresnel 
systems, solar reactors/furnaces, etc.  

(a) (b) 

Figure 6. Heat flux distribution. a) Axisymmetric receiver. b) Bi-plane symmetry  

(a) (b) 

Figure 7. Tonatiuh++ raytracing scene, a) Axisymmetric receiver. b) Bi-plane symmetry  
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