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Abstract. The camera target method is the most commonly used calibration method for helio-
stats at solar tower power plants to minimize their sun tracking errors. In this method, individual 
heliostats are moved to a white surface and their deviation from the targeted position is meas-
ured. A regression is used to calculate errors in a geometry model from the tabular data ob-
tained in this way.  For modern aim point strategies, or simply heliostats in the rearmost end 
of the field, extremely high accuracies are needed, which can only be achieved by many de-
grees of freedom in the geometry model. The problem here is that the camera target method 
produces only a very small data set per heliostat, which limits the number of free variables and 
thus the accuracy. In this work, we extend existing ray tracing methods for solar towers with a 
differentiable description, allowing for the first time a data-driven optimization of object param-
eters within the ray tracing environment. Therefore, the heliostat calibration can take place 
directly within the ray tracing environment. Thus, the image data acquired during the measure-
ment can be processed directly and more information about the orientation of the heliostat can 
be obtained. Within a simple example we show the advantages of the method, which con-
verges faster and corrects errors that could not be considered before. Without any disad-
vantages or additional costs, the state-of-the-art calibration method can be improved. 

Keywords: Heliostat Calibration, Differentiable Raytracing, Machine Learning 

1. Introduction 
The performance and levelized cost of energy of a solar tower power plant are directly linked 
to the functionality of its heliostats. The better the heliostats can redirect the sun to the receiver, 
the more power can be generated. In contrast, incorrect alignment not only results in lower 
energy output, but can cause temperature spikes or gradients and compromise the longevity 
of the components. The most frequently used calibration (cal.) method, to correct the heliostat 
specific errors at commercial power plants is the Camera-Target method. In this method, a 
single focal spot is moved from the receiver to a white target below. From the sun and heliostat 
position, as well as the difference between the aimed and actual aiming point of the focal spot, 
the errors of the heliostat can be determined by means of mathematical regression. The 
method is used because it can be fully automated, reliable and quite accurate for a certain 
period of time after the measurement. The biggest weakness of the method is the time needed 
per measurement. With about 60 seconds per measurement the (tabular) data set of a single 
heliostat rarely grows by more than a few data points per year. The measurement should also 
not be done frequently, as the process itself decreases the power on the receiver. In order to 
describe the heliostat completely with all possible errors (rotation, distortion, displacement, 
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partly with angle and time dependencies) it needs more degrees of freedom in the regression 
but the data situation including just pre-extracted features of the focal spot is not sufficient. 
Thus, the accuracy is not feasible for distant heliostats or modern aimpoint control strategies. 
There are many other heliostat calibration methods [1] but any new method must measure up 
to this standard procedure. An improvement of the Camera-Target method raises the bench-
mark for all other methods. 

Today, ray tracing is already a central component of solar tower power plants. It is used 
for field design, flux density prediction and target point strategies. For this purpose, all infor-
mation known about the solar region of the power plant is collected and from this a 2D image 
of the flux density is calculated. However, obtaining the data of the field is a complex process, 
partly with a high error propagation. 

Over the last few years, ray tracers have taken over the data processing themselves. 
So-called inverse rendering, of which differentiable (diff.) ray tracing is a subcategory, can de-
rive 3-dimensional quantities, such as shape [2], material property, or both [3] from 2D images. 
In contrast to classical ray tracing, additionally to just calculating the rays directions, partial 
derivatives of all ray interactions are stored inside a mathematical graph, which allows the use 
of gradient-based optimization and backpropagation as well as to be integrated into AI optimi-
zation routines. The difficulty of this method lies in the differentiable description of the scene 
to be examined. These techniques became more sophisticated and now make whole scenes 
differentiable [4] or enable new sources of illumination [5]. The range of tools is very wide [6], 
but only a few of these tools are used industrially. Main applications are in lens design [7] or 
some test cases in autonomous driving [8][9]. In fact, these examples are rare, but already 
show that diff. ray tracing can optimize the data supply chain while accurately reconstructing 
important object properties. Nevertheless, as far as known to the authors, a theoretical con-
sideration or even a deployment in (any) thermal solar power plants has not taken place yet. 

This work proposes an in situ improvement of Camera-Target regression using differ-
entiable ray tracing. The direct use of image data increases the information content of each 
calibration, which allows faster convergence to the global optimum and even to correct errors 
which have been completely neglected so far, e.g. rotational displacements, canting or focus-
ing. At the same time, diff. ray tracing allows a physics-regulated optimization, which provides 
better gradients than common methods. This not only reduces the number of measurements 
required, it also allows optimization of previously neglected parameters such as canting, fo-
cusing, etc. 

To show this, the principles of the state-of-the-art calibration will be presented in the 
following. Then the integration of diff. ray tracing into the solar power plant process will be 
explained and how the scenery at the solar tower can be made differentiable. Both methods 
are then compared before the results are demonstrated and discussed on a minimal example. 

2. Heliostat Field Control and Calibration 
Heliostat calibration is carried out regularly at solar towers to counteract individual heliostat 
errors, which affect the ability of the heliostats to redirect the sun to the correct, designated 
position on the receiver. The calibration is therefore directly responsible for the amount of elec-
tricity generated. For example, the difference from 0 to 6 mrad tracking error can reduce the 
overall power generation by around 6% [10]. Incorrectly positioned focal spots can also cause 
local overheating and damage components. 

The heliostat accuracy is influenced by several factors, including misalignment due to 
torsion, mechanical deformation, gear backlash, and local wind speeds. But due to the size of 
the fields, it is not possible to determine each of these errors through direct measurement. 
Instead, the individual errors must be derived from easily accessible measurements and math-
ematical regressions. 
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Figure 1. Sketch of a strongly deformed heliostat during the calibration process. The shown 
heliostat has some deformation on its pedestal and its first axis, which leads to an offset on 
the target, compared to a heliostat without errors. The shown error can be decomposed into 
two rotational displacements leading to the offset, and x, deforming the focal spot but 
not changing the offset. The calibration algorithm tries to quantify the deviations of and  

(as well as other error sources) by means of the deviation between nis and ndesignated. 

The Camera-Target method (Stone method [11]) is one of the oldest and as of today 
the most widely used calibration method in commercial solar tower power plants. For the cali-
bration process, the focal spot of each heliostat is moved individually from the receiver to a 
Lambertian white target, which is usually located below the receiver (see Fig. 1). A camera 
then takes a picture of the focal spot. From this image, the focal spot's centroid of mass is 
derived by an image processing algorithm. This is stored together with the sun position as well 
as the current orientation of the heliostat. This information is then used to determine an under-
lying function template, in most cases an error-based geometric model (GM) by regression. 

The GM can include all sources of pre-modeled mathematically or physically described 
errors (In fact, the error parameters don't have to be correlated with physical errors inside a 
geometrical model. In addition, strict mathematical function templates, e.g. polynomials, can be 
applied.). As long as the available data set is large enough, the Stone method is one of the 
most accurate and reliable methods for heliostat calibration. 

But this is not always the case. The time per calibration measurement is the biggest 
weakness of the Stone method. With about one minute measurement time per heliostat, a 
single heliostat (in a field of thousands) is measured only a few times a year. The situation is 
aggravated by the fact that the measurement should be performed as infrequently as possible, 
since the measurement negatively affects the incoming power on the receiver. At the same 
time, the required tracking accuracy of the heliostat is very high and therefore induces a huge 
number of free variables inside the GM for a full description. 

In summary, the Stone method is an accurate and above all reliable calibration, which 
is used as the standard method at most power plants, even though it has considerable down-
sides. It produces very little data in combination with a sprawling GM, neglecting non-lineari-
ties. 
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Figure 2. Optimization workflow for heliostat calibration using diff. ray tracing. The update 
routine strongly resembles that of neural networks, which is only made possible by the differ-

entiable description of the power plant. 

3. Differentiable Ray Tracing for Solar Tower Optimization 
Differentiable ray tracing allows the classical ray tracing process to be performed in reverse. 
This means that the 3-dimensional scene no longer has to be completely defined, but conclu-
sions can be drawn about the scene from the 2D image, e.g. from measurement data. From 
this, quantities which would otherwise be very difficult to measure, can be obtained. 

For this purpose, the ray tracer is integrated into a neural network training pipeline 
(compare Fig. 2). Diff. ray tracing starts like classical (forward) ray tracing by defining environ-
ment parameters (material, light, geometry, etc.) as well as camera ex- and intrinsics (camera 
angle, lenses, etc.). The object properties to be examined (alignment, position, etc.) only need 
to be defined approximately. Often, an ideal geometry is sufficient [3]. Using this coarse ap-
proximation, the ray tracer generates images that are not exactly identical with the observa-
tions but deviate according the inaccuracy of the parameter choice. 

 

Figure 3. Sketch of the variables for calculating the irradiance profile of the heliostat. 

Exactly like for the training of neural networks, the resulting image is then compared with the 
ground truth, which is, in case of the solar tower, the calibration image. The comparison is 
done by an objective/loss function as it is used for neural networks (e.g. L1 or L2 pixel-wise 
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losses). In fact, all other NN optimization functions (e.g. weight decay, optimizers and sched-
ulers) can be used in diff. ray tracing as well. The information about the deviation is then re-
turned to the ray tracer, which updates the input parameters accordingly. This is done by 
means of automatic differentiation, for example with the backpropagation algorithm [12]. 
Hence the differentiable implementation of the renderer does not explicitly require an explicit 
implementation of the derivatives, but a suited implementation in a framework supporting au-
tomatic differentiation allows calculate the derivates automatically. 

When using diff. ray tracing at solar towers, it must be ensured that the mathematical 
rendering raytracing model under investigation is differentiable. This must also be true for the 
irradiance reaching the calibration target, which is defined as: 

𝐸(𝑥𝑖𝑗⃗⃗⃗⃗  ⃗) = ∑ ∑ 𝜔𝑖𝑗𝑘

1

|𝑡𝑙⃗⃗ |
2 𝜌(𝑀𝑙𝑡𝑙⃗⃗ )𝐿𝑒(𝑀𝑙𝑡𝑙⃗⃗ )

pos 𝑙rays 𝑘

𝑛𝑇⃗⃗ ⃗⃗  ⋅ 𝑡𝑙⃗⃗ (1) 

Where tl is the vector directing from the position xij on the cal. target to position xl in the helio-
stat. nT is the normal vector on the cal. target surface.  is the reflectivity of the mirror and L 
the radiance emitted by the sun. Both functions depend on Ml, a rotation matrix depending on 
the alignment of the heliostat, defined as: 

𝑀(𝑛) = 𝟏 − 2𝑛𝑇�⃗� ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (

1 − 2𝑛1
2 −2𝑛1𝑛2 −2𝑛1𝑛3

−2𝑛1𝑛2 1 − 2𝑛2
2 −2𝑛2𝑛3

−2𝑛1𝑛3 −2𝑛2𝑛3 1 − 2𝑛3
2

) (2) 

ij is a binning function, which distributes the incoming rays to the lattice points ij of the resulting 
image (compare Fig. 3). For providing differentiability, it is defined as follows: 

1 = 𝜔𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 1

0<𝑛<𝑁rays 𝑘

− (
𝑥𝑘⃗⃗⃗⃗ − 𝑥𝑛⃗⃗⃗⃗ 

∑(𝑥𝑘⃗⃗⃗⃗ − 𝑥𝑛⃗⃗⃗⃗ )
) (3) 

where N is the number of considered nearest neighbors and xn is the nearest neighbor position 
of the defined lattice. To get the contribution at the point ij, the function is evaluated at exactly 
this point: 

𝜔𝑖𝑗 = ∑ ∑ (1 − (
𝑥𝑘⃗⃗⃗⃗ − 𝑥𝑛⃗⃗⃗⃗ 

∑(𝑥𝑘⃗⃗⃗⃗ − 𝑥𝑛⃗⃗⃗⃗ )
)) 𝛿(𝑥𝑛 − 𝑥𝑖𝑗)

0<𝑛<𝑁 rays 𝑘

(4) 

This distribution of the ray intensity over neighboring nodes allows the entire ray tracing pro-
cess at the solar tower to be considered fully differentiable for the very first time. The training 
is further improved by additional intelligently selected loss functions. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑎 ⋅ (𝐿2𝑝𝑖𝑥𝑒𝑙 + 𝑊𝐷𝑝𝑖𝑥𝑒𝑙) + 𝑏 ⋅ (𝐿2𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 + 𝑊𝐷𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡) + 𝑐 ⋅ (𝐿2𝑚𝑖𝑠𝑠) (5) 

So the total loss is composed of 3 different modules. In general, L2 is defined as: 

𝐿2(𝑥, 𝑦) = ∑|𝑥𝑛 − 𝑦𝑛|2
𝑁

𝑛=1

(6) 

where xn is the prediction and yn the target value. For L2pixel, the pixels of the irradiance map 
are compared to each other, L2alignment compares the current alignment n of the heliostat 
with the ideal one and L2miss penalizes rays which missed the calibration target by 
measuring their distance. If all rays are hitting the cal. target, this term is 0. In addition, 
the appropriate weight decay terms are also added to L2pixel and L2alignment to further 
regularize the function. Lastly, the terms are scaled by constant values a, b, c, where 
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a = 1e-5, b = 1 and c = 1e5, which were determined in the course of various simula-
tions. 

4. Comparison to State of the Art 
The advantages of the new method compared to the state-of-the-art application can be shown 
very well within a minimal example. For this comparison, an arbitrary setup of heliostat, sun 
and calibration target is considered in both cases, but not the whole ray tracer is examined but 
the special case that not a single ray is generated. 

The classic Stone method [11], (just like the diff. ray tracer) makes use of a geometry 
model including various error parameters. The geometry model calculates the orientation nis 
(directing from the heliostat's mirror's center of mass to the measured centroid of area of its 
focal spot) and npred (calculated by the geometric model) of the heliostat from the input param-
eters (target point, sun position, heliostat position).  Both alignments are then compared to 
each other and the error parameters are updated accordingly. Classically, this is done by a 
regression algorithm like the Levenberg-Marquardt (LM) or Newton algorithm, for example in 
the form: 

𝐹 = min
{Ω}

∑𝐿𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝑁

𝑖=1

= min
{Ω}

∑arccos(𝑛is,𝑖⃗⃗⃗⃗⃗⃗  ⃗ ⋅ 𝑛model,𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝑁

𝑖=1

(7) 

Where {Ω} is the set of all considered error parameters and N the number of measurement 
points. The basic procedures of the classical and diff. ray tracing methods differ only in the 
calculation of the gradients. While e.g. the LM method relies on a numerical calculation of the 
Jacobian and Hessian matrix, the ray tracer uses only the Jacobian matrix calculated by auto-
matic differentiation for backpropagation. In principle, it is possible to modify the backpropaga-
tion accordingly [13][14][15]. This would be very time consuming, but in principle feasible. Con-
sidering identical geometric models and applying the same loss function Lalignment in both algo-
rithms, the results of the two algorithms would be identical, except for numerical truncation 
errors inside the classical approach (automatic differentiation is in principle accurate down to 
machine accuracy). 

 

Figure 4. Test losses for heliostat calibration using differentiable ray tracing over several 
epochs showing in (a) the alignment deviation of the trained heliostat to the target data set 

heliostat and (b) the angular deviation of the three error parameters inside the GM. 

Thus, both approaches can be described almost identically. However, so far only the 
minimal example has been considered. The focal spot contains much more information than 
just its center of gravity, e.g. horizontal and vertical tilt or the size of the focal spot can give 
further information about the orientation of the heliostat. Within the ray tracer, this information 
does not have to be extracted first; instead, it is possible to work directly with the images from 
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the heliostat calibration. Thus, significantly more information can be accessed than is the case 
with the classical method. Furthermore, errors can be optimized which were impossible to de-
tect before, which will be shown in the following. 

5. Results 
The potential of the method is illustrated by a simple test case. For this purpose, a very simple 
geometry model for the heliostat is chosen, which contains only 3 error parameters  
(compare Fig. 1). Only  and  have an influence on the position of the focal spot.  rotates 
the focal spot around its centroid. 

To begin, a dataset containing one image is created. For this, a heliostat model with a 
surface different from an ideal heliostat is loaded into the ray tracer and random alignment 
errors in  and  are assigned to it. By means of this heliostat, exactly one focal spot image 
is generated on the virtual calibration target. This one image is used as a data set for training. 
The calibration process itself starts with an ideal heliostat (including an ideal surface) and op-
timizes the heliostat's alignment by varying the error parameters. 

As shown in Fig. 4 (a), the angular deviation of the initially ideal and the erroneous he-
liostat is constantly falling. Due to the simplicity of the GM, the function has only one local 
optimum which is identical to the global optimum, which is why the deviation will fall down to 
machine accuracy. This is not surprising. Other regression algorithms, such as the LM, would 
perform similarly on such a simple GM. Thus, the plot verifies only the basic functionality of the 
methodology. Simultaneously it also shows, that  is not perceived by the alignment loss. Oth-
erwise, the curve would stop at a constant value. 

More exciting is a look at the individual error parameters. Fig. 4 (b) shows very clearly 
how  and  oscillate continuously towards zero, also because of the very simple GM. More 
exciting is the comparison between the lines trained with Ltotal (red and blue) with those exclu-
sively trained with L2alignment (orange, light blue), meaning without using the pixel-wise loss. If 
all loss terms are used the algorithm converges much faster. 

, on the other hand, behaves completely differently. This is due to the fact that the gradients 
are formed in another way.  remains completely constant (far from the range of the plot), 

 

Figure 5. Target Image including surface deformations (left) and prediction by the diff. ray 
tracer (right) using an ideal heliostat surface. 

only using the Lalignment (or L2alignment) loss.  is only optimized over the L2pixel loss. In Fig. 4 (b), 
 was set to 17.5 rad and ends up around 1.5 mrad, a deviation which is not visible to the naked 
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eye. This is especially impressive because  does not scale with distance. No matter how far 
the heliostat is from the tower, it does not make the rotation more visible. 

The result after full convergence can be seen in Fig. 5. Both images show the virtual 
calibration target including one normed focal spot each. On the left is the data set image (Tar-
get) including an imperfect surface for training and on the right side is the ray tracing calibration 
image (Prediction) using the optimized parameters and a perfect flat, faceted surface is dis-
played. Despite the considerably different surface, the position and inclination of the heliostat 
can be recognized well. 

6. Discussion 
So far, the diff. ray tracer for heliostat calibration could be theoretically presented and tested 
on minimal examples. Despite the reduced complexity of these, the advantages over classical 
regression are already apparent. 

In comparison with the current state-of-the-art algorithm, it could be shown that the ray 
tracer, not generating a single ray, and the classical algorithm are almost identical. The only 
difference in the discussed minimal example lies in the calculation of the differentials. Here, 
the diff. ray tracer already has an advantage due to the use of automatic differentiation, which 
provides smaller truncation errors than the numerical differentiation, even if this effect is very 
small. The greater advantage arises when the minimal example is left behind. Generating rays 
allows for the very first time to evaluate the calibration images directly inside calibration soft-
ware. This increase in information per measurement is available without any need of pre-pro-
cessing. The additional information can then help with faster convergence or higher accuracy 
on the same count of measurements, which was shown in Fig. 4 (b). On the one hand, the 
pixel loss helps with a faster convergence of  and , on the other hand,  can be corrected 
exclusively via this loss, since  has no influence on the position on the target. Beside the 
additional information, like edges, corners, etc., also e.g. errors in the determination of focal 
spots' centroids can be compensated by means of this loss (compare Fig. 5). Despite the very 
good qualitative results, a quantitative comparison especially with the state-of-the-art method 
and a corresponding complex geometry model is still pending. Here, however, the question is 
not so much whether the new method is better, but by how much. In addition, at this moment 
only ideal flat heliostats has been taken for training. Surface information can have a large 
impact on the results. In this case, specialized loss terms can be used for further improve-
ment [16][17][18]. Here, too, a quantitative evaluation is still required. 

7. Conclusion and Outlook 
Despite the very simplistic GM model used so far, it is becoming unambiguously clear that 
heliostat calibration using diff. ray tracing is superior to classical regression and thus, with very 
little effort, the standard calibration method on most commercial towers can be improved in 
situ. The next steps clearly focus on the implementation of a fully functional geometry model 
and the realization directly at a solar tower. However, differentiable ray tracing goes far beyond 
these possibilities at the solar tower. The orientation of the heliostat is by no means the only 
parameter that can be optimized. This method can be applied to nearly every field parameter 
and thus opens up completely new possibilities. For example, surface information can be de-
rived from focal spot images too. Furthermore, whole heliostat fields can be optimized for given 
flux density distributions, including heliostat shape, position, but also e.g. tower height or re-
ceiver shape. 
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Data and Code Availability  
The full code of our differentiable ray tracing pipeline will be released on 
https://github.com/DLR-SF/holisticDIRC.  
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