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Abstract. The present paper deals with the modelling and control of a solar reactor designed 
to produce syngas, by exploiting concentrated solar power. A model of the reactor based on 
the thermodynamic equilibrium is developed. Two model-based predictive control strategies 
are proposed: the first strategy (MPC strategy 1) aims to maintain the reactor's temperature at 
its nominal value whereas the second strategy (MPC strategy 2) aims to maintain the reactor's 
temperature at its nominal value, while maximizing the use of solar energy. Finally, these 
strategies are compared to a reference strategy, which is based on a combination of a rule-
based controller and an adaptive PID controller with optimized gains. The robustness of the 
MPC controller to forecast errors is also studied by testing different DNI forecasting models.  
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1. Introduction
The presented work explores the modelling and dynamic control of a solar thermochemical 
reactor dedicated to the high-temperature steam-gasification of biomass (see Figure 1). Solar 
gasifiers have been experimentally studied since the early 80s, with the works of Gregg et al. 
[1] and Taylor et al. [2] about packed-bed and fluidized-bed technologies. Interest in solar
thermochemistry has grown with climate-change considerations [3], especially since the mid-
2000, leading to major innovative design investigations, as reviewed in Puig-Arnavat et al. [4].
More recent works have been proposed about double-loop fluidized beds, to separate
oxidation and reduction zones for thermodynamic-cycle-based operation [5], or to separate
gasification and combustion zones for a solar-autothermal hybrid operation [6]. A solar spouted-
bed gasifier was conceived by Bellouard et al. [7], and its hybrid solar-autothermal operation
was investigated successively by Boujjat et al. [8] and Curcio et al. [9] (see Figure 1). Other
recent experimental works have demonstrated the feasibility of such hybrid operation [10], [11],
but the question of its dynamic control is still open. It should be mentioned that the laboratory
PROMES possesses a solar reactor prototype, designed with the help of the CEA-LITEN, in
order to contribute to the WP8 of the SFERA project. Thus, a dynamic controller is developed,
using image-based DNI forecasts inspired from the first part of this thesis, to maintain the
performance and stability of the solar reactor. To be able to achieve this task, a reactor model
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is required. This model is provided following the collaboration between PROMES-CNRS and 
CEA-LITEN [8], [12]. The present work aims at conciliating the solar-autothermal hybrid control 
strategy of a gasifier with the efficient implementation of an MPC algorithm. Several strategies 
can be developed, such as the maximizing syngas production, maintaining reactor's stability, 
etc. However, in this work and based on the developed reactor model, the goal is to maintain 
reactor's stability to ensure optimal conditions for the chemical reactions taking place in the 
reactor. The MPC controller acts on the oxygen flow and the mirrors' defocussing factor, in 
order to maintain the nominal temperature of the reactor, ensuring its stability. At this level, two 
MPC strategies are proposed: first strategy aims to maintain the reactor temperature at any 
cost; the second strategy aims to maintain the reactor temperature while minimizing the oxygen 
consumption in the process. This controller is then compared to an adaptive PID controller with 
optimized gains to highlight the amelioration brought by MPC. Furthermore, the MPC controller 
is implemented with different forecasts: perfect forecasts, smart persistence forecasts, and 
forecasts provided by a sky-imaging-based model. Also, a study is carried out to discuss the 
effect of forecast errors on the MPC's performance. 

 

Figure 1. Solar reactor design. 

2. Modelling of the solar reactor 
 
The model is inspired by the work of Boujjat et al. [12], who computed the production of a solar 
biomass gasifier over one year to assess its allothermal-autothermal hybridization. The gasifier 
is designed to be heated by both concentrated solar power (allothermal heating) and in-situ 
combustion (autothermal heating) [7], [8], enabling a continuous conversion of biomass around 
the clock. For a biomass flow rate maintained constant at 1.465 t h-1, the reactor parameters 
are set so that the nominal temperature of 1473 K (1199.85 °C) is reached for a DNI equal to 
800 W m-2, which corresponds to around 80% of the maximum DNI obtained during a year. At 
thermodynamic equilibrium, the chemical reactions taking place in the solar reactor are 
modelled as follows: 

 
• When DNI is higher than 800 W m-2 and the reactor's temperature is at its nominal 

value, only the endothermic reaction of gasification occurs, as described by the 
following equation: 
 

CH1.66O0.69 + 0.31 H2O → CO + 1.14 H2 (1) 

• When DNI is lower than 800 W m-2 and the reactor's temperature is lower than its 
nominal value, the injection of oxygen is necessary to maintain the reactor temperature 
at its steady state level. The impact of oxygen injection can be described by, as a first 
approximation, the oxy-combustion of wood: 

 
CH1.66O0.69 + 1.07 O2 → CO2 + 0.83 H2 (2) 
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The model also includes the thermal balance of the reactor walls, and a thermodynamic 

calculation coded with the open-source library CANTERA [13]: 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐷𝐷 ∙ 𝐶𝐶 ∙ 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝐴𝐴𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑆𝑆𝑎𝑎𝑎𝑎 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷 (3) 
𝑄𝑄𝑎𝑎𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 = 𝜎𝜎 ∙ 𝐴𝐴𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑆𝑆𝑎𝑎𝑎𝑎 ∙ �𝑇𝑇4 − 𝑇𝑇𝑜𝑜𝑎𝑎𝑎𝑎

4 � (4) 
𝑄𝑄𝑜𝑜𝑜𝑜𝑆𝑆𝑟𝑟𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 = (𝑇𝑇 − 𝑇𝑇𝑜𝑜𝑎𝑎𝑎𝑎)/𝑅𝑅 (5) 

𝑄𝑄𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆 = � 𝑓𝑓𝑜𝑜𝑜𝑜𝑆𝑆ℎ𝑜𝑜(𝑇𝑇𝑜𝑜𝑎𝑎𝑎𝑎)− � 𝑓𝑓𝑜𝑜𝑜𝑜𝑆𝑆𝑜𝑜ℎ𝑜𝑜(𝑇𝑇)

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑜𝑜=1

𝑆𝑆𝑝𝑝𝑟𝑟𝑟𝑟

𝑜𝑜=1

 (6) 

 

where ℎ𝑜𝑜 is the enthalpy of reactants and products, 𝑓𝑓𝑜𝑜𝑜𝑜𝑆𝑆 and 𝑓𝑓𝑜𝑜𝑜𝑜𝑆𝑆𝑜𝑜 are the flow rates of reactants 
and products, respectively, 𝑛𝑛𝑎𝑎𝑎𝑎𝑜𝑜 and 𝑛𝑛𝑜𝑜𝑎𝑎𝑜𝑜𝑟𝑟 are the number of reactants and products, 
respectively, 𝐷𝐷 is the defocussing factor, 𝑄𝑄𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆 is the power gained from the chemical 
reaction, 𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 is the power obtained from the Sun, 𝑄𝑄𝑎𝑎𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 is the power lost by radiation, 
𝑄𝑄𝑜𝑜𝑜𝑜𝑆𝑆𝑟𝑟𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 is the power lost by conduction, 𝑚𝑚 is the mass of the reactor walls, 𝐶𝐶𝑜𝑜,𝑤𝑤 is the 
specific heat of the reactor walls, 𝐶𝐶 is th concentration factor, 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is th optical efficiency, 
𝐴𝐴𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑆𝑆𝑎𝑎𝑎𝑎 is the aperture's area, 𝜎𝜎 is the Stefan-Boltzmann constant, 𝑇𝑇𝑜𝑜𝑎𝑎𝑎𝑎 is the ambient 
temperature, and 𝑅𝑅 is the conduction thermal resistance.  

The reactor's temperature can be modeled through the following first-order nonlinear 
ordinary differential equation (Equation 7) which represents the heat balance of the reactor: 

𝑚𝑚 ∙ 𝐶𝐶𝑜𝑜,𝑤𝑤 ∙
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑄𝑄𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆�𝑓𝑓𝑟𝑟𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑜𝑜𝑆𝑆 ,𝑓𝑓𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑟𝑟𝑟𝑟
𝑜𝑜𝑆𝑆 ,𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑆𝑆𝑜𝑜𝑆𝑆 ,𝑇𝑇� + 𝑄𝑄𝑆𝑆𝑎𝑎𝑜𝑜 (7) 

𝑄𝑄𝑆𝑆𝑎𝑎𝑜𝑜 = 𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑄𝑄𝑎𝑎𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑆𝑆𝑟𝑟𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 (8) 
 

where 𝑄𝑄𝑆𝑆𝑎𝑎𝑜𝑜 is the power resulting from the solar power gained and the power lost due to the 
radiation and conduction losses (Equation 8). 

Above a DNI value of 800 W m-2, a reduction of the input solar power is necessary to 
maintain the reactor's temperature at 1473 K. As a result, a defocussing factor D is introduced 
(Equation 3). Below this DNI value, oxygen is added to heat the reactor thanks to in-situ 
combustion, which directly alters the syngas composition by shifting the thermodynamic 
equilibrium. Finally, when DNI is lower than 150 W m-2, the reactor's aperture is closed to limit 
the radiation loss. 

3. Development of control strategies for the solar reactor 

This section starts with the development of a reference controller, which is a combination of a 
rule-based controller and an adaptive PID controller with optimized gains. Then, the proposed 
MPC strategies (MPC strategy 1 and MPC strategy 2) are presented by explaining the different 
optimization problems, the corresponding constraints, and the developed DNI forecast model. 
These controllers are then evaluated in the following sections. For the control of the solar 
reactor, the discretized reactor model ℳ is represented as follows: 

𝑇𝑇(𝑑𝑑 + 1) = ℳ�𝐷𝐷(𝑑𝑑),𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑆𝑆𝑜𝑜𝑆𝑆 ,𝑇𝑇(𝑑𝑑)� (9) 
 

In the sequel, the biomass flow rate 𝑓𝑓𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑟𝑟𝑟𝑟
𝑜𝑜𝑆𝑆  and the steam flow rate 𝑓𝑓𝑟𝑟𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑜𝑜𝑆𝑆  are fixed to their 

nominal design values of 1.465 t h-1 and 0.26 t h-1, respectively. 

3.1 Reference controller 

The goal of this controller is to maintain the temperature inside the reactor at its nominal value 
(1473 K) to ensure its stability. This controller is developed in order to have a reference to 
which the MPC controller can be compared.  
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The control variables are: 

• the oxygen flow rate (𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑆𝑆𝑜𝑜𝑆𝑆 ): in case of a DNI deficit (800 W m-2), oxygen can be 
injected to increase the reactor's temperature by burning biomass, it is controlled by an 
adaptive PID controller with optimized gains, where for each of the three intervals of 
DNI values, the gains (𝐾𝐾𝑜𝑜, 𝐾𝐾𝑜𝑜 and 𝐾𝐾𝑟𝑟) have been obtained by solving an optimization 
problem (see Table 1). 

• the defocussing factor (𝐷𝐷): in case of an excess of DNI (DNI > 800 W m-2), the mirrors 
can be defocussed to compensate for the surplus. The mirrors' defocussing factor is 
controlled as follows: 
 

𝐷𝐷(𝑑𝑑) = �
1 if 𝐷𝐷𝐷𝐷𝐷𝐷(𝑑𝑑) ≤ 800 𝑊𝑊𝑚𝑚−2 and 𝑇𝑇(𝑑𝑑) < 1473𝐾𝐾

800
𝐷𝐷𝐷𝐷𝐷𝐷(𝑑𝑑)

 if 𝐷𝐷𝐷𝐷𝐷𝐷(𝑑𝑑) > 800 𝑊𝑊𝑚𝑚−2 and 𝑇𝑇(𝑑𝑑) > 1473𝐾𝐾 
(10) 

 
Table 1. Optimized gains of the adaptive PID controller. 

Gain DNI < 150 W m-2 150 W m-2 < DNI < 800 W m-2 DNI > 800 W m-2 
𝐾𝐾𝑜𝑜 1.6 x 10-2 3.4 x 10-2 1.5 x 10-3 
𝐾𝐾𝑜𝑜 0 9 x 10-4 1.5 x 10-4 
𝐾𝐾𝑟𝑟 1.2 x 10-2 2.5 x 10-2 1 x 10-5 

 
3.2 Model-based predictive control of the solar reactor 

In this section, the two MPC strategies are detailed: two optimization problems are considered, 
and the developed approach to forecast DNI is briefly explained. The MPC strategy 1 aims to 
maintain the reactor's temperature without considering the oxygen consumption whereas and 
the MPC strategy 2 aims to maintain the reactor's temperature while exploiting the solar energy 
and minimizing the oxygen consumption. Let 𝑛𝑛 be the number of time steps in the prediction 
horizon of the controller. At each of those 𝑛𝑛 time steps, an optimization problem is solved to 
find optimal inputs 𝑫𝑫 ∈ 𝑅𝑅𝑆𝑆 and 𝒇𝒇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑆𝑆 [14], for a given objective function, a set of constrains, 
and bounds. This optimization problem thus defines the control strategy. In this paper, two 
strategies are presented. The first strategy (i.e., MPC strategy 1) is about solving the following 
optimization problem at instant 𝑑𝑑: 

�𝐷𝐷∗,𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑆𝑆𝑜𝑜𝑆𝑆 ∗ � = argmin��𝑆𝑆𝑜𝑜 − 𝑇𝑇(𝑑𝑑 + 𝑘𝑘)�
2

𝑆𝑆

𝑘𝑘=1

  (11) 

where: 𝑻𝑻(𝒕𝒕 + 𝟏𝟏) = 𝓜𝓜�𝑫𝑫(𝒕𝒕),𝒇𝒇𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒊𝒊𝒐𝒐 ,𝑻𝑻(𝒕𝒕)�, 𝟎𝟎 ≤ 𝑫𝑫(𝒕𝒕 + 𝒌𝒌) ≤ 𝟏𝟏 and 𝟎𝟎 ≤ 𝒇𝒇𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒊𝒊𝒐𝒐 (𝒕𝒕 + 𝒌𝒌) ≤ 𝟐𝟐. 

It focuses on minimizing the squared difference between the temperature setpoint and the 
simulated temperature over the considered prediction horizon, without constraints on the 
oxygen consumption or the usage of solar energy. The second strategy (i.e., MPC strategy 2) 
is about solving the following optimization problem at instant 𝑑𝑑: 

�𝐷𝐷∗,𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑆𝑆𝑜𝑜𝑆𝑆 ∗ � = argmin�𝛼𝛼�𝑆𝑆𝑜𝑜 − 𝑇𝑇(𝑑𝑑 + 𝑘𝑘)�
2

+ 𝛽𝛽 �𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑆𝑆𝑜𝑜𝑆𝑆 (𝑑𝑑 + 𝑘𝑘)�
2
− 𝛾𝛾�𝐷𝐷(𝑑𝑑 + 𝑘𝑘)�2

𝑆𝑆

𝑘𝑘=1

  (12) 

where: 𝑇𝑇(𝑑𝑑 + 1) = ℳ�𝐷𝐷(𝑑𝑑), 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑆𝑆𝑜𝑜𝑆𝑆 ,𝑇𝑇(𝑑𝑑)�, 𝟎𝟎 ≤ 𝑫𝑫(𝒕𝒕 + 𝒌𝒌) ≤ 𝟏𝟏 and 𝟎𝟎 ≤ 𝒇𝒇𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒊𝒊𝒐𝒐 (𝒕𝒕 + 𝒌𝒌) ≤ 𝟐𝟐. 

As can be seen, the goal is here to make a trade-off between following the temperature 
setpoint, minimizing the oxygen consumption, and maximizing the use of solar energy. This 
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trade-off is determined by the weights 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾. It should be noted that DNI forecasts are 
needed to solve these optimization problems. How these forecasts are obtained is the subject 
of the following section. DNI forecasts must be provided to the MPC controller for every time 
step in its prediction horizon. Three types of forecasts are considered in this study to evaluate 
the robustness of the MPC controller to forecast errors: perfect forecasts, smart persistence 
forecasts, and image-based forecasts. The proposed image-based forecasting model relies on 
the hybridization between the smart persistence model and a recurrent neural network (RNN) 
model. It processes high dynamic range (HDR) images, provided by a sky imager, to forecast 
sudden DNI variations. 

4. Evaluation of the control strategies 

The controllers' performance is evaluated by calculating the root mean squared error (RMSE), 
the oxygen consumption, and the average temperature variation (ATV), which estimates the 
magnitude of temperature variation inside the reactor (except for DNI < 150 W m-2, since in 
this case the reactor is closed and there is no power loss; the temperature can thus be easily 
maintained by injecting 0.88 t h-1. This study is made over a 7-day test dataset. It should be 
mentioned that night-time periods are not included, since they are identical to the case with 
DNI < 150 W m-2 where injecting 0.88 t h-1 is sufficient to maintain perfectly the reactor's 
temperature. The control inputs, for both MPC strategies, are initialized as follows: 

• 𝐷𝐷(𝑑𝑑 + 𝑘𝑘) = 1 ∀𝑘𝑘 ∈ ⟦1;𝑛𝑛⟧. This initialization is chosen so that the optimal input found is 
near 1, which means that the use of solar energy is maximized; 

• 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑆𝑆𝑜𝑜𝑆𝑆 (𝑑𝑑 + 𝑘𝑘) = 0.5 ∀𝑘𝑘 ∈ ⟦1;𝑛𝑛⟧. This initialization is chosen to ensure that the optimizer 
converges fast to the optimal solution, which is around 0.5 t h-1. Other initialization 
values resulted in an increase in computation time and some performance degradation. 

In this work, the trust-region constrained algorithm [15] is used, for its ability to solve non-
linear optimization problems and its high robustness and its ability to handle various objective 
functions. After the optimization of the prediction horizon, the MPC implementation results, 
presented in Table 2, over one week show that the MPC controller is able to maintain the 
reactor's temperature (MPC strategy 1) and to exploit the solar power by minimizing oxygen 
consumption (MPC strategy 2). Furthermore, the integration of image-based forecasts results 
in better performance for both strategies: the MPC controller with image-based forecasts 
scores lower RMSE values (around 7.5%) and lower oxygen consumption (saving up to 1000 
kg of oxygen) (MPC strategy 1) and scores lower RMSE values (around 6.4%) for an increase 
in oxygen consumption of less than 0.1% (MPC strategy 2). 

Table 2. Comparison between the two proposed MPC strategies with optimal prediction 
horizon. For MPC strategy 1, the optimal prediction horizon is 2 min for all forecasting 

models. For MPC strategy 2, the optimal prediction horizons are 1 min (perfect forecasts), 
1.5 min (smart persistence forecasts) and 2 min (image-based forecasts). Reference 

strategy: RMSE is 4.88 K, oxygen consumption is 31 933 kg, and ATV is 2.27 K. 

Strategy Performance 
criterion 

Perfect 
forecasts 

Image-based 
forecasts 

Smart persistence 
forecasts 

MPC 
strategy 1 

RMSE [K] 
O2 cons. [kg] 

ATV [K] 

≪ 0.01 
41 920.00 
≪ 0.01 

1.34 
36 365.80 

1.32 

1.45 
38 509.00 

1.32 

MPC 
strategy 2 

RMSE [K] 
O2 cons. [kg] 

ATV [K] 

0.07 
31 968.33 

0.03 

1.60 
32 091.00 

1.54 

1.71 
32 089.23 

1.54 
 

In addition, the MPC controller, with all forecast models, manages to outperform the 
reference controller by scoring lower RMSE and ATV values at the cost of an increase in 
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oxygen consumption of less than 11% (MPC strategy 1) and less than 0.5% (MPC strategy 2). 
This analysis ensures the robustness of the MPC controller to forecasts errors and proves the 
feasibility of the approach. The two proposed MPC strategies have their advantages and 
disadvantages. Table 2 presents the performance of the MPC controller (MPC strategies 1 and 
2) with the optimal prediction horizon. When perfect forecasts are provided, the MPC strategy 
2 is considered a better approach since the reference tracking error increase is minimal 
compared to the amount of saved oxygen (around 24%). However, when forecasts are 
provided by the smart persistence model or the proposed image-based model, the first strategy 
(MPC strategy 1) is better if low RMSE and ATV values are required, since this strategy scores 
around 14% lower RMSE than the second strategy (MPC strategy 2; image-based forecasts 
are used). The second strategy (MPC strategy 2) can be adopted if the oxygen injected should 
be absolutely minimized, since it can save around 11% of oxygen consumption (image-based 
forecasts are used). 

5. Conclusion 

This paper deals with the predictive control of a solar reactor that exploits concentrated solar 
power to produce syngas. An MPC controller (two strategies) is proposed and compared to a 
reference controller which consists of a rule-based controller and an adaptive PID controller 
with optimized gains. These two MPC strategies target different performances: the first strategy 
(i.e., MPC strategy 1) focuses on preserving the reactor's stability by maintaining its nominal 
temperature; the second strategy (i.e., MPC strategy 2) finds a trade-off between maintaining 
the reactor's temperature and minimizing the oxygen consumption while exploiting solar 
energy. This study can then be extended to more complicated strategies like, maximization of 
the syngas production, however, this would necessitate a model adapted for this study. 
Different DNI forecasts are provided to the MPC controller: perfect forecasts, which produce 
optimal performance; smart persistence forecasts, which produce reference performance; 
image-based forecasts, where the model processes HDR sky images to forecasts DNI by 
predicting possible DNI variations. This study is carried out to showcase the robustness of the 
controller to forecast errors. Results of the MPC implementation show that the MPC controller 
is able to maintain the reactor's temperature (MPC strategy 1) and to exploit the solar power 
by minimizing oxygen consumption (MPC strategy 2). Furthermore, the integration of image-
based forecasts results in better performance for both strategies. 
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