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Abstract. The present paper exhibits a hybrid model for intrahour forecasting of direct normal 
irradiance (DNI). It combines a knowledge-based model, which is used for clear-sky DNI 
forecasting from DNI measurements, with a machine-learning-based model, that evaluates the 
impact of atmospheric disturbances on the solar resource, through the processing of high 
dynamic range sky images provided by a ground-based camera. The performance of the hybrid 
model is compared with that of two machine learning models based on past DNI observations 
only. The results highlight the pertinence of combining knowledge-based models with data-
driven models, and of integrating sky-imaging data in the DNI forecasting process.  
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1. Introduction
Development of sophisticated and efficient techniques for renewable energy is a major concern 
nowadays. Among the various renewable energy technologies, concentrating solar power 
(CSP) will play a key role in the future: its share of global electricity is envisioned to reach 13-
15% by 2050 [1]. Deployment of CSP technologies is penalized by various scientific and 
technical bottlenecks, such as the efficient control of CSP systems [2]. The H2020 project 
SFERA III (Solar Facilities for the European Research Area) [3] aims to tackle some of these 
bottlenecks, in order to achieve better competitiveness of CSP systems. One way to optimize 
their management is to use model predictive control, which necessitates prediction of variables 
of interest, and in particular DNI, which is the direct irradiance received on a plane normal to 
the Sun. Accurate DNI forecasts can contribute to the reduction of fluctuations of CSP plants' 
output due to solar irradiance intermittency and variability [4]. Intrahour DNI forecasts are thus 
needed, with an accurate prediction of ramp events. The main approaches to forecast solar 
resource are statistical models, image-based models, and numerical weather prediction (NWP) 
models [4]. As this work discusses DNI forecasting for short-term forecast horizons (up to 15 
minutes), the focus will be on statistical and ground-based sky imagery models. A hybrid 
forecast model is developed, harnessing the advantages of both approaches. 
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2. Related work

Even though we are interested in DNI forecasting, the scope of this section is broadened to 
solar resource, since a large percentage of existing works is dedicated to GHI and photovoltaic 
(PV) power production forecasting. DNI forecasting is considered more complicated due its 
high variability. Also, CSP technologies are very sensitive to ramp events, making their 
accurate prediction crucial. Nonetheless, studying approaches dedicated to GHI or PV power 
forecasting is interesting, since parts of the forecasting procedure can be similar. Existing 
works can be divided according the input data used. 

• Solar resource (and possibly other variables) measurements. Even if some classical
time-series approaches are employed, most of the recent works are statistical models
based on artificial intelligence tools [5], [6], [7]. These models can predict solar resource
for horizons ranging from a few minutes to several days. However, as they are purely
based on historical solar resource data, these models usually fail at accurately
predicting ramp events.

• Ground-based sky images and solar resource (and possibly other variables)
measurements. For these models, the forecast horizon is greatly reduced, generally
culminating at 30 minutes: indeed, the information contained in sky images becomes
limited as we approach their boundaries. However, using sky images allows for the
prediction of atmospheric disturbances that will affect solar resource, which in turn can
lead to accurate prediction of ramp events. Here, the forecast generally consists of
three major steps: first, image acquisition and cloud detection; second, cloud motion
estimation; and finally forecasting using extracted features. In particular, that last step
can involve using a clear-sky model [8], [9], [10], [11]. Indeed, DNI can be divided into
the clear-sky DNI (𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶) and the clear-sky index (𝑘𝑘𝑐𝑐) as follows:

𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝑘𝑘𝑐𝑐(𝑡𝑡) ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶(𝑡𝑡) (1) 

In this paper, high dynamic range (HDR) images provided by a sky imager are fed to a 
machine-learning-based model, which is used to accurately detect the clouds without losing 
critical information in the circumsolar region. Then, the dominant cloud motion is estimated 
with an optical flow algorithm and clustering. An adaptive approach is then used to determine 
a region of interest (ROI), that may contain clouds that will block the Sun after the considered 
forecast horizon. All of this information is then fed to a complex artificial neural network model. 
The developed approach is designed to be able to forecast DNI ramps and to be robust when 
faced with different kinds of clouds. These topics are some of the difficulties that most models 
struggle with. 

3. Hybrid model

The proposed hybrid model is presented in this section. Contrary to purely statistical models, 
this model relies on DNI measurements and sky images to predict DNI. Sky images are used 
to detect clouds and estimate their motion, so as to achieve better ramp events detection. As 
can be seen in its global architecture shown in Figure 1, it consists of four steps detailed in the 
sequel: HDR image acquisition, clear-sky DNI forecast, image processing, and DNI forecast. 

Figure 1. The hybrid model. 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐻𝐻  is the cloud fraction in the ROI. 𝑅𝑅𝑅𝑅𝐷𝐷𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 is a RGB image 
of the region of interest. 𝐷𝐷𝐷𝐷𝐷𝐷� 𝐶𝐶𝐶𝐶 is the forecast clear-sky DNI. 𝐷𝐷𝐷𝐷𝐷𝐷�  is the forecast DNI. 
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3.1 Clear-sky DNI model 

In this paper, the clear-sky DNI model developed in [12] is used: 

𝐷𝐷𝐷𝐷𝐷𝐷� 𝐶𝐶𝐶𝐶(𝑡𝑡 + 𝐻𝐻) = 𝑏𝑏 ∙ 𝐷𝐷0 ∙ exp �−0.09𝑚𝑚�(𝑡𝑡 + 𝐻𝐻)�𝑇𝑇�𝐿𝐿𝑅𝑅(𝑡𝑡) − 1�� (2) 

where: 

• 𝑏𝑏 = 0.664 + 0.163 exp(ℎ/8000), with ℎ the site's altitude; 
• 𝐷𝐷0 is the extraterrestrial solar irradiance; 
• 𝑇𝑇�𝐿𝐿𝑅𝑅(𝑡𝑡) is the estimated Linke turbidity coefficient at time instant 𝑡𝑡, achieved using DNI 

measurements, as proposed by Nou et al. [12]; 
• 𝑚𝑚�(𝑡𝑡 + 𝐻𝐻) is the relative optical air mass forecast at time instant 𝑡𝑡 + 𝐻𝐻 using the 

following equation: 
 

𝑚𝑚�(𝑡𝑡 + 𝐻𝐻) = �cos�𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡 +𝐻𝐻)� + 𝑎𝑎1�𝑎𝑎2 − 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡 + 𝐻𝐻)�−𝑎𝑎3�
−1

 (3) 

 

where 𝑆𝑆𝑆𝑆𝑆𝑆 is the Sun zenith angle, 𝑎𝑎1 = 0.50572, 𝑎𝑎2 = 96.079951 and 𝑎𝑎3 = 1.63643, 
as proposed in [13]. 

3.2 Image processing 
In this step, features are extracted from the acquired images (Figure 2). The HDR images are 
treated to correct the fisheye lens distortion, and used to detect clouds using a k-nearest 
neighbour model (k-NN) model and estimate their motion using the Farnebäck optical flow 
algorithm [14]. The ROI is then located based on the estimated motion with the aid of the k-
means clustering method. Finally, the cloud fraction in the ROI is calculated (𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐻𝐻) and fed 
to the DNI forecast model that takes the RGB image of the ROI (𝑅𝑅𝑅𝑅𝐷𝐷𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅) as input as well. 

 

Figure 2. Image processing steps leading to the features' calculation. 𝑅𝑅𝑅𝑅𝐷𝐷𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 is a RGB 
image of the region of interest. 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐻𝐻  is the cloud fraction in the ROI. 

3.3 DNI forecast model 
The DNI forecast model can be divided into three main parts (see Figure 3). The first part, 
responsible for image feature extraction, is a convolutional neural network (CNN). The second 
part is a multi-layer perceptron (MLP) with the cloud fraction (𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐻𝐻) and the clear-sky DNI 
forecast as inputs. The outputs of the CNN and the MLP networks are then fed to a “Regression 
MLP”, used to merge extracted features and forecast DNI at time instant 𝑡𝑡 + 𝐻𝐻. 

4. Results and discussion 

4.1 Reference model 

The proposed hybrid model is compared to three reference models: the smart persistence, and 
two recurrent neural network (RNN) models. The smart persistence model is based on 
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Equation 1, and the supposition that the clear-sky index 𝑘𝑘𝑐𝑐 is constant over the forecast 
horizon. The DNI forecast is obtained as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷� (𝑡𝑡 + 𝐻𝐻) = 𝑘𝑘𝑐𝑐(𝑡𝑡) ∙ 𝐷𝐷𝐷𝐷𝐷𝐷� 𝐶𝐶𝐶𝐶(𝑡𝑡 + 𝐻𝐻) =
𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)
𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶(𝑡𝑡)

∙ 𝐷𝐷𝐷𝐷𝐷𝐷� 𝐶𝐶𝐶𝐶(𝑡𝑡 + 𝐻𝐻) (4) 

 
The smart persistence model thus needs clear-sky DNI forecasts, provided by the clear-sky 

DNI model described in Section 3.1. The two reference RNN models are using past DNI 
observations as input. The first model consists of multiple layers of long short-term memory 
units (LSTM), followed by fully connected layers, while the second proposed model consists 
of a convolutional layer, LSTM layers and fully connected layers (CNN-LSTM). 

 

Figure 3. DNI forecast model. 𝑅𝑅𝑅𝑅𝐷𝐷𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 is a RGB image of the region of interest. 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐻𝐻  is the 
cloud fraction in the ROI. 𝐷𝐷𝐷𝐷𝐷𝐷� 𝐶𝐶𝐶𝐶 is the forecast clear-sky DNI. 𝐷𝐷𝐷𝐷𝐷𝐷�  is the forecast DNI. 

4.2 Database and networks’ training 

The database used in this study consists of 373 days, during which DNI and sky images are 
stored every 30 seconds. DNI is measured with a pyrheliometer, and the sky images are 
obtained using a ground-based camera developed by PROMECA (http://promecaweb.com), 
with the help of PROMES-CNRS (see Figure 4). A simple classification of the database reveals 
128 clear-sky days (34.4%), 49 overcast days (13.1%) and 196 days with mixed situations 
(52.5%). All the networks are trained using a database consisting of 40 days, selected to have 
examples from different seasons and with various DNI profiles. This database is then split into 
a training dataset of 22 days, and a test dataset of 18 days. 

4.3 Performance metrics 

In this paper, three performance metrics are used: 

1. The normalized root mean squared error (nRMSE): 
 

𝑛𝑛𝑅𝑅𝑛𝑛𝑆𝑆𝑛𝑛 =
�1
𝑛𝑛∑ �𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) − 𝐷𝐷𝐷𝐷𝐷𝐷� (𝑡𝑡)�𝑛𝑛

𝑡𝑡=1

1
𝑛𝑛∑ 𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)𝑛𝑛

𝑡𝑡=1

 (5) 

 
2. The skill factor (SF), allowing the models' performance versus the smart persistence 

model to be evaluated: 
 

𝑆𝑆𝐶𝐶 = 100 ∙ �1 −
𝑛𝑛𝑅𝑅𝑛𝑛𝑆𝑆𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑛𝑛𝑅𝑅𝑛𝑛𝑆𝑆𝑛𝑛𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑚𝑚𝑛𝑛𝑐𝑐𝑚𝑚
� (6) 

 
3. The ramp detection index (RDI) [15], allowing the models' ability to predict ramps 

(sudden DNI variations) to be evaluated. 

4



Karout et al. | SolarPACES Conf Proc 1 (2022) "SolarPACES 2022, 28th International Conference on  
Concentrating Solar Power and Chemical Energy Systems" 

 

  
Figure 4. The PROMECA's sky imager installed in Odeillo (France) at the PROMES-CNRS 

laboratory and a sample HDR sky image. 

4.4 Forecasting results 

 

Figure 5. Comparison of the LSTM model, the CNN-LSTM model and the hybrid model on 
mixed situations (test dataset), for H = 5 minutes, H = 10 minutes and H = 15 minutes. 

The performance of the hybrid, LSTM and CNN-LSTM models is compared on mixed situations 
in the test dataset. The results can be found in Figure 5: the hybrid model scores the lowest 
nRMSE values and the highest SF and RDI for each forecast horizon. This superior performance 
justifies the integration of HDR sky images, which translates into better ramp detection and 
precise DNI forecasts, compared to the models based on DNI measurements only. The CNN-
LSTM slightly outperforms the LSTM model, scoring lower nRMSE and higher SF thanks to its 
additional convolutional layer. As can be seen, the hybrid model has the higher RDI score for 
each forecast horizon. LSTM and CNN-LSTM models, which are based on DNI measurements 
only, do not forecast DNI ramps as well as the hybrid model, justifying the use of HDR sky 
images in the forecasting process: cloud motion is indeed critical to better anticipate DNI 
variations. The LSTM model, the CNN-LSTM model and the hybrid model are now compared 
on 3 clear-sky days and 3 overcast days in the test database. The persistence model generally 
scores very low nRMSE values on such cases. As can be seen in Figure 6, the hybrid model 
consistently outperforms the persistence model for each forecast horizon, with SF values 
ranging between 6% and 9.5%. The low nRMSE values and the positive SF scored by the 
hybrid model confirm that the model learned to handle clear-sky and overcast situations. In 
addition, the model is able to compensate for seasonal changes in the maximal clear-sky DNI 
value thanks to the adaptive clear-sky model used. However, on such low-variability situations, 
the results obtained by the LSTM and CNN-LSTM models are considerably inferior to the 
persistence model. Contrary to the hybrid model, they are not able to correctly handle these 
situations, that were not included in the training database: although the nRMSE is low (around 
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0.16%), the persistence model is so performant that they score negative SF values (around -
120% for H = 5 minutes, around -50% for H = 10 minutes and around -25% for H = 15 minutes). 
This demonstrates the benefits of including sky images: even though it has been trained with 
the same DNI measurements, the hybrid model is able to generalize to these situations. 

 

Figure 6. Comparison of the LSTM model, the CNN-LSTM model and the hybrid model on 
clear-sky and overcast days (test dataset), for H = 5 minutes, H = 10 minutes and H = 15 

minutes. The skill factor of the LSTM and CNN-LSTM models is not represented because it 
is too low (around -120% for H = 5 minutes, around -50% for H = 10 minutes and around -
25% for H = 15 minutes). Ramp detection index is not included because there are very few 

ramps during these low-variability days. 

5. Conclusion 

This paper deals with the development of a hybrid intra-hour forecast model, combining 
knowledge-based and machine-learning approaches and taking DNI measurements and HDR 
sky images as inputs. This hybrid model is compared to LSTM and CNN-LSTM models that 
take solely past DNI observations as input, in order to assess the benefits of integrating HDR 
sky images in the forecasting process. The smart persistence model is also used as reference 
for the comparison. Results show that the tested models are capable of outperforming the 
persistence model: for the hybrid model, skill factor values range from 12% to 26% as the 
forecast horizon increases from 5 to 15 minutes, whereas the LSTM and CNN-LSTM models 
score around 10% for all horizons. The ramp detection index shows that the tested models are 
capable of predicting DNI ramps: the hybrid model is able to forecast 72% to 80% of the ramps, 
whereas the LSTM and CNN-LSTM models are less efficient and detected between 53% and 
66% of the ramps. This difference is due to the fact that LSTM and CNN-LSTM models are 
purely statistical and rely solely on past DNI observations, without taking into account the 
atmospheric situation: efficient cloud detection and accurate cloud motion estimation translates 
into better ramp detection and precise DNI forecasts. For clear-sky and overcast situations, 
the persistence model produces very good results, and the results obtained by the LSTM and 
CNN-LSTM models are considerably inferior. However, the hybrid still manages to outperform 
the persistence model, with skill factor values ranging from 6% to 9.5%. Thanks to the inclusion 
of sky images, it successfully manages clear-sky, overcast, and mixed situations. As for the 
complexity of the models, the analysis shows that, while the hybrid model is more complex, 
time-consuming, and demands more computational resources, it is still able to provide 
forecasts within 7% of the 30 seconds sampling time. In the framework of the European project 
SFERA III, the proposed model has been implemented in situ to provide real-time DNI 
forecasts to CSP infrastructure users. 
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