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Abstract. This work demonstrates methods of mapping high-spatial-resolution direct normal 
irradiance (DNI) data from satellites, Total Sky Imagers (TSIs), and analogous data sources 
onto a heliostat field for characterizing the spatial and temporal variation of the incident flux on 
a central receiver tower during cloud transient events. The mapping methods are incorporated 
into an optical software module that interfaces with CoPylot–SolarPILOT’s python API– to pro-
vide computationally efficient optical simulation of the heliostat field and the solar power tower. 
Eventually, this optical model will be incorporated into optimization models whereby a plant 
operator can understand the effects of cloud transient events on overall power production and 
receiver lifetime due to creep-fatigue damage and therefore make better informed decisions 
about receiver shutdown events. By more accurately modelling the effects of cloud events on 
receiver flux maps, this work may determine the magnitude and frequency of thermal cycling 
on receiver tubes and panels using actual or realistic cloud shapes instead of averaged DNI 
values–which may undercount the total cycle number. This work may also prevent unneces-
sary plant shutdowns due to overly precautionary control strategies and characterize the rela-
tive impact of various cloud types on receiver life. We plan to eventually integrate this method-
ology into the System Advisor Model (SAM) to improve performance model accuracy during 
periods of cloudiness. In this paper, we demonstrate generating DNI maps and mapping them 
to a solar field in CoPylot using 10 m resolution data from publicly available Sentinel-2 satellite 
data over the Crescent Dunes plant. 

Keywords: Central Receiver, Solar Tower, Cloud Transient, DNI, Satellite, Total Sky Imager, 
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1. Introduction

In order to maximize the revenue of a central receiver plant and drive down the levelized cost 
of electricity (LCOE) both during the design and the operation of the plant, the plant operator 
must consider several factors including the lifetime of the plant and component maintenance, 
the availability of the plant, and other factors such as the current price of electricity and thermal 
storage if applicable. One software package used to assist plant operators is the System Ad-
visor Model (SAM) [1] developed at the National Renewable Energy Lab (NREL). SAM con-
tains a module for concentrating solar plants with and without thermal energy storage and 
integrates a mixed-integer linear program (MIP) to optimally dispatch electricity during times of 
peak load (and peak price) to the grid while respecting the various physical and economic 
constraints associated with the plant. Compared to baseline dispatch strategies, the approach 
implemented in SAM can improve plant profitability by 5-20% [2]. A version of SAM has also 
been developed for real-time operations, including during periods of variability [3]. However, 
SAM relies on historical DNI and weather data points that are either averaged spatially over 
the entire plant or recorded in one location; there has yet to be a study on how overall plant 
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revenue is affected when spatially resolved DNI data and additional cloud data–such as cloud-
type classifications–are used to inform the optimization model during transient events. 

Historically, accounting for cloud transient events in both the design and operation of a 
central receiver plant has been managed by using large safety margins on the receiver tubes 
and conservative control strategies where the heat transfer fluid (HTF) flow rate would be set 
to match clear-sky conditions during short-duration large cloud events, which may result in a 
significant loss in revenue for the plant in both the capital expenditures (CAPEX) from the 
construction of the plant due to higher material costs and the operating expenses (OPEX) due 
to lost electricity revenue. The large safety margins on receiver tubes were intended to prevent 
premature failure due to creep-fatigue damage–assuming a design life of 30 years, and the 
control strategies were designed to prevent catastrophic failure due to over temperature con-
ditions once a cloud front leaves the field and DNI levels rapidly approach clear-sky conditions. 
Both design and operation decisions were in large part due to a lack of design standards and 
test data for CSP plants to account for the creep and fatigue damage due to thermal cycling 
on the receiver and a lack of detailed high spatial and temporal resolution cloud transient data 
and predictive modelling. 

In a report by Kistler [4] using historical weather data from the Solar One plant, it is 
clear why such large safety margins on receiver tubes were used in practice. The effects of 
small cloud transients that only crossed portions of the field were disregarded entirely and only 
two locations in the field measured DNI; such undercounting necessarily resulted in the use of 
a large safety factor associated with the allowable number of fatigue cycles, as a single non- 
homogenous cloud-front may induce multiple thermal cycles on a given receiver tube. Addi-
tionally, in both Kistler’s report and a paper by Narayanan et. al [5], they used a modified 
version of the ASME B&PV Code Case N47 developed for nuclear pressure vessels to calcu-
late the creep-fatigue damage due to thermal cycling. Although appropriate for nuclear appli-
cations, this modified approach still likely overpredicts the damage done to a receiver due to 
cloud events. Other project designs around this period required the receiver to be modular and 
to anticipate tube replacement as an expected operating cost due to the uncertainty related to 
calculating the creep-fatigue damage [6]. 

Likewise, the Solar Two plant employed eight photometers that were pointed towards 
the receiver panels to detect changes in reflected solar flux due to clouds [7]; with such few 
datapoints and limited scope, it would be impossible to obtain accurate predictions of the du-
ration and intensity of cloud events in future timesteps, necessitating more conservative control 
strategies. As such, the control algorithm for the heat transfer fluid (HTF) that was employed 
in Solar Two included a Cloud Standby (CSB) mode, whereby the plant would increase the 
HTF flow rate and thereby decrease the outlet temperature to prevent an over temperature 
condition once the cloud front leaves the field. Even if one part of the field experienced cloud 
cover due to cumulus clouds, the flow rate would be set to the maximum clear- sky flow rate 
for both flow paths on either side of the receiver. The use of this control algorithm was also 
justified with simulations that demonstrated that the reduced temperature variations during 
cloud events would yield less fatigue damage on the receiver tubes. While optimizing between 
component cost and power production would be ideal, the lack of high- quality cloud data and 
modelling necessitated a precautionary control strategy. 

Recently, work by Schwager et al. [8] investigated strategies to model the spatial vari-
ation of transient cloud events and the resulting receiver flux. They developed complementary 
aim- point and HTF control strategies, where it was found that not accounting for the spatial 
variations due to cloud transients can lead to overpredicting the annual solar yield by 2-4% 
and control strategies that do not account for local spatial DNI variation can result in exceeding 
the temperature limits of the HTF. Another paper by Crespi et al. examines the effects of dif-
ferent synthetic cloud events on receiver efficiency and finds a 1% increase in receiver effi-
ciency using aiming strategies that account for spatial DNI data [9]. Rangel et. al used actual 
DNI data from CIEMAT’s Plataforma Solar de Almeria (PSA) and the Solar Tower Ray Tracing 
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Laboratory (STRAL) tool [10] to find the flux on the receiver and subsequently the creep- fa-
tigue damage using the rainflow-counting algorithm and a simplified elastic stress analysis 
[11]. These studies demonstrate the utility of using spatially resolved DNI data to increase 
receiver efficiency and more accurately determine annual solar yield. However, these methods 
have yet to be integrated into annual production simulations that optimize between the increase 
in electricity revenue due to less conservative control strategies and the subsequent reductions 
in receiver component lifetime in order to maximize long term revenue. 

This paper aims to demonstrate methods whereby cloud shadows may be projected 
onto the heliostat field using the CoPylot Python API [12]. While CoPylot is not yet optimized 
for multi- threading, in the future it may approach the computing time of SolarPILOT, which 
can simulate the incident flux on a central receiver in <105 ms [13]. This would allow for the 
fast-optical characterization of large sets of cloud data or for real-time operations. Sources of 
cloud transient data that may be used and explanations of the software methods in this paper 
are described in the following sections. 

2. Data Sources 

The three primary sources of readily available DNI data that are spatially and temporally re- 
solved enough to be applicable to a solar power tower field are: Total Sky Imagers (TSIs), 
correlated DNI data from photovoltaic (PV) panels or sensors on heliostats, and satellite im-
agery. Additional sources of data may come from radar, lidar, or drones, but have yet to be 
validated in the literature on heliostat fields. 

TSIs or cloud cameras use a fisheye lens and a shadow arm to image the entire sky at 
~10 m spatial and 30 s temporal resolution and have successfully been used for DNI nowcast-
ing [14]. Nouri et al. used 4 TSIs to calculate cloud height and estimate cloud transmittance by 
generating 3D cloud voxels [15], [16]. Other methods that use multiple TSIs to generate 
shadow masks from 3D cloud shapes and project them onto heliostat or PV fields are docu-
mented in [17] and [18]. Examples of publicly available datasets include those from the Atmos-
pheric Radiation Measurement (ARM) Climate Research Facility [19] and a benchmark dataset 
released by Coimbra et al. [20]. To our knowledge there are no publicly available TSI datasets 
that consist of two or more cameras for implementing 3D stereoscopic cloud shape algorithms, 
which means that cloud height must be estimated using some other method. 

Some CSP plants are opting to use battery-powered heliostats powered by PV panels 
in- stead of using an underground wired power system as this reduces cost and may potentially 
avoid issues during electrical storms [21]. PV panels are powered by global horizontal irradi-
ance (GHI), which can be correlated to DNI using a variety of models if the diffuse and ground 
reflected radiation are known. The Megalim plant operated by BrightSource Energy utilizes this 
method. Given the high spatial and temporal resolution that results from this approach, this 
method is likely the most accurate data source outside of an array of pyrheliometers for deter-
mining the DNI over a field [22]. Unfortunately, the range is limited to where the hardware can 
be placed, meaning other sources are necessary for accurate nowcasting and new plant site 
determination. 

Satellite DNI data is mostly available at the mesoscale (~1-4 km) from geostationary 
satellites at short time resolutions (5-30 mins) [23]. For example, the National Solar Radiation 
Database (NSRDB) has 5 min time resolution and 2 km spatial resolution (as of 2018) for 
anywhere in the United States using sensors from a collection of satellites such as GOES and 
MODIS to calculate DNI, GHI, and a variety of other variables [24]. Similar systems to evaluate 
DNI exist for other countries such as EUMETSAT’s MSG satellite; in [25], Sirch et al. used the 
SEVIRI instrument aboard MSG to determine and forecast the DNI reduction from both water 
and cirrus ice clouds with a 15 min temporal resolution and 3 km spatial resolution. 
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To achieve higher spatial resolutions for satellite data, constellations of lower orbiting 
sun synchronous polar satellites are often used at the expense of temporal resolution (re-im-
aging the same location every 1-12 days). The two publicly available satellite datasets with the 
highest spatial resolution are the LANDSAT and Sentinel-2 constellations with resolutions of 
30 and 10 meters, respectively. Private satellite datasets, often used for surveillance or land 
monitoring purposes, offer higher spatial (0.3-1 m) and temporal resolution (<1 day) at the 
expense of less available spectral bands. While algorithms such as those described in [26] are 
used to identify clouds and their shadows in Sentinel-2 imagery, for example, there are no 
physical models to calculate DNI from these datasets. Nevertheless, as this is the only publicly 
available dataset with comparable resolution to heliostat PV-DNI correlations, this resource is 
used by the authors in the following sections.  

3. Description of software 

The two methods used to map cloud shadows onto the heliostat field will be referred to as the 
Raster and Vector methods, respectively. The Raster method converts the DNI data into a 
numerical array using the numpy library in Python and scales/masks the array onto the helio-
stat field by adjusting each heliostat’s soiling or optical efficiency parameter. The array can 
either be a binary array (corresponding to turning the DNI on or off) or an array of floats nor-
malized between 0 and 1 (corresponding to reducing the DNI). Eq. (1) gives the values in the 
array, where �̅� is the position vector, usually provided in Cartesian coordinates with respect to 
the tower: 

 
𝜂ℎ𝑒𝑙,𝑐𝑙𝑑(�̅�, 𝑡) =

𝐷𝑁𝐼(�̅�, 𝑡)

𝐷𝑁𝐼𝑐𝑙𝑒𝑎𝑟,𝑠𝑘𝑦(�̅�, 𝑡)
 

(1) 

In [25], Sirch et al. uses the Lambert-Beer Law and the “strict definition” of DNI that is often 
used in radiative transfer models to derive an approximate equation for the DNI over a given 
point described in Eq. (2) 

 
DNI = 𝐼0 ∗ exp⁡(−

τ𝑔 + 𝜏𝑐𝑙𝑑

cos⁡(𝜃0)
) (2) 

where 𝐼0 is the extra-terrestrial solar irradiance integrated over the entire spectrum (~1367 
W/m2) [27], τ𝑔 is the optical thickness of the atmosphere, which depends on factors such as 
water vapor content (note that Sirch et al. does not account for aerosols, but this term may be 
added for better accuracy τ𝑎𝑒𝑟𝑜), τ𝑐𝑙𝑑 represents cloud optical thickness (sometimes referred 
to as cloud optical depth), and 𝜃0 is the solar zenith angle. Sirch et al. also notes that cloud 
optical thickness is often split between high-altitude thin ice clouds (𝜏𝑐𝑙𝑑,𝑐𝑖𝑟𝑟𝑢𝑠) and low-altitude 
water clouds (𝜏𝑐𝑙𝑑,𝑙𝑜𝑤), where the low-altitude water clouds often have such high optical thick-
ness values that they reduce DNI to below levels usable for CSP (<200 W/m2). As such, using 
a binary cloud shadow mask is often appropriate and simple to implement in the presence of 
low-altitude water clouds.  

The Vector method draws a set of polygons around cloud shadows on the field. The 
vertices of the polygons are then passed to CoPylot and used to adjust the soiling parameter 
of the heliostats within them. The polygons are generated using the Sci-kit image library [27], 
which uses a special 2D case of the “marching cubes” algorithm [28] called the “marching 
squares” algorithm, the details of which can be found in [29]. To generate the polygons from 
DNI data, a threshold value must be passed; in the case of binary cloud shadow masks for 
low-altitude water clouds, the selection of a threshold value is straightforward. However, in the 
presence of thin cirrus clouds, which reduce DNI gradually based on optical thickness, multiple 
threshold values need to be selected depending on the bit depth of the DNI values, which 
offsets any computation time savings compared to the Raster method. 
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Figure 1 demonstrates a synthetic cloud shadow mask composed of a 500 x 500 m 
cloud moving across the SAM default field and its effect on incident receiver flux using the 
Raster method. The cloud event duration is 15-minutes simulated using 30 s time steps at a 1 
m spatial resolution. Figure 2 shows histograms of the computation time for projecting the 
cloud shadow in Figure 1 onto the field as it moves from West to East for the two methods, 
respectively. Using one core on an i7-7700HQ 2.8 GHZ CPU, the total time for calculating the 
receiver flux for the cloud event was 190 s and 175 s for the Raster and Vector methods, 
respectively.  

 

Figure 1. (a-b) synthetic 2500 m2 square cloud moving over heliostat field from west to east 
using Raster method (c-d) receiver incident solar flux map from CoPylot. 

 

Figure 2. (a) Raster Method histogram of computation time for each time step for square 
cloud moving across field (b) Vector Method histogram (Note: to account for multiple small 

cloud shapes, longer computing time is required). 
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4. Satellite Data Use Case 

To demonstrate how satellite data or an analogous data source may be used to project shad-
ows onto the heliostat field, data from the Sentinel-2 satellite was retrieved over the Crescent 
Dunes plant using the Google Earth Engine (GEE) and GEEMap libraries [30]. This demon-
stration only shows how the software may be used and is not meant to accurately estimate 
DNI. Sentinel-2 contains 13 spectral bands and a variety of data products such as aerosol 
optical thickness (AOT) and water vapor content, which may be used in a physical model to 
more accurately calculate DNI [31]. However, for simplicity, precomputed cloud and shadow 
masks are taken from [32]. Figure 3 demonstrates how the precomputed cloud shadow mask 
is projected onto the heliostat field in Cartesian coordinates using a UTM projection library. As 
the Sentinel-2 time resolution is not sufficient for capturing transient cloud events, one method 
from Crespi et al. [9] can be employed where the cloud shadows may be translated in time 
both before and after the local image time using the local wind velocity vector and the Hellman 
equation for altitude correction. Local wind velocity vectors may be taken from a nearby 
weather station or from GOES satellite data products such as the Wind Integration National 
Dataset (WIND) Toolkit [33]. 

 

Figure 3. (a) Seninel-2 RGB Image from Crescent Dunes (taken at 02/18/2019 10:43:46AM 
local time) (b) cloud shadow mask from pre-computed Sentinel-2 dataset (c) cloud shadow 

mask projected onto field in CoPylot using UTM library 

5. Conclusion 

With optimization for multithreading, the methods described in this paper may be used to com-
pute the incident flux on the receiver during cloud transient events at computational speeds 
similar to SolarPILOT (<105 ms), which would be suitable for characterizing the effects of large 
datasets of clouds or to examine real-time plant operations. While data from Sentinel-2 was 
demonstrated on an external cylindrical receiver, there is no limitation to the data sources that 
may be used to compute DNI maps or the types of receivers that may be modeled, so long as 
they are within SolarPILOT. This paper also highlights the need for physics-based DNI models 
for polar orbiting satellites such as Sentinel-2 and public repositories for stereoscopic TSI im-
agery, as these resources would allow for more accurate assessment of the local solar re-
source when selecting sites for future plants.  

Data availability statement and related material 

Details on accessing Sentinel-2 satellite and cloud data can be found in the GEE documenta-
tion [32]. The CoPylot API can be accessed from the SolarPILOT GitHub repository found in 
[34]. 
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