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Abstract. Concerning current efforts to improve operational efficiency and to lower overall 
costs of concentrating solar power (CSP) plants with prediction-based algorithms, this study 
investigates the quality and uncertainty of nowcasting data regarding the implications for pro-
cess predictions. DNI (direct normal irradiation) maps from an all-sky imager-based nowcast-
ing system are applied to a dynamic prediction model coupled with ray tracing. The results 
underline the need for high-resolution DNI maps in order to predict net yield and receiver 
outlet temperature realistically. Furthermore, based on a statistical uncertainty analysis, a 
correlation is developed, which allows for predicting the uncertainty of the net power predic-
tion based on the corresponding DNI forecast uncertainty. However, the study reveals signif-
icant prediction errors and the demand for further improvement in the accuracy at which local 
shadings are forecasted. 
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1. Introduction and simulation setup

Process prediction and model predictive control methods are developed to optimize yield and 
costs of concentrating solar power (CSP) plants. Due to the fluctuating supply of solar ener-
gy, the use of forecasting data increases their potential. Available DNI (direct normal irradia-
tion) forecasting data are usually based on satellites or all-sky imagers (ASI) and differ in 
temporal and spatial resolution as well as the forecasting uncertainty [1]. In order to investi-
gate the implications regarding process prediction and model-predictive control (MPR) for 
molten salt solar towers (MST) measured and forecasted DNI maps from an ASI-based sys-
tem [2] are applied to raytracing [3] and the resulting series of flux density distributions is 
imported into a dynamic prediction model of a 700 MWth external receiver system [4]. The 
latter is simulated in Dymola® with detailed discretized modelling of the receiver (Absorber 
tubes) and also includes the combined feedforward and feedback temperature control as 
tested in the SolarTwo plant [5] as well as the commercially applied clear-sky mass flow con-
trol [5, 6]. 

1

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Schwager et al. | SolarPACES Conf Proc 1 (2022) "SolarPACES 2022, 28th International Conference on  
Concentrating Solar Power and Chemical Energy Systems" 

 
2. Impact of DNI map resolution 

In order to determine the required quality of the input data for a dynamic process prediction, 
i.e. DNI forecast data, the prediction model is simulated with input data of different spatial 
quality. In this sense, the resolution of a series of DNI maps is coarsened with two different 
clustering methods, as illustrated in Figure 1. The original data (a) are obtained from a re-
cently developed nowcasting system. These data include, for every 30 s of the day, a set of 
DNI maps from lead time 0 (LT00), which is considered as reference, up to 20 min lead time 
(LT20) in 1 min increments. For this part of the study, only the reference maps (LT00) are 
applied. 

 
(a) (b) (c) 

Figure 1. Visualization of (clustered) DNI maps and the heliostat field layout (a: original pix-
els 20 m by 20 m; b: Cartesian clustering 500 m by 500 m; c: polar clustering 30 ° by 500 m). 

Since, in general, the available forecasting methods provide maps with different resolutions 
of square pixels, the Cartesian clustering method (Figure 1 b) enlarges the original 20 m by 
20 m pixels to a multiple. Different enlargement factors are considered to replicate different 
forecasting methods, such as all-sky imager (high resolution) or satellite-based (lower resolu-
tion) systems. The clustering is done by calculating average values for each cluster to keep 
the integral within each cluster and for the entire DNI map consistent. In order to compare a 
clustering method that suits the heliostat field layout better, the polar clustering method is 
introduced, calculating average values across multiple pixels as well, but the aggregation is 
done on a polar coordinate-based pattern (compare Figure 1 c). The origin of the polar coor-
dinate system is located at the tower position. The cluster sizes are varied in radial and cir-
cumferential direction independently from each other. 

As a result, an excerpt of the predicted intercept and net power trends based on different 
input data resolutions (Cartesian method) are plotted in Figure 2. Significant deviation can be 
observed, especially with cluster sizes of more than 500 m. This is mostly due to averaging 
across areas that only partially intercept with the heliostat field so that outsider DNI values 
manipulate the simulated irradiance in the heliostat field. 

In order to eliminate short-term deviations, which are irrelevant for predicting yield over a 
period of several minutes, a 20 min moving average is applied to the net power trends before 
calculating statistic metrics throughout a full operation day (10.5 h). The resulting mean-
absolute deviation (MAD) and root-mean-square deviation (RMSD) are graphed in Figure 3 
against the cluster size with (right) and without (left) applying the 20 min moving average. As 
expected, the RMSD rises progressively up to 5.4 MWel at 2000 m wide clusters, but with 
decreasing cluster sizes, it converges to approx. 0.08 MW. Peak deviations reach from 
0.25 MWel to 16.15 MWel. Regarding the model accuracy and the order in which prediction-
based operational decisions can increase yield, it seems appropriate to aim for an RMSD of 
less than 1 % of the nominal power. Accordingly, a pixel size of less than 960 m is required to 
keep the RMSD below 1.2 MWel. This excludes any state-of-the-art satellite-based forecast-
ing technology, but the resolution of nowcasting maps from all-sky imager-based systems 
(ASI) is sufficient for such a yield prediction application. 
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Figure 2. Excerpt of simulated intercept (top) and net (bottom) power based on different Car-

tesian cluster/pixel sizes. 

 
Figure 3. Statistics of the net power (left) and of the corresponding 20 min moving average 

(right) in dependence of the Cartesian cluster size. 

Furthermore, the same statistical analysis is conducted for the polar clustering method to 
examine the influence of the heliostat field layout. The resulting MAD and RMSD values are 
plotted in Figure 4 against the circumferential (left) and radial (right) cluster sizes. In each of 
the two parameter variations, the respective other parameter is kept constant at the smallest 
considered value. Hence, the deviations are smaller compared to the Cartesian clustering. 
However, depending on the radial cluster size, the RMSD varies between 0.09 MWel and 
1.47 MWel with a progressive trend, while peak deviations lie between 0.28 MWel and 
4.08 MWel. 

In contrast, the RMSD correlates almost linearly with the circumferential cluster size in 
the rage of 0.09 MWel to 1.48 MWel with peak deviations between 0.28 MWel and 4.47 MWel. 
In comparison, at small cluster sizes, the net power prediction is more affected by the cir-
cumferential resolution since the field efficiency and the receiver efficiency both vary around 
the circumference significantly, whereas the radial DNI gradients only interfere with the field 
efficiency and not with the receiver efficiency due to blurring effects caused by vertically off-
setting aim points. However, at larger cluster sizes, the aforementioned impact of outsider 
DNI values (outside of the heliostat field but still within the cluster) explains the progressive 
increase in the dependency from Δr. With one additional parameter sweep for Δφ at Δr = 
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500 m, it can be concluded that an appropriate cluster size of 500 m by 90 ° results in an 
RMSD of 0.79 MWel. 

 
Figure 4. Statistics of the net power (20 min moving average) in dependence of the polar 

cluster size (Δφ at Δr = 100 m, Δφ at Δr = 500 m and Δr at Δφ = 10.6 °). 

Moreover, the same analysis for the controlled outlet temperature results in the data shown 
in Figure 5. In addition to MAD and RMSD values, these plots include the maximal positive 
and negative deviation during the test scenario. Besides, these values are based on the ac-
tual predictions without temporal averaging since momentary deviations are relevant for con-
trol performance. These results clarify that coarse DNI map resolutions can lead to drastic 
over or underestimation of the outlet temperature. To keep the RMSD below 1 % of the nom-
inal temperature span of 275 K, a pixel size of less than 370 m is required. Concerning the 
polar clustering, the outlet temperature prediction is much more sensitive regarding the cir-
cumferential cluster size, in contrast to the net power. This is plausible since circumferential 
flux gradients can cause significant outlet temperature variations even if they do not affect 
the overall intercept power. The sensitivity regarding the radial cluster size is only half as 
strong. Therefore, precisely forecasting the position of local shading is especially important 
concerning its azimuth relative to the tower. E.g., for a shadow that crosses the northern or 
southern part of the heliostat field the x position requires more accuracy than the y position. 
The opposite applies to partial shadings on the western or eastern part of the field. One addi-
tional parameter sweep over Δφ at Δr = 500 m suggests an appropriate cluster size of 500 m 
by 21.8 ° to achieve an RMSD of 2.75 K. 

  
Figure 5. Statistics of the controlled outlet temperature in dependence of the Cartesian and 

polar cluster size (Δx, Δφ at Δr = 100 m and Δr at Δφ = 10.6 °). 
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3. Impact of DNI forecast errors on dynamic process prediction 

In order to analyze how the dynamic simulation model performs with forecasted input data, 
including associated forecasting errors, designated forecasting scenarios with lead times 
from 0 to 20 are composed for the same day as above. I.e. the scenario LT20 represents a 
forecast based on ASI data from 20 min before each time step, whereas LT00 is considered 
as (auto validation) reference. As an example, Figure 6 shows the intercept and net power 
trends for LT01 to LT10 over 3 hours. Apparently, the shadow-induced drop-downs in the 
forecast scenarios are shifted to the right with increasing lead time. This is due to some 
shadows rather appearing and disappearing than moving across the heliostat field, making it 
difficult to forecast. Hence, the earlier the forecast is done, the older the data it is based on 
and therefore, the forecast is often lagging behind. 

 
Figure 6. Excerpt of predicted intercept (top) and net (bottom) power based on forecasted 

DNI maps with different lead times. 

The discrepancy between predicted and actual power becomes clearer in Figure 7, where 
the predicted (LT01) data is plotted against the actual (LT00) data. The intercept power scat-
ters significantly and the net power data point agglomerate along circular paths, due to the 
thermal inertia. Ideally, they would all follow the indicated linear straight line. According to the 
plot below, the root mean square deviation (over time) of the intercept power lies around 
35.8 MWth with occasional deviations by more than 100 MWth respectively for the net power 
around 11.2 MWel with deviations up to approx. 30 MWel. Those numbers significantly in-
crease with longer lead times, but also decrease when applying a moving average on the 
power trends (see Figure 8). This is appropriate when the uncertainty of yield prediction for a 
certain period is of interest. 

However, those results only represent one specific scenario and strongly depend on 
the achieved forecasting accuracy. To find a correlation between prediction and forecast un-
certainty, the following study examines prediction errors in dependence of four different fore-
cast error metrics. Since yield prediction is usually relevant for periods of several minutes, a 
5 min moving average is applied on the power trends to mitigate short-term fluctuations. In 
addition, all forecast errors are calculated only based on pixels inside the heliostat field. First, 
the root mean square deviation (RMSD) over the heliostat field area is considered, as it is 
common in nowcasting validation. Second, the RMSD is applied on polar clustered (500 m by 
90 °) DNI maps. Third, the absolute value of the bias (|bias|) is considered, which totally ne-
glects spatial variations. Lastly, the bias itself is considered as the only signed error metric. 
Figure 9 presents the corresponding scatter plots with 95 % transparency and includes a 
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linear fit (dotted line). Apparently, the RMSD correlates poorly with the prediction errors as 
indicated by the low coefficients of determination (R²). The clustered RMSD only achieves a 
minor improvement, whereas the (signed) bias results in the highest R². 

 
Figure 7. Predicted intercept (left) and net (right) power as well as the corresponding predic-

tion errors scattered over actual power for 1 min lead time. 

 
Figure 8. Sensitivity of the RMSD of the net power prediction over lead time with different 

moving average intervals. 

Furthermore, each plot in Figure 9 includes a linear 95 % confidence threshold (dashed line), 
which can help to predict the uncertainty of power predictions at any time based on the cor-
responding forecast error in the following manner: With 95 % confidence 

| prediction error | < a · forecast error + b    (1) 

with unsigned forecast error metrics respectively 

a · forecast error - b < prediction error < a · forecast error + b  (2) 

with the signed bios (compare Table 1). Moreover, the parameter b decreases with the mean 
average interval length. Hence, not only does the forecast and therefore prediction errors 
decrease with longer averaging intervals, but also its uncertainty can be predicted more pre-
cisely. Finally, as a performance indicator for the uncertainty prediction, the mean absolute 
value of the predicted uncertainty (MAPU) is given in Table 1 for the considered scenario and 
lead times in total. In conclusion, bios as a forecasting error metric results in the lowest MA-
PU and is therefore best suited for predicting the uncertainty of the net power prediction. 

0
5

10
15
20
25
30
35

0 5 10 15 20

R
M

SD
 [M

W
el
]

Lead time [min]

1
5
10
20
40
60

6



Schwager et al. | SolarPACES Conf Proc 1 (2022) "SolarPACES 2022, 28th International Conference on  
Concentrating Solar Power and Chemical Energy Systems" 

 
 

 
Figure 9. Prediction errors of the 5 min moving average of the intercept (top) and net power 

(bottom) values for all 20 lead times over different DNI map forecast error metrics. 

Table 1. Parameters of the 95 % confidence threshold and resulting mean absolute uncer-
tainty prediction (MAPU) for the net power prediction. 

 τmov.av. RMSD-
based 

CRMSD-
based 

|Bias|-
based 

Bias-based 

a, b [MW/(W/m²), MW] 5 min 0.102   , –  0.23     , – 0.3465 , – 0.1127 , 28.3 
 20 min 0.0823 , – 0.1752 , – 0.231   , – 0.1223 , 16.4 
 60 min 0.0755 , – 0.162   , – 0.2084 , – 0.1119 , 7.8 
MAPU [MW] 5 min 38.2 37.7 40.6 28.6 
 20 min 31.1 29.0 27.4 17.0 
 60 min 29.1 27.6 25.5 8.0 

The same uncertainty analysis for predicting the outlet temperature results in the plots shown 
in Figure 10. To make the results more relevant for model predictive control (MPR) the mov-
ing average interval is set to 1 min and only a lead time of 1 min is evaluated. However, all 
forecast error metrics correlate poorly with the outlet temperature prediction error.  

 

 
Figure 10. Prediction errors of the 1 min moving average of the receiver outlet temperature 

over different DNI map forecast error metrics. 
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4. Conclusion 

Real nowcasting data respectively forecasted DNI maps were applied to a detailed dynamic 
prediction model of a full-scale molten salt receiver system coupled to a raytracing software 
in order to investigate the impact of DNI map quality and forecasting errors on receiver outlet 
temperature and net power prediction. The results indicate, that the DNI map resolution of a 
state-of-the-art ASI system is sufficient for both the outlet temperature and net power predic-
tion. However, satellite-based systems would require further improvements to achieve pixel 
sizes in the order of hundreds of meters to achieve appropriate prediction accuracy.  

Furthermore, a correlation developed based on a statistical uncertainty analysis allows 
for predicting the uncertainty of the net power prediction based on the uncertainty of the fore-
casted DNI maps, as it can be provided by the considered nowcasting system at any time for 
each pixel. The results also implicate the need for further improvements regarding the fore-
casting errors to allow for more accurate process predictions, especially for longer lead 
times. The use of forecasted DNI maps in model predictive outlet temperature control only 
seems reasonable, if local shadings can be forecasted more accurately. 
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