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Abstract. We present a Reduced Order Method approach to the heat exchange and loses in 
a simulated 3D cavity of CSP tower receivers. We validate the method in a 2D Boussinesq 
model problem for natural convection monitoring temperature, pressure and velocity for 
different values of the Rayleigh number. For the 3D problem of heat loses estimation we 
compute the snapshots with Ansys Fluent in a realistic model of a cavity with wind velocity and 
wall temperatures as varying parameters. The reduction in computational time can be up to 
four orders of magnitude with relative errors of 10^-5.  
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1. Introduction

The modeling of heat transfer in solar plants depends on many parameters and geometrical 
variables: materials, dimensions, intensity and shape of the incident solar spot, carrier fluid 
pressure, mass flow... Additionally, there are many design constraints (performance, 
geometry, integrity of the structure) that must be fulfilled. Therefore, the optimization of the 
process is difficult and costly, and an iterative procedure is required to swap over the full 
parameter and variables range. 

Reduced Order Modelling (ROM) provides reductions of several orders of magnitude 
in the computational cost required by the numerical simulation of parametric processes and 
design problems involving large numbers of degrees of freedom, making affordable the 
analysis of the behavior of highly complex systems, which would be out of reach using 
resolution techniques or standard numerical approximation (cf. [1] for a general overview). 

Typically, ROMs are pre-built in an offline phase, requiring the full-order model to be 
solved for several well-chosen cases. Then, using appropriate techniques, this information (the 
“snapshots”) is compressed to select the basic or main component functions of the ROM, which 
are those used in the online phase. 
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ROM techniques are used in this work to address the problem of the design of CSP 
tower receivers and their cavities in the case of high temperature applications (>600ºC). Two 
coupled field thermal-fluid problems are to be solved in parallel, namely: 

• P1: Heat transfer to HTF running through the irradiated pipes 
• P2: Convective Heat Losses to ambient (with or without cavity) 

The next step will be a nonlinear constrained optimization algorithm that uses the 
ROMs as core loop calculation both for the P1 and P2 problems and different cavities' 
geometries [2].  

2. Reduced Order Modelling 

ROMs are built in two phases, the offline phase and the online phase. In the offline phase, we 
need to solve the FOM in several well-chosen cases and then through different mathematical 
techniques we obtain our ROM basis in order to use it in the online phase. The online phase 
uses this basis to solve the reduced problem to obtain new predictions. 

For P1, we plan to afford the reduced modelling of the parametric heat flow within the 
receiver panels by a hybrid (intrusive/non-intrusive) reduced-order approach. Actually, there 
exist two versions of ROMs method, the intrusive method and the data-driven or non-intrusive 
method. In the case of intrusive ones, the reduced solutions are determined by solving a 
reduced order model, i.e., a projection of the FOM (Full Order Model) onto the reduced space. 
However, the data-driven or non-intrusive reduced order models are independent from the 
original physical system. They only learn from the snapshots, i.e., either numerical 
approximations or measurements of the states of the dynamical systems, when the operator 
of the discretized systems are not available. In this work, we decide to combine both strategies, 
as explained hereafter in detail. We consider as parameters both the geometrical parameters 
determining the receiver geometry (diameter and length of the pipes) and the physical 
parameters determining the boundary data for the heat flow (incoming mass flow and 
radiation). To approach the problem, we started with a preliminary test based on the 2D 
Boussinesq equations for natural convection problem [3]. The reduced turbulence model starts 
from finite element snapshots for velocity, pressure and temperature computed by a 
Boussinesq VMS-LES Smagorinsky turbulence model [4] with LPS (Local Projection 
Stabilization) in pressure [5] (called the “full order” model, FOM). We have added the LPS term 
in order to consider equal order finite elements for velocity, pressure and temperature, 
respectively. Steady solutions at strongly convection-dominated regime (Rayleigh number Ra 
up to 107) are taken as snapshots.  

At the reduced order level, we use a projection-based (intrusive) approach for the 
Boussinesq equations. The nonlinear term of the VMS-LES Smagorinsky model and the 
nonlinear LPS stabilization coefficients have been approximated both by an intrusive method 
through the Discrete Empirical Decomposition Method (DEIM) [6], giving rise to a fully intrusive 
ROM, and a nonintrusive/data-driven method through Radial Basis Functions (RBF) [7], giving 
rise to a hybrid ROM. We have performed a comparison between both methods in terms of 
accuracy and efficiency. Indeed, the DEIM method (intrusive) strongly depends on the specific 
turbulence model (and related empirical coefficients) employed at the full order level. On the 
contrary, the interest of the recently proposed data-driven (non-intrusive) method based on 
RBF is that is totally generic, regardless of the turbulence model (LES or RANS) used at the 
full order level.  

For P2, we have used a fully non-intrusive data-driven approach based on FOM 
snapshots computed with Ansys FEA-CFD software. The ROM is built based on barycentric 

2



Valverde et al. | SolarPACES Conf Proc 1 (2022) "SolarPACES 2022, 28th International Conference on 
Concentrating Solar Power and Chemical Energy Systems" 

triangulation for the selection of the parameter points and on Proper Orthogonal 
Decomposition for the selection of the modes. Eventually, Radial Basis Function techniques 
with multiquadratic kernel are used as interpolation method [10]. 

This combined procedure allows to construct a digital twin of the heat flow within the 
receiver and heat loses to ambient in the off-line stage, with very low number of degrees of 
freedom. The on-line stage consists in using this reduced digital twin to compute 
approximations of the full velocity and heat flows, as well as convective heat transfer 
coefficients for heat losses computations. 

3. Results 

For P1, the Boussinesq VMS-LES Smagorinsky ROM has been tested for 2D thermal flow in 
a square cavity with differentially heated vertical walls, with Rayleigh number in the strongly 
convection-dominated regime (up to 107) as physical parameter. The FOM is computed 
through a semi-implicit evolution approach, considering that the steady solution is reached 
when the error between two iterations is below 10-8. We consider a uniform partition of the 
Rayleigh values in the range [106,107] in order to obtain 100 snapshots for the POD-ROM. 

  

  

Figure 1. FOM solution (left) and ROM solution (right) of pressure, temperature and velocity 
magnitude (from top to bottom) for Ra = 5173246. 
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Due to the large values of Rayleigh number considered, the flow is stretched to the walls and 
the heat transfer is strongly driven by convection, so we decided to refine the grid towards the 
walls in both spatial directions using a hyperbolic tangent function. 

To show the results, we used values of Rayleigh numbers in the range [106,107] but 
different from the trial values (snapshots). In Figure 1, we can see a comparison between the 
pressure, temperature, and velocity magnitude (from top to bottom) of FOM (left) and ROM 
(right) with Ra = 5173246 using data-driven (non-intrusive) method based on RBF. 
Table 1. CPU time for FOM and ROM solutions, with the speedup, relative errors for velocity, 

temperature and pressure and the average Nusselt number with fully intrusive method. 

Data Ra=3245178 Ra=5173246 Ra=7986112 
TFE (s) 31762,3 30772,7 29968,3 
TROM (s) 3,11 4,22 5,63 
Speedup 10212 7292 5394 
Relative L2 error (vel) 5,5 x 10-4 9.05 x 10-4 1,36 x 10-4 
Relative L2 error (temp) 5,03 x 10-5 8,4 x 10-5 1,22 x 10-5 
Relative L2 error (press) 1,7 x 10-3 2,09 x 10-3 3,6 x 10-3 
Average Nusselt Number - FOM 12,2041 13,8461 15,586 
Average Nusselt Number - ROM 12,2032 13,8442 15,555 

 

Table 2. CPU time for FOM and ROM solutions, with the speedup, relative errors for velocity, 
temperature and pressure and the average Nusselt number with data-driven/non-intrusive 

method. 

Data Ra=3245178 Ra=5173246 Ra=7986112 
TFE (s) 31762,3 30772,7 29968,3 
TROM (s) 3,06 4,04 5,118 
Speedup 10400 7617 855 
Relative L2 error (vel) 3,22 x 10-5 5,1 x 10-5 7,08 x 10-5 
Relative L2 error (temp) 1,66 x 10-5 2,09 x 10-5 2,99 x 10-5 
Relative L2 error (press) 9,3 x 10-5 1,4 x 10-4 1,3 x 10-3 
Average Nusselt Number - FOM 12,2041 13,8461 15,586 
Average Nusselt Number - ROM 12,2041 13,8461 15,586 

In this benchmark, to see a comparison between the fully intrusive DEIM and the data-
driven/non-intrusive method based on RBF method used to treat the nonlinear turbulence and 
stabilization terms, we show Tables 1 and 2, that display the speed up of the ROM, relative 
errors of velocity, pressure, and temperature and average Nusselt number. We remark that 
the speedup refers to the improvement of the computational velocity: FOM cpu time / ROM 
cpu time. We observe that the data-driven (non-intrusive) method presents slightly higher 
speed up than the fully intrusive one and the relative errors are in general comparable, being 
in some cases one order of magnitude lower for the data-driven (non-intrusive) method. 

 

Figure 2. Left) SOLUGAS-type cavity. Right) Cavity plus ambient air control volume. 
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For the data-driven (or non-intrusive, see the beginning of section Reduce Order Modelling 
for explanation) ROM of P2, ROMs have been obtained for two parameters variation, 
namely: wind velocity V = [5-30] m/s and cavity temperature T = [973-1373] K, see Figure 2, 
for a SOLUGAS-like cavity receiver. The direction of the wind velocity is fixed and taken as 
the primary direction over the year (22.5° SE), which is quite constant. A total of 30 FOM 
snapshots were computed with uniform partitions on both parameters: V = [5,10,15, 20, 
25,30] m/s and T = [973, 1073, 1173, 1273, 1373] K. The comparison of computational time 
between FOM and fully non-intrusive ROM [10] is huge: full simulation vs off-line 
“interpolation”, from several hours to seconds (O(104)). In order to compute the ROM 
approximation errors, a leave-one-out strategy has been performed, therefore in each case 
(set of parameters: S1 = [V = 5, T=1373], S2 = [V = 30, T=1373]) 29 snapshots are used out 
of 30 available (one-out to compare). Figures 3 to 5 show a comparison of the FOM vs ROM 
with Relative Errors also computed as percentage (%). Please note that all variables 
(temperature, pressure and velocity have been rescaled from 1(minimum) to 2 (maximum) to 
properly compute relative errors in each case. Results are shown in scaled version. 

 

 

Figure 3. Temperature field: (left to right:) FOM snapshot, ROM prediction and relative errors 
(%) for two sets of parameter values: temperature T=1373 K, wind velocities V= [5 (top), 30 

(bottom)] m/s, Leave-one-out strategy. 

Figure 3 shows the scaled temperature field in the full control volume. Errors up to 24% for 
parameters set S1 can be encountered in the cavity interior (13% for parameters set S2), where 
higher gradients are present, however, for most of the domain errors are below 5%. These 
errors are expected to be maximum, since we are removing the extreme value of 1373 K from 
the snapshots set. For other inner points of the parameter, lower errors are expected.  
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Figure 4. Temperature field: (left to right:) FOM snapshot, ROM prediction and relative errors 
(%) for inner parameter values set s3: temperature T=1173 K, wind velocity V=20 m/s, 

Leave-one-out strategy. 

 

 

Figure 5. Pressure field: (left to right:) FOM snapshot, ROM prediction and relative errors (%) 
for two sets of parameter values: temperature T=1373 K, wind velocities V=[5 (top), 30 

(bottom)] m/s, Leave-one-out strategy. 

Eventually, the procedure is applied to the velocity field, in this case the X component, see 
Figure 6. For the parameters set S1 the maximum error is 2.1% while for set S2 we obtain 1.5%, 
again exceptional results. To improve the results for the temperature (Figures 3 and 4), that 
shows the higher errors, more FOM snapshots should be calculated. A procedure to select the 
best new choice of FOM snapshots is under development and it is out of the scope of the 
present paper. It is based on the errors computed with the leave-one-out strategy, selecting 
new snapshot parameter values where the errors are higher. 
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Figure 6. X component of velocity field: (left to right:) FOM snapshot, ROM prediction and 
relative errors (%) for two sets of parameter values: temperature T=1373 K, wind velocities 

V=[5 (top), 30 (bottom)] m/s, Leave-one-out strategy. 

Table 3. Errors for parameter sets S1 = [V = 5, T=1373], S2 = [V = 30, T=1373]. 

Variable V Re Min Re Mean Re Max 
5 30 5 30 5 30 

Temperature 4 x 10-6 10-5 2,23 2,89 24,4 12,9 
Velocity X 3 x 10-6 5 x 10-6 0,30 0,42 2,1 1,5 
Velocity Y 5 x 10-7 3 x 10-6 0,60 0,61 18,4 16,3 
Velocity Z 5 x 10-6 6 x 10-7 0,67 0,61 18,7 29,6 
Pressure 4 x 10-6 4 x 10-7 0,07 0,35 0,32 1,38 

 
The errors for parameters set S1 and S2 are reported in Table 3. In general, non-intrusive 
strategy is less accurate than intrusive because we are not integrating the FOM equations in 
the procedure. We are only making use of the results produced by the FOM. However, but 
from an operative point of view, it is easier to integrate into an existing simulation environment 
already established, for instance in a company using commercial FOM simulation. 
 

In conclusion, we have shown that the use of ROMs can lower the computation times 
several orders of magnitude in complex CFD calculation in the calculation of cavity heat loses 
while keeping moderate errors in the calculations. 
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