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Abstract. Soiling losses and their mitigation via cleaning operations represent important chal-
lenges for Solar Tower (ST) plants. Yet soiling losses are not well considered in existing CSP 
software, likely due to the lack of tools for soiling estimation and cleaning optimization. In this 
paper, a Python-based heliostat soiling library, called HelioSoil, is introduced which allows for 
the assessment of heliostats’ soiling state and the optimization of the solar field cleaning 
schedule to maximize plant profit. The library is freely available on GitHub under a LGPL li-
cense, which enables extensions via other Python APIs (e.g. CoPylot) and integration with 
other CSP plant simulation packages to consider soiling losses. This latter capability is demon-
strated in this study through an LCOE assessment and cleaning optimization of a hypothetical 
Australian ST plant with SolarTherm. Hence, HelioSoil provides the CSP community with a 
package for soiling assessment and cleaning resource optimization, which can be integrated 
with available software for high-level, long-term simulations. HelioSoil facilitates the inclusion 
of soiling and cleaning costs in CSP economics and ultimately aim to de-risk the deployment 
of ST plants. 
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1. Introduction

The performance of Solar Tower (ST) power plants is strongly affected by the overall optical 
efficiency of the solar field, which can be significantly degraded by soiling of heliostats. Studies 
addressing and investigating the soiling process are available in literature, however, soiling-
induced reflectance losses are not yet properly accounted for in commonly adopted software 
for CSP plant design and lifetime cost assessments [1], and only limited capabilities are avail-
able for PV technologies [2]. Although models have been recently developed to estimate the 
impact of soiling and to optimize cleaning regimes in CSP [3], [4], [5], [6], [7] there is currently 
no available software for estimating soiling losses and/or optimizing cleaning for a given CSP 
plant. The Heliostat Soiling (HelioSoil) library is presented in this study, which is based on the 
authors’ previous work [3], [8]. The library enables the assessment of reflectance losses due 
to soiling in a solar field and their impact on the performance of the plant, which is subsequently 
exploited to optimize the cleaning regime. HelioSoil has been developed entirely in Python and 
is available on GitHub, which enables extension/interaction with other available Python librar-
ies and Application Programmable Interfaces (APIs). The LGPL license enables its use with 
other commercial and open-source CSP software.  
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2. Library Overview 

HelioSoil is available on GitHub at https://github.com/cholette/HelioSoil, under an open source 
LGPL-2.1 license. The HelioSoil library is composed of a soiling_model package, three note-
books that are used to demonstrate the functionalities of the library, and a Python environment 
file, which specifies the required Python libraries and can be used to create an environment 
via the conda package manager. The soiling_model package contains three main modules, 
namely base_models.py, cleaning_optimization.py, and utilities.py.  

The base_models.py module is made of multiple classes that describe the main compo-
nents of the soiling model presented in [8], define functions to import the required input data, 
characterize appropriately local environmental properties, define heliostats fields and their sec-
torization, compute optical efficiencies for each sector and assess their movement based on 
the coordinates, analyze reflectance data, define main constants, and predict reflectance 
losses for a given location and plant design. The core of the module is represented by the 
base_model class, which simulates the steps that describe the overall soiling process, from 
airborne dust measurements to expected reflectance losses, as described in [8]. The 
field_model and the fitting_experiment classes are subclasses of base_model, which serve 
two of the main purposes of the library: 1) simulating the reflectance losses for a whole solar 
field and 2) analyzing field data to fit the free parameter of the soiling model. A more detailed 
description of these classes and their methods will be given in the following. Other relevant 
classes in the base_models.py module are those used to instantiate and collect all the func-
tions required to import and define the environmental inputs or a given subset (class simula-
tion_inputs), dust characteristics (class dust), sun apparent movement (class sun), heliostat 
characteristics and solar field sectors (class helios), plant design (class plant), constants (class 
constants), and reflectance measurements and their subsets (class reflectance_measure-
ments). 

The cleaning_optimization.py module deals exclusively with the definition of the optimiza-
tion problem (class optimization_problem) and the evaluation of a periodic cleaning schedule, 
whose final output is the Total Cleaning Cost (TCC) due to costs incurred for cleaning and the 
revenue lost because of soiled heliostats [3]. The utilities.py module is mostly made of func-
tions that are required to treat and plot input or experimental data, and an important class used 
to define the airborne dust size distribution (class DustDistribution). 

2.1 Input Files 

The modules take as input three Excel data sheets (.xlsx): one for the basic model parameters, 
one for input data, and one for the solar field layout (that can also be given as a Comma 
Separated Value file). One EnergyPlus Weather (.epw) input file is also required to define the 
climate and the geographical coordinates of the simulated plant. 

The input data workbook must have the following two sheets: 

 “Dust” which is required to provide some properties and constants (e.g. density and 
Hamaker constant) that depend on the composition of airborne dust, and to describe 
the airborne dust size distribution (usually assumed from literature, e.g. [9]). 

 “Weather” which has columns with the following headers: 
o Time (required), a datetime in dd/mm/yyyy HH:MM format; 
o AirTemp (required), a float of the air temperature. Units are °C; 
o WindSpeed (required), a float of the wind speed. Units are m/s; 
o TSP/PMX (required), a float of airborne dust concentration as TSP or PMX. Units 

are µg/m3; 
o DNI (optional), a float representing the Direct Normal Irradiation. Units are 

W/m2; 
o RainIntensity (optional), a float representing the rain intensity. Units are mm/hr. 
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The next sheets are required for the fitting_experiment class only: 

 “Tilts” which has n+1 columns for n mirrors. The first column is Time in the same 
datetime format as the “Weather” tab and columns 2 to n+1 are with headers Mirror_x, 
with x=1,2,...,n which contain the tilts in degrees (repeated identically for each time 
step). This sheet is required for the fitting_experiment class, since the field_model class 
computes the tilts via the tracking requirement in the helios_angles method. 

 “Reflectance_Average”: the first column is again Time in datetime format as above, 
followed by one column for each mirror with the average of reflectance measurements 
at each time. Time in this tab corresponds to the reflectance measurement events.  

 “Reflectance_Sigma”: the tab has the same structure of Reflectance_Average but re-
ports the standard deviation of the reflectance measurements at each time. 

The model parameters file contains values for parameters related to the site, the plant 
design, the heliostat characteristics, and a few constants. However, only a limited subset of 
these values is required for the fitting_experiments class, and hence a tailored Excel sheet is 
provided for the related notebook. The solar field file needs to be a .xslx or a .csv document, 
where the heliostats are identified by a x-coordinate and y-coordinate. The column headers 
are Loc. X and Loc. Y, respectively. Examples of the format of these sheets can be found in 
the data/public folder. 

3. Main Functionalities 

The library is developed to perform three main tasks: 1) simulate heliostats soiling and com-
pute reflectance losses; 2) analyze reflectance data from experiments and fit the soiling 
model’s lone parameter; and 3) assess and optimize cleaning strategies to minimize the TCC 
(sum of direct cleaning costs and soiling-induced revenue losses [3]). Three notebooks have 
been created to guide the user through the main functionalities of the library, and they will be 
described in detail in this section through ad-hoc case studies. 

3.1 Solar Field Soiling Simulation 

The first case study is designed to import all the required parameters, compute optical effi-
ciency and reflectance losses for each sector of the solar field, and test a simple cleaning 
strategy on an annual simulation. Since this case study spans some of the main objectives of 
the library, the script developed to achieve such tasks will be described in detail below, includ-
ing the most relevant lines of the code. The first lines define the data folder, the files to be 
imported, and four parameters required to decide the number of sector (n_az and n_rad, rep-
resentative of the number of azimuthal and radial sectorizations, respectively), the number of 
cleaning trucks (n_trucks) and the number of annual cleans of the whole solar field (n_cleans). 
Moreover, the Python modules described in Section 2 are imported in the notebook assigning 
to each of them an appropriate shortcut. The following lines instantiate the model imodel, which 
also reads the parameter file, the solar field one, and performs the sectorization. The input 
data (airborne dust concentration and weather) are also subsequently imported in the sim_data 
module instance. A plant instance is created to import the plant design parameters. Eventually, 
the sector_plot function (not shown) is used to plot the solar field and its sectors, with the 
corresponding representative heliostats, as depicted in Figure 1, left. 

import soiling_model.base_models as smb 
import soiling_model.utilities as smu 
imodel = smb.field_model(file_params,file_SF,num_sectors=(n_az,n_rad)) 
sim_data = smb.simulation_inputs(file_weather,dust_types="PM10") 
plant = smb.plant() 
plant.import_plant(file_params) 
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Next, the relevant sun angles (azimuth and zenith) that are required to evaluate the move-
ment of the heliostats are computed (depending on plant design and time of the day) via the 
sun_angles and helios_angles functions. The following lines of the script apply the steps that 
define the soiling process as described in [8]: computing the amount of dust falling towards the 
mirrors, assessing the balance between adhesive and removal forces for each particle diame-
ter (assuming that particles that would be removed at night when mirrors are stowed would 
immediately be removed). Eventually, once the amount of dust particles adhering on the sur-
face of the heliostats has been computed, the second-to-last line computes the area of the 
heliostats that is affected by the adhering dust particles.  

imodel.deposition_flux(sim_data) 
imodel.adhesion_removal(sim_data) 
imodel.calculate_delta_soiled_area(sim_data) 
imodel.plot_area_flux(file_weather,airT,windS) 

A novel feature of the current library is the possibility to plot the deposition flux area for a 
given pair of air temperature and wind speed, through the last line of code reported above, 
whose output is depicted in Figure 1, right. The user can modify wind speed and air tempera-
ture to simulate different environmental conditions, but also modify the assumed airborne dust 
size distribution in the weather file to obtain results for different scenarios. 

 
 

Figure 1. Solar field sectors and representative heliostats (left) ; Area loss rate for given air-
borne dust size distribution at wind speed = 10 m/s and air temperature = 20°C (right). 

Once the amount of dust covering the surface of the heliostats has been computed, a 
simple cleaning schedule specified by the previously assigned n_trucks and n_cleans is ap-
plied following the approach described in [3]. The notebook then initiates a cleaning schedule 
model and subsequently computes the reflectance losses due to the defined cleaning regime. 
Eventually, the soiling factor 𝑓𝑠𝑜𝑖𝑙(𝑡), defined as the ratio between actual (current at time 𝑡) and 
nominal (in clean conditions) reflectance of the heliostats, is computed for each sector, and an 
overall solar field average is provided. The visual representation of the average soiling factor 
is depicted in Figure 2. It is remarkable to observe the high-frequency oscillations due to the 
angular dependence of soiling losses throughout the day, as described in a previous work [8]: 
the relative movement of sun and heliostats causes a continuous variation of both the shade 
that dust particles cast on the heliostats’ surface and the area where sun beams are reflected 
but subsequently blocked by impact with dust particles. These effects are usually larger during 
mornings and evenings, causing the oscillations observable in Figure 2. 
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Figure 2. Average soiling factor with 10 annual cleanings and 4 trucks. 

Of course, the heliostats of a solar field move differently according to their position with 
respect to the tower and their aiming point, thus affecting their optical efficiency, which is further 
affected by their location around the field. To compute the optical efficiency of the heliostats, 
the HelioSoil library exploits SolarPILOT’s in-built algorithms through its Python API CoPylot 
[10]. The optical_efficiency function of the field_model class in the base_models Python mod-
ule assigns the parameters required by CoPylot to set the plant simulation. A look-up table is 
created with an assigned number of solar azimuth (n_az) and elevation (n_el) discretization, 
through which the script computes the optical efficiency for each heliostat at each time. Sector-
averaged values are then obtained, and then used to compute a value for the whole solar field. 
Combining the calculated soiling factors and optical efficiency it is possible to compute the 
optical efficiency of the whole solar field and its sectors in soiled conditions. Figure 3, left, 
shows the computed optical efficiency for the whole year, both with an always-clean field (blue 
lines) and including the effects of soiling (orange lines). Figure 3, right, depicts the daily be-
havior of the optical efficiency, whose variation throughout the day is emphasized by the impact 
of blocking and shading due to dust particles adhering on the heliostats’ surface [3], [7], [8]. 

 

Figure 3. Comparison of solar field optical efficiency in clean and soiled conditions. 

3.2 Model Fitting 

One of the main inputs declared in the parameters file is the value of hrz0. It is the only free 
parameter of the model that needs to be tuned for accurate soiling predictions [8]. A notebook 
is provided to guide the user through the fitting procedure from experimental data. The script 

5



Picotti et al. | SolarPACES Conf Proc 1 (2022) "SolarPACES 2022, 28th International Conference on  
Concentrating Solar Power and Chemical Energy Systems" 

first reads the input reflectance data collected and the main experimental parameters. Some 
of these are specific to the devices (e.g. k-factor and incidence angle) used to collect the meas-
urements, both for reflectance and weather data, and the user should take care when perform-
ing analysis on data that are not already provided within the library folders. The data are then 
divided between training data and test data. Different to the previous case study, the script 
creates an instance of the fitting_experiment module and reshapes the input data in the re-
quired format, through the following lines of code. 

imodel = smb.fitting_experiment(parameter_file) 
hrz0_multi,sse_multi =  
imodel.fit_hrz0_least_squares(sim_data_train,reflect_data_train) 

 

Figure 4. Reflectance prediction after fitting procedure. Training data are shown inside the 
red rectangle. 

Once the data is imported, the fit_hrz0_least_squares function is exploited to identify the 
values of hrz0 that best fit the training data, highlighted in the red rectangle in Figure 4. The 
outcomes of the performed analysis suggest that one or two experimental campaigns suffice 
to provide enough inputs for the fitting procedure and guarantee good agreement with the 
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measured values. The least tilted mirrors are exploited for the fitting, as they suffer the highest 
losses and offer the most reliable assessment of dust deposition in the area.  

Eventually, the model is updated with the identified value of hrz0 and the reflectance 
trends are predicted for the whole set of experiments. Figure 4 shows the results obtained for 
the data collected on the roof of a building at QUT (Queensland University of Technology, 
Brisbane, Australia), previously discussed in [8]. 

3.3 Cleaning Optimization and Integration with SolarTherm 

The last case study deals with the optimization of the cleaning schedule and resources used 
for the given solar field and simulated soiling-induced reflectance losses. After the usual defi-
nition of data files and main parameters, the script instantiates the optimization problem 
through the dedicated class in the cleaning_optimization.py module. Subsequently, the model 
requires manual input (default values are already given) of expected costs and electricity prices 
to properly compute revenues and expenses for each scenario. The script then performs a grid 
search on number of trucks and annual cleans to identify the optimal cleaning resources and 
frequency. Eventually, the TCC for each combination of number of trucks and number of an-
nual cleans is provided, allowing the user to choose the most convenient one. Figure 5, left, 
shows the test case used in the notebook, where the optimal is given by 2 trucks cleaning 15 
times per year. However, the “bumpy” behavior of the curve suggests that this is highly de-
pendent on the timing of high-dust events (or storms) with respect to the cleaning schedule. 
This is a known issue in cleaning optimization [11], and the limited cost reduction due to a 
lower number of trucks to be purchased may not compensate the higher risk. 

  

Figure 5. Optimal cleaning schedule and resource assessment (left); Impact of cleaning 
schedule on LCOE of a CSP system (right). 

To further evaluate the costs and benefits of mirror cleaning strategies on a whole CSP 
system basis, HelioSoil is integrated with the Na-PB-SCO2 package in SolarTherm [12]. The 
hour-by-hour average soiling factor is loaded into the SolarTherm model and becomes an extra 
multiplier next to the field optical efficiency. The annual energy output is obtained by a full-year 
simulation with a detailed control strategy that coordinates the system operation, including re-
ceiver start-up, heliostat aiming strategy and defocus, safety considerations, power block start-
up and shut-down, energy storage and dispatch. The system model is also augmented with a 
calculation for the cost of cleaning. The results of the levelized cost of electricity (LCOE) for 
the cases of 1–9 trucks with the previously identified optimal number of field cleans are shown 
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in Figure 5, right. In this system analysis model the optimal cleaning strategy is again 2 trucks, 
however, 3 trucks would be preferred to 1 truck only (which is different from the analysis per-
formed with HelioSoil considering only cleaning-related costs). This shows how the integration 
between the two packages could provide more informed decisions for CSP plant operators and 
will be the objective of future work. 

4. Conclusion 

This paper describes the newly developed and publicly available Python library HelioSoil 
(https://github.com/cholette/HelioSoil, LGPL license). The library enables the assessment of 
soiling-induced reflectance losses for a given heliostat(s) or an entire solar field (divided in a 
finite number of sectors), and subsequently establishes an optimal cleaning scheduling and 
resourcing (i.e., number of cleaning trucks required and cleanings per annum). The library is 
also equipped with a module that can import experimentally collected reflectance data with 
related weather data and fit the free parameter of the soiling model for accurate predictions. 
Thus, the model can be calibrated for a known location with a limited amount of experimental 
data, and subsequently exploited for whole plant simulations and economics estimates (e.g. 
exploiting available packages like SolarTherm). Future work will aim at making the system 
integration more automatic and robust, and applicable to a wide range of CSP configurations. 
The HelioSoil library is the first complete package available open source for assessment of 
soiling impact on heliostats and subsequent cleaning optimization. Its licensing and scripting 
language choices make it reusable and integrable with any higher level CSP simulation soft-
ware, thus providing the CSP community with a reliable tool that can promote more accurate 
O&M cost estimations and hence facilitate the financing and deployment of solar tower plants. 
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