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Abstract. Heliostat instance segmentation (HST-IS) is a crucial component of the heliostat 
tracking system at Heliogen’s Lancaster test facility. The system estimates the mirror normal 
of each heliostat by performing a nonlinear optimization-based fitting strategy using 
approximations of the non-shaded, non-blocked sunlit pixels on each heliostat, and the 
tracking system uses these estimates to improve performance.  

HST-IS is fundamentally challenging due to variability in lighting conditions and heliostat size 
relative to the capturing camera. Deep learning-based convolutional neural networks (CNN) 
have emerged in recent years by demonstrating noteworthy precision in tasks such as object 
recognition, detection, and segmentation. CNN-based methods offer a robust augmentation to 
HST-IS methods as they capture a context-less hierarchy of image features. 

In this study, we developed deep learning models to automatically segment heliostat 
instances from elevated images taken from the field. We study various image parameters and 
architectural customizations to optimize for scalability, robustness, and accuracy in our 
predictions. We perform robust evaluations of our best model to quantify gaps between model 
development and real-world deployment and provide evidence for utility in the field.  
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1. Introduction  

1.1 Related Work 

HST-IS is useful in many concentrated solar power measuring contexts that require a pixel-
precision understanding of heliostat positioning, particularly in soiling detection and 
calibration [1, 2, 3]. In many of these downstream applications, the need for automation and 
consistency in recalibration cadence are crucial. This is due to the tendency for field 
conditions to change key parameters such as soiling conditions and heliostat orientation [4]. 

Several previous studies leverage computer vision techniques to study the properties 
of heliostats. Roger et al. developed an edge detection technique that extracts heliostat 
vertices to calculate the surface normal, demonstrating results comparable to manual 
photogrammetry at a fraction of the required time [5]. Coventry et al. leveraged computer vision 
thresholding methods to determine the soiling levels of heliostat mirrors from aerial imagery by 
segmenting mirrors from background pixels [6]. Ydrissi et al. designed and trained a 
convolutional neural network on images of soiled mirror images to optimize the task of 
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predicting reflectivity, dust density, and cleanliness values [7]. Computer vision-based 
approaches for HST-IS frequently assume inputs of images that feature a single heliostat, 
which are difficult to collect at scale [5, 6, 7]. This limitation highlights the value of 
generalizable, automated HST-IS approaches that require minimal context.  

  
Figure 1. Graphical summary illustrating process of deep learning HST-IS method. 

1.2 Heliostat Instance Segmentation  

Heliostat instance segmentation (HST-IS) is a significant underlying process in the Heliostat 
tracking system at the Lancaster test facility. This system includes a module called SOHOT [1] 
(“System for Observing Heliostat Orientations While Tracking”) that estimates the mirror 
normal of each heliostat by performing a nonlinear optimization to find the mirror orientations 
that best fit radiance-proportional values for regions of interest (ROIs) corresponding to 
heliostats in images. These estimates are used to train per-heliostat kinematic models.  

HST-IS from SOHOT imagery is fundamentally challenging for two main reasons. 
Firstly, shading and blocking patterns are inconsistent since heliostats appear in a variety of 
lighting conditions (Fig. 1). With these inconsistencies, naive patterns and shapes cannot be 
used to distinguish ROI pixels from non-ROI pixels. Secondly, sizes of heliostats in each image 
vary drastically due to variable distances from the capturing camera. These differences in scale 
present significant challenges to many standard computer vision methods that do not have 
parameters corresponding directly to an image’s receptive field. In SOHOT, error in ROIs 
contribute to error in normal estimates, and existing ROI calculation techniques are susceptible 
to subtle errors in camera calibration and positional assumptions. These sources of error can 
render inconsistent or inaccurate ROI calculation results.    
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Figure 2. Examples of images in which heliostat segmentation proves challenging due to 
lightning conditions (right) and differences in heliostat scale and orientation (left, middle). 

1.3 Deep Convolutional Neural Networks 

Deep neural networks have advanced significantly in recent years, demonstrating success in 
many real-world prediction tasks and capturing the attention of several diverse scientific 
fields [8]. Neural networks are parameter-dense functions that are structured in a progressive 
hierarchy of layers to model complex sets of features from underlying inputs. Convolutional 
neural networks (CNNs), which are the basis for the models leveraged in this study, are 
neural networks designed specifically for image data. Parameters of CNN’s correspond 
directly to progressively wider areas of an image’s receptive field and learn low and high-
level features from local structures in the image to form a more linearly interpretable set of 
feature representations. CNN’s have been applied successfully in many real-world contexts 
to perform diverse tasks such as object tracking, instance segmentation, and image 
classification [9, 10, 11].  

Deep CNN-based models for instance segmentation have emerged in recent years 
with the development of foundational image models trained on several thousands of images 
of commonly encountered objects such as cars, balloons, pets, and houses [12]. These 
models have been applied in many challenging problem contexts. For example, models such 
as UNet [13] and Yolo-V3 [14] have been adapted for real-time segmentation of pedestrians 
and vehicles to service autonomous self-driving tasks [15].  

In this paper, we design, develop, and test a novel deep learning-based approach to 
perform HST-IT from images taken of our Lancaster test facility by adapting the Mask R-CNN 
architecture proposed by He et al. [16]. We perform studies on the effect of datacentric 
parameters and architectural components on model performance and perform a stratified 
analysis of our best model with respect to object instance size to quantify gaps between 
model development and model deployment. Finally, we discuss the implications of our 
results on improving the robustness and scalability of HST-IS approaches using deep 
learning-based computer vision techniques and offering a feasible solution to low-stakes, 
automated heliostat monitoring needs.  
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Figure 3. Example of an HDR-stitched full-field image (left) and its mask-overlay counterpart 
(right). 

2. Methods

2.1 Dataset
Images of the full field were taken at six different camera positions in four distinct exposures 
for a collection of timestamps. For a given timestamp, images taken at different exposures for 
the same camera position were registered using phase correlation and subsequently stitched 
together into a resultant HDR image. Heliostat instance mask labels for each HDR image were 
generated using SOHOT’s ROI generation process (Fig. 2) and used for the training and 
evaluation results in this paper [1]. Ablation studies were performed on several image-specific 
parameters relative to HST-IS performance, such as bit depth, image stitching technique, and 
sampling of seasonal, time-of-day periods. For our best model, HDR images from all six 
cameras were randomly sampled from a full-year period and full-day distribution of times.  

2.2 Model Experiments 
2.2.1 Neural Network Architecture and Training 
To address the unique set of challenges in HST-IS, we conducted ablation studies to tune 
hyperparameters and customize model subcomponent architectures in Mask R-CNN. 
Specifically, we study the choice of CNN backbone, depth of CNN backbone, choice of 
pretrained baseline, region proposal network (RPN) loss function, RPN thresholding 
parameters, RPN anchor parameters, number of linear layers in projection heads, random data 
augmentation strategies, and image preprocessing and postprocessing strategies. Each 
ablation was studied in the context of multiple evaluation benchmarks stratified by distinct 
heliostat size categories and separated between bounding box and mask generation 
performance. Average precision metrics at average recalls above 90% were evaluated 
alongside qualitative observations of predictions to make conclusions. Our best model 
leverages a ResNet-50 feature proposal network (FPN) backbone with pretrained ImageNet 
weights and finetuned on 50K image tiles with a batch size and learning rate of 8 and 0.005, 
respectively. We use a momentum and weight decay of 0.9 and 0.0001, respectively, with a 
multistep learning-rate warmup scheduler. Furthermore, we leverage the multi-task training 
loss function defined by the original Mask R-CNN paper [16], which features a binary cross-
entropy classification loss, binary cross-entropy mask loss, and smooth L1 bounding-box 
localization loss.   

2.2.2 Evaluation Metrics 
We evaluate model performance based on average precision metrics at both segmentation 
mask and bounding box levels at intersection-over-union (IOU) thresholds ranging from 0.5-
0.75. The IOU between a prediction and associated ground truth label Is calculated by dividing 
the number of intersecting pixels between both objects by the number of pixels comprising the 
union of both objects (Fig. 4). We conform to definitions outlined in the Microsoft Coco object 
detection metric standards [17] in which predictions merged by a non-max suppression 
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procedure and deemed to be associated with a ground truth label based on an IOU threshold 
are classified as a correct instance prediction. The Microsoft Coco object detection metric 
standards are commonly used in deep learning-based object detection and 
instance segmentation studies [16, 18, 19].  

Figure 4. Illustration of prediction-object pairs at various associated IOU thresholds. 

2.2.3 Data Preparation and Post-Processing 
Full-field images were split into 256 pixel x 256 pixel (256x256) image subcomponents 
overlapping by a fixed pixel threshold in each direction. Instances contained within each 
subcomponent were included as labels if their centroid was within a fixed pixel distance from 
each image boundary. This labeling filter step is included to conform to the modeling task of 
segmenting fully present heliostat instances. Horizontal and vertical flips were performed 
during training to improve model robustness. Following model instance segmentation, 
predicted instances were mapped to their associated trackers with a nearest neighbors-based 
algorithm using the centroids of predicted instances and centroids of assumed tracker 
locations. Like our preprocessing labeling filter step, instance predictions whose centroids 
were not within a fixed pixel distance from image boundaries were discarded to eliminate the 
presence of duplicate predictions for each tracker.  

3. Results

Our best model achieves an average bounding box and segmentation precision of 93.7% and 
92.7% averaged over all IOU thresholds, respectively, at a 90% average recall, compared 
against ROIs generated by the previous technique. Throughout the course of our ablation 
studies, we discovered unique training paradigms specific to HST-IS. Firstly, we find that 
training with a wide distribution of region proposal network (RPN) anchor size parameters, 
which correspond in proportion to the diverse image footprints of captured heliostats, improves 
robustness to object scale variance. We demonstrate successful segmentation of heliostats 
that occupy a diverse set of image footprints by tuning the aforementioned RPN anchor size 
parameters (Fig. 6). Secondly, we find that training our model with a pretrained Resnet-50 FPN 
backbone results in superior overall performance compared to training with other object 
detection backbone model architectures. Lastly, we find that aggregating top-performing 
dataset parameters such as introducing random data augmentation in training, representing 
our images in a high dynamic range, and selecting from a wide distribution of seasonal, time-
of-day periods sees a 10% improvement in average precision compared to model baselines.   
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Figure 5. Examples of predicted HST-IS masks and their original counterparts at various 
positions of the field. As seen, predictions are robust across front (A), middle (C, D), and 
back (B) areas of the field. Evidence of semantic understanding of shading and blocking 

constraints is observed as well (A). 

Figure 6. Examples of predicted HST-IS masks and their original counterparts selected from 
closer (A) to farther (C) distances from the capturing camera. Consistent results provide 

evidence that our instance segmentation model is robust to variance in object size and scale 
relative to the component image. 

Figure 7. Examples of predicted HST-IS masks and their original counterparts selected from 
images that contain significant shading and blocking. Our instance segmentation model is 

able to distinguish blocked heliostat pixels (B, C) and account for non-aiming heliostats (A). 
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Figure 8. Examples of predicted HST-IS masks and their original counterparts selected from 
images taken of the farthest sections of the field. Due to loss in image context and fewer 

pixels making up each heliostat instance at greater distances, performing HST-IS on these 
sections of the field tends to be more challenging for traditional optimization and computer 

vision approaches. 

4. Discussion and Future Work

In this study, we demonstrate the capability of deep learning models to perform instance 
segmentation of heliostats from images taken of our Lancaster test facility. Evidence of the 
approach’s robustness is indicated in observing the high average precision of generated 
instance bounding boxes and masks relative to ground truth labels produced by our existing 
SOHOT module. In addition, we qualitatively observe robust instance segmentation 
performance on images that contain heliostats at varying distances from the capturing camera, 
alluding to our model’s adaptiveness to object size and scale (Fig. 6). Within our manual 
inspection of model predictions, we observe evidence of mask generation that distinguishes 
non-blocked and non-shaded heliostat pixels from blocked or shaded heliostat pixels (Fig. 7). 
Although the results of this distinction among model predictions are inconsistent, they indicate 
promise in the modelling approach’s ability to interpret higher-level image features and 
reconcile a nuanced task.  

There are limitations of our study that we hope to address in future work. Firstly, training 
our deep learning model requires several hundreds of images and associated labels 
constituting diverse training, validation, and test sets. Acquiring such volumes of imagery and 
detailed instance labels can be time-intensive, complex, and expensive. In our study, our 
Lancaster test facility and SOHOT module are configured to naturally satisfy these 
requirements, which provides a unique advantage. Secondly, the labels used in our training 
dataset were generated using our SOHOT module, which is known to be associated with a 
margin of error due to positional and mathematical assumptions. Relative to object human 
labels, the extents to which these inaccuracies in dataset labels affect the performance of the 
model are unclear and will be a subject of future work. Despite this limitation, our model offers 
a standalone solution that can produce similar predictions to those of our SOHOT module 
without any contextual field information. This capability offers significant value in ROI 
calibration. Thirdly, the results of our study are closely associated with field conditions in our 
Lancaster test facility. We anticipate that future challenges will arise for our modelling approach 
when applied to fields in which heliostats are more distant from the capturing camera, more 
numerous in count, or positioned more compactly. In future work, we aim to better simulate 
these conditions and quantify these gaps with the generation of synthetic training data using 
3D rendering tools.  

5. Conclusion

In this paper, we demonstrate a deep CNN-based approach to performing heliostat instance 
segmentation on full CSP field images. We study architectural and datacentric parameters to 
optimize model performance and provide evidence of robustness to object scale variance and 
semantic understanding of shaded pixel distinction. The method shows promise in being 

7



Liu et al. | SolarPACES Conf Proc 1 (2022) "SolarPACES 2022, 28th International Conference on Concentrating 
Solar Power and Chemical Energy Systems" 

deployed as an automated, contextless approach for CSP tasks that rely on heliostat instance 
segmentation.  
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