
SolarPACES 2023, 29th International Conference on Concentrating Solar Power, Thermal, and Chemical Energy 
Systems 

Analysis and Simulation of CSP and Hybridized Systems 

https://doi.org/10.52825/solarpaces.v2i.814 

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License 

Published: 28 Aug. 2024 

Heliostat Clustering for Aiming Point Strategies 
Optimization 

Olaia Itoiz1 , Amaia Mutuberria1 , and Marcelino Sánchez1

1 CENER (National Renewable Energy Centre of Spain), Spain. 

Abstract. The performance of solar tower systems is closely linked to the aiming point strategy 
of the heliostats. The optimization process of obtaining the best aiming point strategy for a field 
is complex and has a high computational cost. The use of the clustering technique relieves the 
requirements by decreasing the space of possible solutions to the problem. Results show that 
the application of the technique for aiming point strategy optimization reduces the time of 
optimization significantly. 
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1. Introduction

Concentrated solar energy has been positioned to become one of the references to generat 
clean alternative fuels. The solar tower plants are the technology with the highest potential for 
this thermochemical process. The feasibility of this kind of plant is closely linked to the capacity 
to achieve high levels of flux concentrations for long periods in order to guarantee the proper 
execution of chemical reactions through an adequate aiming point strategy [1].  

Aiming point strategy definition in solar power tower plants is important to guarantee the 
integrity of the receiver avoiding its degradation along the time produced by overheating points. 
An optimal aiming point strategy can allow reducing the size of the receiver achieving high 
levels of efficiency. This is not a trivial problem according to literature [2], [3], [4], [5], where 
different optimization algorithms are applied to solve this problem. These algorithms, whose 
procedure often involves a large computational cost because of the large number of available 
solutions, consist of maximizing or minimizing an objective function by choosing input values, 
“heliostat-aiming point”, from an allowed set. 

In this study, it is proposed to set the input values by a pair of “heliostat group-aiming 
point”, all the heliostats belonging to a specific group aim to the same point in the receiver. In 
this way, the number of available solutions is reduced as it depends on the number of clusters 
defined instead of on the total the number of heliostats in the solar field enabling reaching a 
final solution with less computational cost.  

The paper summarizes the work performed to compare different clustering algorithms. 
The structure of the subsequent sections is as follows, Section 2 summarizes the algorithms, 
functions, and parameters used for heliostats´ clustering; Section 3 describes the methodology 
used for the comparison process. Section 4 summarizes the results, and lastly, Section 5 
presents the conclusion obtained from the performed analysis. 
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2. Clustering method 

The main purpose of the clustering proposed in this study is to arrange the heliostats of the 
field into closed and homogenous heliostat groups to speed up the process of finding a solution 
to the aiming point strategy definition problem in central solar power plants. Furthermore, 
managing groups of heliostats is more intuitive, practical and efficient for plant operators and 
the operation of the plant itself. The heliostats inside a group must maintain similarities, and at 
the same time, must be well differentiated from heliostats belonging to other clusters.  

In the scientific literature several algorithms developed to solve the task of clustering can 
be found. In this study, the most popular algorithms are analysed: Hierarchical agglomerative 
clustering, k-means clustering, and Self-Organizing Maps. 

In the following subsections, a brief description of the aforementioned algorithms, the 
distance functions used to measure the similarity, and the 8 heliostat attributes used in the 
comparison are presented. 

2.1 Clustering algorithms 

Hierarchical clustering is based on building a hierarchy of clusters that could be represented 
on a tree structure. This structure could be built either on a “bottom-up” approach, where each 
element starts as one cluster and clusters merge, ending in the final step building the top 
cluster, or on a “top-down” approach where all the elements start in a unique cluster and the 
clusters are split, generating all the structure. In this analysis, an agglomerative approach, 
Hierarchical Agglomerative Clustering (HAC) [6], is used to merge the clusters using the 
following criteria: pairwise single-linkage clustering, pairwise maximum-linkage clustering, 
negative distance, pairwise average-linkage clustering, and pairwise centroid-linkage 
clustering. After building the tree structure, and cutting it to the appropriate height, the desired 
number of clusters is obtained. 

The second clustering algorithm is k-means [7] which aims to divide all the elements into 
k groups in which elements belong to the group with the nearest distance to its center. There 
are different alternatives of what measure is considered the center of the group. In this case, 
the mean and median of the data vector are used. 

Finally, the Self-Organizing Map (SOM) [8] technique, also called a Kohonen map, is a 
type of artificial neural network that organizes the clusters using a topology, commonly in a 
rectangular map. The clusters are organized in a way that two neighbours are more similar 
than distant clusters.  

2.2 Distance functions 

In order to divide the heliostats into homogeneous groups, it is important to define how similar 
the heliostats are. Different distance functions are used to define the similarity between each 
pair of observations: 

• Euclidean distance: length of a segment between two points, length of the shortest path 
between two points. 

• Manhattan distance or city-block distance: sum of distances along each dimension. 
• Pearson correlation coefficient: degree of linear relationship between two observations 
• Absolute correlation coefficient: the absolute value of Pearson correlation.  
• Uncentered Pearson correlation 
• Absolute uncentered Pearson correlation 
• Spearman's rank correlation: non-linear rank correlation measure 
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• Kendall’s tau correlation: another non-linear correlation measure, more robust than 
Spearman’s correlation 

Although all the distance functions could be used for the k-means algorithm, from a 
theoretical point of view, it is best to use the Euclidean distance for the mean method to 
calculate the centroid and the city-block distance for the median. 

2.3 Heliostat attributes 

With the purpose of creating heliostat clusters, several heliostat parameters could be 
considered to define the similarity among heliostats. The list of attributes considered for this 
comparison work and the explanation of position attributes are show in in Figure 1: 

• Heliostat position (taking into account x-coordinate and z-coordinate) 
• Position x-coordinate  
• Position z-coordinate  
• Heliostat angle α in the field (0º is the center of the receiver) 
• The power that heliostat could provide to the receiver 
• Heliostat reflected maximum flux peak 

 

Figure 1. Position attributes considered for heliostat grouping. 

For the calculation of the power reflected by each heliostat and the maximum flux peak of that 
radiation, the center of the receiver is considered the aiming point of the heliostats. 

3. Comparison methodology 

The comparison of different clustering methodologies to reduce the complexity of defining an 
optimum aiming strategy is a high-dimensional problem. Herein, a unique scenario is defined 
to perform all the simulations. The scenario is composed of a field of 739 heliostats placed 
north of a tower with a 4 m2 flat rectangle receiver. The simulations are executed at Solar noon 
of the equinox in Seville (Spain). Figure 2 shows the layout of the heliostat field and the flux 
map distribution at the aperture of the receiver when all the heliostats aim at the center point 
of the receiver. In this case, the total power at the receiver is 1.59 MW with a peak flux of 
3.6 MW/m2 and a spillage of 1.58 %. 
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a) 

 
b) 

Figure 2. The scenario used in the comparison; a) Heliostat field layout, b) Flux map distribution at the 
receiver with all the heliostats aiming at the receiver center point. 

For the comparison study, the TABU search algorithm [2] is selected as the optimization 
method. It is a metaheuristic method that employs local search to move from a potential 
solution to an improved solution from its neighbourhood until the stopping criterion has been 
satisfied. For this study, the stopping criteria is a maximum number of iterations without 
improvement. Herein, 100 iterations are considered. In order to reach the optimum solution, 
the following objective has been defined as a combination of the total flux at the receiver and 
the flux distribution homogeneity: 

fobj = α⋅pt-(1-α)⋅σf     (1) 

where α∈[0,1] indicates the weight given to each term. pt denotes the total power and σf the 
flux density standard deviation on the receiver. Herein, a value of α = 0.6 is taken, giving higher 
weight to the total power to reduce spillage losses when looking for homogeneity. 

Figure 3 shows the optimization results of the defined scenario without the use of 
clustering. 25 aiming points uniformly distributed over the receiver input aperture surface are 
defined. Figure 2 and Figure 3 use the same color scale to perceive better the reduction of flux 
values and the improvement of homogeneity. The result of this optimization is used as a base 
case to measure the cost improvement of applying clustering to the heliostats. The optimization 
has required 16183 iterations and lasted 2 hours, 45 minutes, and 20 seconds. In addition, the 
achieved total power is 1.55 MW, with a flux peak of 0.78 MW/m2 and a spillage of 4.17%. 

 
Figure 3. Flux map distribution for the optimization of heliostat aiming point distribution for 25 aiming 

points, without using clustering. 

In the comparison analysis, all valid clustering algorithms and distance function combinations 
are executed for creating heliostat clusters. For them, aiming point optimization is processed, 
achieving total flux, flux map distribution, spillage, number of iterations, and the required time 
for optimization.  
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4. Results 

The flux maps distribution and the heliostat field losses efficiencies were simulated with a 
CENER in-house code CHELIO [9] which is based on convolution theory and was validated 
with Tonatiuh [10], a well-known ray-tracer. 

The first analysis shows that when most of the heliostats fall into one or a few clusters, the 
homogeneity property cannot be reached as the best optimization is the one in which almost 
all heliostats aim at the center. This is because a higher weight is given to the total power. 

Based on this observation, the standard deviation of the number of heliostats in each 
cluster is calculated to discriminate those cases with few clusters concentrating most of the 
heliostats. Table 1 shows the percentage of the cases analyzed with a small value of the 
standard deviation of the number of heliostats per cluster, and the percentage of valid cases 
reaching a homogeneous solution for each heliostat attribute studied. There are no significant 
differences in run-times on average between using a specific attribute. However, all of them 
are considerably faster compared to not using clustering. In the worst case, only 26.7 % of the 
time is needed. The fobj of the best case obtained is presented as a percentage with respect to 
the base case (without clustering). 

Table 1. Valid cases for executed optimization processes by heliostat attribute. 

Heliostat 
attribute 

Valid 
cases [%] 

Mean fobj  of valid 
cases [-] 

Slowest runtime 
[HH:MM:SS] 

fobj best 
case [%] 

Position 59.38 774451 00:39:21  99.43 
X-coordinate  51.56 792155 00:44:11 97.74 
Z-coordinate 43.75 792922 00:33:44. 99.03 
Angle 40.63 795313 00:34:01 97.74 
Power 25.00 769253 00:32:49 96.86 
Maximum flux 25.00 781298 00:38:55 96.87 

Table 1 shows that only in a few cases the last two attributes could be considered for clustering. 
In addition, Figure 4 shows the cluster distribution for the best optimization reached for 4 of the 
considered heliostat attributes. In Figure 4 b), the clusters for the case of flux peak attribute 
are presented. In this figure, the clusters are less clear with respect to the use of other 
attributes. Furthermore, the objective function value reached is also lower. 

 
a) 

 
b) 

5



Itoiz et al. | SolarPACES Conf Proc 2 (2023) "SolarPACES 2023, 29th International Conference on Concentrating 
Solar Power, Thermal, and Chemical Energy Systems" 

 
c) 

 
d) 

Figure 4. Heliostat distribution by clusters for the best optimization for heliostat attribute; a) Taking 
heliostat position attribute; b) the maximum flux that heliostat can reflect into the receiver; c) heliostat 

angle in the field; d) heliostat z-coordinate of the position. 

The data also shows that the heliostat position is the attribute with the highest number of valid 
cases and, also, the attribute that has given the best optimization value. This result is very near 
to the objective function value obtained for the base case where the heliostat’s aiming point is 
independently selected. 

Considering the type of clustering algorithm, k-means is the algorithm with the highest 
valid cases, highest mean objective function value of the resulting solution, and lowest 
standard deviation value. With regard to the execution time, the k-means is the algorithm with 
the worst run-time, but this case only requires 26.7% of the time needed for the base case, 
wich does not consider clustering. On average, HAC is the fastest one with 458.64 s. Table 2 
shows the comparison between HAC, k-means and SOM clustering algorithms. 

Table 2. Valid cases by clustering algorithm. 

Clustering 
algorithm 

Valid 
cases 
[%] 

Mean fobj  of 
valid cases 
[-] 

Standard 
deviation fobj   of 
valid cases [-] 

Slowest runtime 
[HH:MM:SS] 

fobj best 
case 
[%] 

HAC 23.33 763638 43588.40 00:33:24 99.03 
k-means  95.83 792738 20231.27 00:44:11 99.43 
SOM 18.75 778964 34021.03 00:39:21 97.18 

Furthermore, Table 3 presents the analysis concerning the distance function used.  

Table 3. Valid cases by distance function. 

Distance 
function 

Valid 
cases 
[%] 

Mean fobj  of 
valid cases 
[-] 

Standard 
deviation fobj   of 
valid cases [-] 

Slowest runtime 
[HH:MM:SS] 

fobj best 
case 
[%] 

Euclidean 
distance 

62.50 786486 36737.72 00:32:41 99.43 

Manhattan 
distance  

62.50 776855 25747.35 00:25:26 98.89 

Pearson 
correlation 

27.08 790894 32638.71 00:32:06 96.98 

Absolute 
correlation 

27.08 786856 33764.20 00:37:38 96.85 

Uncentered 
Pearson c 

52.08 774022 41887.69 00:38:55 97.33 

Absolute 
uncentered 

45.83 775168 45680.24 00:44:11 97.16 
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Spearman's 
rank  

25.00 789968 12853.62 00:33:44 96.76 

Kendall’s tau 25.00 784288 12874.82 00:26:39 96.90 

The well-known Euclidean and Manhattan distances are the distances with more valid cases 
and those presenting the best fobj results. These are the cases that have lower losses 
compared to the base case. However, the highest mean fobj value is achieved with Pearson 
correlation. A more exhaustive analysis shows that non-linear correlations only have obtained 
valid solutions with k-means, linear correlations bring better solutions with SOM, and Euclidean 
distance gives the highest fobj for both HAC and k-means. Leaving aside the non-linear 
correlations due to the low valid cases percentage, correlation function solutions present worse 
run-times for the worst case. On average, the Manhattan distance is the function with better 
run-time values. 

The best solution obtained between all the optimization performed is executed with the k-
means algorithm, Euclidean distance, and using heliostat position as heliostat attribute. The 
fobj value for this solution is 831361.18, which is 99.4% of the base case objective function. The 
flux map is shown in Figure 5. 

 
Figure 5. Flux map distribution for the best optimization using clustering. 

In Table 4, a comparison with the base case is performed. This solution is not as good as the 
base case when the aiming point of each heliostat is selected independently of the other 
heliostats. However, with 8% of the iterations and 13% less run-time, 99.4% of the power is 
achieved. Therefore, the loss of using clustering is very low compared to the remarkable cost 
computation improvement achieved.  

Table 4. Valid cases for executed optimization processes by heliostat attribute. 

 Case base Best solution clustering 
Number of iterations 16183 1251 
Optimization time [HH:MM:SS] 02:45:20 00:22:45 
Total Power [MW] 1.55 1.54 
Maximum flux [MW/m2] 0.78 0.78 
Spillage losses [%] 4.17 4.69 

5. Conclusions 

Solar fuel generation with solar power tower plants will inevitably require greater heliostat field 
control to achieve and maintain high fluxes on the receiver over long periods. An optimum 
aiming point strategy allows greater process efficiency. However, achieving an optimal solution 
requires a tedious simulation and optimization process of great complexity.  

The use of heliostat clusters allows the reduction of the computational cost of searching 
for such an optimal strategy, as can be seen in the results of the present study, without 
considerably increasing the spillage losses. In the worst cases considered in this study, the 
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optimization process takes 26.7% of the run-time required by the optimization without 
clustering. The reduction in computational cost could be higher when large heliostat fields are 
considered. 

The study suggests that using the k-means algorithm is the most promising one to start 
the optimization process without taking into account the distance function or the heliostat 
attribute to use. Nevertheless, for the optimization, the Euclidean distance and the heliostat 
position are good starting points. 

Furthermore, the study shows the use of clustering is an appropriate technique for the 
selection of the aiming point of the heliostats. The final goal of developing a methodology for 
generating an optimum aiming point strategy is to implement a dynamic, automatic, and real-
time strategy on the plants. The clustering is a first approximation of the said methodology but 
it is necessary to decrease the spillage losses with regard to the case where the aiming points 
of heliostats are selected independently. 
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