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Abstract. This paper presents a control system with a panel-wise applied feedforward tem-
perature controller for a molten salt receiver in star design utilizing temperature measurements 
in the connecting pipes between the panels and a real-time flux density measurement as in-
puts. It is tested in realistic cloud passage scenarios and the results are compared to the results 
from an earlier developed control system for the same receiver, in which the temperature con-
troller is based on a simple feedback controller (PID) supported by a simple feedforward con-
troller. The results show that the performance of the new feedforward controller is outstanding 
and could be applied to common cylindrical receiver designs as well. Nevertheless, the highly 
increased actuator movement of the control valves is to be further investigated. 
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1. Introduction

Controlling the temperature of molten salt receivers during cloud passage scenarios remains 
a challenging topic regarding the process control of molten salt solar towers (MST). A well-
performing control system not only ensures a higher safety during operation under fluctuating 
solar conditions but also increases the efficiency of the receiver, as it allows for a higher outlet 
temperature setpoint. One of the main reasons controlling the receiver’s outlet temperature is 
so challenging is the long residence time of the molten salt in the receiver, which varies be-
tween one and ten minutes depending on the mass flow rate [1, 2]. This is why conventional 
feedback controllers struggle, especially at low part loads. Although model-predictive control-
lers (MPC) are a promising solution for this issue, MPCs are complex and highly rely on accu-
rate modeling and significant computing resources. In contrast, this work presents a panel-
wise applied feedforward controller for a molten salt receiver in star design [3], which tackles 
the issue of the long residence times by using temperature measurements in the connecting 
pipes between panels as one of the inputs, as well as real-time flux measurement. This ap-
proach potentially leads to a better performance than conventional feedback controllers with 
much less complexity compared to an MPC. The star receiver is a receiver with three 
wings/cantilevers, which enable the irradiation of absorber tubes from both sides. This idea 
originates at the Institute for Solar Research at the DLR [3, 4]. A schematic of the star design 
is shown in Figure 1. For this work, it is assumed that the star receiver is equipped with a real-
time flux density measurement system with a sufficiently high resolution that enables deriving 
panel-wise (intercept) flux. Corresponding flux density measurement systems [5–8] or heliostat 
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field calibration systems that can also be used for this purpose like “Method A” by Sattler et al. 
[9] are already known from research or are currently under development. 

 

Figure 1. Schematic sketch of a receiver in star design 

2. Approach and governing equations 

The feedforward controller is developed for a receiver in star design as described in [3]. The 
design of the control concept is taken from [10] and adapted by substituting the temperature 
feedback controller with the new feedforward controller. As a test environment, the detailed 
dynamic model from [10] is used which is based on previous research by Schwager et al. [11]. 
Figure 2 shows a simplified PFD of the investigated system. 

 

Figure 2. Simplified PFD of the receiver system 

The approach of the feedforward controller is based on steady-state energy balances 
that are calculated from each panel outlet to the outlet of the receiver. That leads to several 
candidate values for the current mass flow rate, depending on the current flux distribution on 
the receiver. From these candidate values, the maximum is always taken as the receiver mass 
flow rate to ensure that the temperature setpoint is not exceeded. Applied to the system shown 
in Figure 2 this leads to the following equations, defining the mass flow signal of the feedfor-
ward controller: 
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�̇�ff = max⁡(�̇�cand,1,1, … , �̇�cand,1,5, �̇�cand,2,1, … , �̇�cand,2,5, �̇�cand,3,1, �̇�cand,3,2) (1) 

With the �̇�cand,1 and the �̇�cand,3 values defined as follows:  

�̇�cand,1,𝑖 =
𝜂th(∑

�̇�1,𝑗

𝑥
5
𝑗=𝑖 +�̇�3,1+�̇�3,2)

𝑐p(𝑇out,set−𝑇1,𝑖−1)
     𝑖 ∈ ℕ⁡|⁡1 ≤ 𝑖⁡ ≤ 5  (2) 

 

�̇�cand,3,1 =
𝜂th(�̇�3,1+�̇�3,2)

𝑐p(𝑇out,set−𝑇3,0)
;    �̇�cand,3,2 =

𝜂th�̇�3,2

𝑐p(𝑇out,set−𝑇3,1)
 

(3) 

The definition of the �̇�cand,2 values is analogous except that 𝑥 is replaced by (𝑥 − 1). 
In this equation, 𝜂th is a function for the thermal efficiency characteristics of the receiver and 𝑥 
is the approximated mass flow distribution ratio between the first two wings of the receiver, 
which is defined as: 

𝑥 =
�̇�1

�̇�1 + �̇�2
≈

∑ �̇�1,𝑖
5
𝑖=1

∑ �̇�1,𝑖
5
𝑖=1 + ∑ �̇�2,𝑖

5
𝑖=1

 (4) 

The first simulations with a generic test scenario consisting of various flux steps on the 
receiver and the new feedforward controller, without any feedback, showed that there is always 
a steady state control error depending on the state of load of the receiver. Figure 3 shows the 
test scenario and the resulting outlet temperature of the receiver. 

 

Figure 3. Generic test scenario of flux steps on the receiver and the resulting outlet tempera-
ture trends for a plain feedforward temperature controller 

It can be seen, that the outlet temperature is always lower than the outlet temperature 
setpoint of 565 °C. This is due to inaccuracies in the used function for the receiver’s thermal 
efficiency characteristics. As mentioned before, the steady state control error depends on the 
load conditions of the receiver. It varies depending on the overall flux on the receiver and also 
on the flux distribution. These interdependencies are too complex to be addressed by simple 
analytic approaches. Hence, a feedback loop is needed. Although the most intuitive approach 
is to correct the mass flow signal of the feedforward controller with a feedback controller, this 
was not an option because, in combination with this feedforward controller, it leads to extensive 
system instability. So, the temperature setpoint was chosen as the preferred value to be 
adapted by a feedback controller with an integrating component. This leads to the control sys-
tem shown in Figure 4. The controller chosen for this purpose is a simple I controller, which 
corrects the setpoint slightly. The resulting manipulated setpoint is then fed to the feedforward 
controller. 
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Figure 4. Control system of the receiver with panel-wise feedforward 

Figure 3 also shows that the system with the feedforward controller tends to exhibit low-
frequency oscillations with small amplitude. These oscillations seem to be no problem for the 
system stability. Nevertheless, they lead to unnecessary actuator movement of the control 
valves, which is undesirable. 

3. Cloud passage test scenario  

For testing the feedforward controller under realistic radiation conditions the test scenario 
from [10] was adopted. It is based on DNI-maps of an 8x8 km² area with a spatial resolution of 
20x20 m² and a time resolution of 30 s. The DNI-maps are sourced from an all-sky-imager 
based nowcasting system by Nouri et al. [12]. To convert these DNI-maps into a flux density 
distribution the heliostat field (30972 heliostats) is clustered into six parts. These parts are then 
assigned to different areas on the receiver (the optical height of the receiver is 200 m). Accord-
ingly, the nominal flux density distribution is scaled depending on the area-weighted average 
of the Clear Sky Index (CSI) in the area of each heliostat field cluster. This method leads to 
the flux trends shown in Figure 5.  

 

Figure 5. Resulting flux trends of the cloud passage test scenario 

4. Test results 

Since the results are most interesting when the control system is most challenged, Figure 6 
only shows the time with the highest flux density fluctuations, which is in the time range of 
3 - 7 h. To better assess the performance of the new control system, the results are compared 
with those from the optimized feedback controller with a simple feedforward controller that was 
developed in [10]. Figure 6 shows that the panel-wise feedforward controller achieves better 
results regarding temperature setpoint exceedances than the optimized feedback controller. 
Regarding setpoint undershoots, there is no significant difference noticeable. 
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Figure 6. Outlet temperature trends of the receiver  

A statistical analysis of the control error is carried out to make this subjective impression 
objectively measurable. Since slight deviations between the setpoint and the measured value 
during changing conditions are inevitable and until a certain threshold not critical, small control 
errors with an absolute value of less than 4 K are neglected. The rest of the control errors is 
sorted into 2 K wide classes. The time in which these errors occur is integrated over the whole 
day. Figure 7 shows the results of this analysis. Setpoint undershoots are considered negative 
control errors and overshoots are vice versa. The results are compared to the results from the 
control system presented in [10] (optimized feedback + simple feedforward). 

 

Figure 7. Accumulated time in which different control errors occur 

The statistical analysis supports the impression that the new feedforward controller can 
avoid temperature setpoint exceedances effectively. Regarding undershoots there is no signif-
icant difference between the two approaches. Overall the controller shows an excellent perfor-
mance, almost totally avoiding critical setpoint exceedances.  

One of the potential weaknesses of the new feedforward controller is that it tends to 
cause uncritical low-frequency oscillations, which cause unnecessary and undesirable actua-
tor movements of the control valve. To gain an impression of how big the difference of the 
amount of actuator movements is compared to a system with a conventional feedback control-
ler (PID) all actuator movements of the control valves are integrated for both the new control 
system and the system from [10]. The comparison reveals that the control valves make about 
50 % more movement (time integral of all actuator movements) when the new feedforward 
controller is used. 
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Figure 8. Accumulated relative valve actuator movement 

5. Conclusion

This paper presents a panel-wise applied feedforward controller that uses temperature meas-
urements and panel-wise real-time flux measurement as inputs. The presented approach is 
much less complex than an MPC. Compared with control concepts that heavily rely on feed-
back controllers, the performance is outstanding. In a test over a whole day of operation with 
a realistic cloud passage scenario, the simulated temperature exceeded the setpoint by more 
than 4 K just for approximately 12 s. Even in moments with high flux gradients and high differ-
ences in the irradiation of the first to wings/cantilevers of the receiver, there are no setpoint 
violations that seem to be critical for safe operation of the plant. Since in contrast to the pre-
sented concept commercially applied control concepts often need to work with higher mass 
flow than needed during cloud passages to avoid the risk of critical temperature exceedances, 
this control concept potentially leads to higher average receiver outlet temperatures and thus 
to higher plant efficiency. 

Despite the excellent performance, the new control concept also has weaknesses. Es-
pecially during operational conditions with low loads, the control system tends to low-frequency 
and low-amplitude oscillations, which lead to increased actuator movement of the control 
valves. Although these oscillations do not seem to be a problem for system stability, they are 
still undesirable because they potentially shorten the lifetime of the control valve actuators. 
That is why further investigations need to be carried out on how much of the increased actuator 
movement shown in Figure 8 is evitable by appropriate damping measures without impairing 
the system performance too much. 
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