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Abstract. The use of solar energy for power generation provides an efficient sustainable en-
ergy solution. Among a number of technologies developed for power generation using solar 
energy, concentrating solar power (CSP) is encouraging because it makes use of mature tech-
nology in the power block. Thermal energy storage (TES) is added to CSP, making it compet-
itive with other power generation technologies and delivering dispatchable energy. Molten salts 
are one of the materials of choice for the TES. Although the use of molten salts as heat transfer 
fluid and thermal storage in CSP has various advantages, storage tanks and pipework can be 
highly susceptible to corrosion. Different approaches have been adopted to suppress corrosion 
including the use of specialised alloys and high purity molten salts; however, both contribute 
to a substantial increase in construction and operating costs. 

In this study, a literature review is provided on coatings to suppress the hot corrosion of 
the storage vessels and pipework containing molten salts. There has been widespread use of 
anticorrosion coatings for numerous applications, providing guidelines to develop anticorrosion 
coatings for TES. Various important factors to be considered for choosing coating material are 
described herein. To date, several published studies discuss the corrosion resistance of differ-
ent alloys and coatings for different applications. This study reports on corrosion tests and 
oxidation tests, while making comparison between different alloys with use of data extracted 
from literature. Among other materials studied the nickel aluminium alloys exhibit very promis-
ing properties as protective coating. 
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1. Introduction

The capability of TES integration in the CSP plants makes them more appealing than other 
renewables technologies because of its high practicality and proficiency commercially [1–8]. 
Dispatchability is significant to supply power through grid on demand. For continuous power 
generation, a reasonably priced and consistent energy storage method is required [9,10]. The 
LCOE of CSP is significantly reduced with the use of TES, A decrease in LCOE of about 10% 
has been stated for integrating a 12-hour storage capacity TES system. TES is an order of 
magnitude lower cost than electrical (battery) storage. 

An extended literature search revealed that the scientific and technical papers dedicated 
to the development of anticorrosion coatings for solar thermal applications are limited. This 
literature review deals with the critical aspects which are related to the good performance and 
long-term viability of TES system. The use of coating does not only allow corrosion protection 
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for container material but also protects the molten salt from the ingress of corrosion products. 
Corrosion-resistant structural materials are quite expensive, and protective coatings allow less 
expensive materials to be used for the structures. 

2. Corrosion suppression 

Hot corrosion becomes uncontrollable by the super alloys alone at elevated temperatures for 
extended time duration. One of the solutions to this situation is to apply shielding coating layer 
to low-alloy steel [11]. Protective coating can be divided into two basic groups: diffusion and 
overlay coatings. Diffusion coatings are formed by diffusion of one or more elements into the 
surface of the metal to be protected.  

Figure 1. Current corrosion protection strategies used for molten nitrate salt TES. Higher wall thick-
ness, use of high purity salt, selection of specialised alloys is among the different strategies currently 

employed for corrosion suppression.  

A number of factors need to be considered while choosing coating material suitable for 
use in molten nitrate salts environment. The coatings should necessarily own a capacity to 
form a steady, slow-growing, passivating surface oxide to offer an obstruction between the 
coating, alloy, and environment, hence providing oxidation and hot corrosion resistance. Coat-
ings should have microstructural strength to keep their protective properties for prolonged ser-
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vice life, even at high temperatures, and have resistance to cracking or spallation under me-
chanical and thermal stresses induced during operation. They should offer resistance to de-
veloping fissures to preserve coating strength when under the influence of thermal and me-
chanical stresses. The size and the shape of the material to be coated are crucial in order to 
select the most suitable deposition technique. Coatings can be tailored for a specific applica-
tion by controlling their elemental composition, their microstructure, and by selection of manu-
facturing process. 

Regarding the elemental composition, only limited materials behave in a satisfactory man-
ner in molten nitrate salt at temperatures above 550ºC Table 1 [12]. It was reported that re-
fractory metals such as cobalt and nickel, and alloys like NiMo, TiAl, austenitic stainless steel, 
and Ni-Cr-Fe corroded rapidly due to rapid oxidation and/or dissolution in the molten salt in a 
study with several metals, alloys and ceramics [13]. It was hypothesised that coatings must 
include a high concentration of elements such as Al, Cr, and Si which tend to form a protective 
scale [14].  

3. Compatible materials for structural components 

The suppression of hot corrosion is a major technical challenge in materials selection and 
structure design for TES. High temperature nickel-based alloys are the logical choice for me-
chanical strength, oxidation and corrosion resistance, as corrosion kinetics increase with ele-
vated temperatures, however, the cost of nickel-based alloys are nearly four times more ex-
pensive than iron-based steels [15,16]. The corrosion behaviour of carbon steel A36 at 316ºC 

has been studied and weight losses were found to be modest with corrosion rates of about 5 
µm/year, implying they can be used in the cold parts of the plant [17]. The study by Sandia 
entailed a review of problems and lessons learned from operation of the Solar Two power 
tower after its demolition in 2009, including corrosion rates for two Fe-Cr-Ni alloys (SS321 and 
SS34) and two nickel alloys (HA230 and In625) in contact with solar salt at 400, 500, 600 and 
680ºC [15]. 

Corrosion is insignificant at 400ºC for all the studied alloys. Material performance is also 
excellent at 500ºC. At this temperature, both nickel alloys form protective nickel oxide, which 
does well in protecting the base alloy. A different scenario is observed at 680ºC. Corrosion at 
this temperature is severe for all the alloys with metal losses greater than 450 µm/year. The 
corrosion resistance of steels under these conditions depends on the formation of a protective 
oxide scale rich in Cr, which is similar to what happens during oxidation in high temperature 
gaseous atmospheres. However, an important difference when using molten salt is that chro-
mium compounds are soluble in nitrate salt and prevents the formation of a protective oxide 
scale (passivation) [18]. This results in non-protective and/or fast-growing oxide formation and 
in the increment of material degradation due to higher corrosion rates [19]. 

Alloys constituent such as Cr, W and Mo can produce soluble anions and can be readily 
extracted from the surface oxide scales formed on the alloys [20]. HR120 and Mo332 exhibited 
corrosion product with similar concentrations of Ni, Fe, and Cr, while HR224 showed partial 
surface oxidation after 3000 hours, which was attributed to the high concentration of Al [17]. 
Alloys with stabilizing additions of niobium, such as SS347 or titanium, for instance SS321, are 
known to diminish stress corrosion cracking. The corrosion rate of SS347 has been reported 
to be smaller than SS321 by 30-40% for temperature up to 600°C, spallation, on surface of 
SS321, could be the reason[15]. The corrosion rates at 600°C have been observed to be twice 
compared to 500°C, as reaction kinetics usually display an Arrhenius relationship. The corro-
sion rates at 680°C have been reported to be two orders of magnitude larger than at 600°C 
[15]. The corrosion rates of 8.6 and 9.0μm/yr have been reported for AISI316L and AISI321H 
austenitic stainless steel, upon immersion in solar salt at 550°C [21]. Corrosion rate of stainless 
steel in molten salt is reported to speed up with the rise in temperature, the composition of 
oxide scales and the corrosion mechanism change with different temperatures [22].  
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The effect of impurities present in molten nitrate salts has been investigated in A36 and 
A516 at 316ºC [23],[24]. No significant difference in corrosion rate was observed in A36 with 
an addition of up to 1.3% chloride at 316ºC [23]. The effect of chloride becomes more substan-
tial after 1000-hour exposure to the salts. After exposure to NaNO3-KNO3-NaNO2, stainless 
steel was proposed to be better compared to carbon steel for corrosion resistance at higher 
temperature [25]. IN625 has been stated to have better performance in molten nitrate salts 
compared to other studied ferrite steel and stainless steels [26]. Stainless steels are described 
to behave better in molten nitrate salts as compared to ferritic steels [27].  

Table 1. Beneficial and detrimental aspects of elemental constituents of alloys [12]. 

 

 

 

 

 

 

 

 

 

 

 

3.1 Aluminide coatings 

Aluminide coatings have been used widely and shown to be beneficial for corrosion protection 
in molten nitrate as well as other molten salts [28][29][30]. The aluminide has been reported to 
form a thin corrosion resistant layer of LiAlO2 upon reaction with Li in molten K/Na/Li car-
bonates at 650ºC [31].  

A minimum of 25 (at%) of aluminium in FeAl intermetallic has been reported as required 
to develop a continuous LiAlO2 oxide layer in Li/K carbonate melt at 650ºC [32]. Slurry alu-
minide coatings, a low-cost option, has been reported to develop a thin NaAlO2 layer in molten 
Solar salt at 600ºC and 580ºC, although the protection mechanisms still not well identified 
[19][33][29]. Aluminides have a great amount of interest for coating material as they provide 
corrosion resistance up to temperatures above their mechanical strength limit. Aluminides with 
appropriate quantities of aluminium forms alumina scales. They possess low densities, high 
melting points, good thermal conductivities, and excellent high temperature strengths.  

3.2 Ni-based coatings 

Performance of pure nickel coatings is very poor, but Ni-based coatings have been reportedly 
used to provide wear, oxidation or hot corrosion resistance [34]. Intermetallic are proposed for 
high temperature use because their strength increases with temperature. Therefore, the use 
of an intermetallic material which forms an alumina scale, with nickel as base material is very 
encouraging. Ni-based alloys possess higher resistance to molten nitrate corrosion compared 

Elemental 
Constituent 

Beneficial Aspects Detrimental Aspects 

Ni Provides strength. Prone to destructive 
interaction with sulphur. 

Co Provides microstructural stability 
and strength. 

Prone to destructive 
interaction with sulphur. 

Al Major contributor to providing 
strength Contributes to oxidation 

resistance 

Large concentration lowers 
melting point. 

Cr Contributes to oxidation resistance 
to 816ºC. Reduces Al requirement 

for formation of alumina scale.  

Lowers creep strength. 

Ta Enhances hot corrosion and 
oxidation resistance. Improves 

strength. 

 

Si Enhances oxidation and hot 
corrosion resistance. 

Large concentration leads to 
formation of brittle phases. 

Hf, Y, Y2O3 Improve adherence of alumina and 
chromia scales. 

Large amounts are 
detrimental. 

Pt Improves oxidation and hot 
corrosion resistance. 
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to Fe-base alloys, however considerably costly. The corrosion resistance of Ni-based alloys in 
molten nitrate-nitrite salt, has been reported to improve with Ni concentration in these alloys 
[18][35]. Ni based intermetallic and coatings have been explored to ease molten salt corrosion.  

3.3 Nickel Chrome coatings 

Nickel chrome coatings have been found to present protection against spalling and sputtering 
in aggressive environment of sulphate and vanadate salts at 900°C [36][37]. High chromium 
alloyed steels have demonstrated higher corrosion protection via formation of a slow growing 
continuous chromium oxide or chromate spinel layer [27]. However, solubility of Cr in the ni-
trate salt leads to depletion of chromium in the substrates and Cr-dissolution in molten salt 
[13][38]. Therefore, it is expected that materials with a significant amount of chromium will 
perform poorly in contact with nitrate salt. 

3.4 Nickel Aluminide coatings 

Nickel aluminide is proposed as a very promising material to be used as anticorrosion coating 
for molten nitrate salts. Favourable physical and mechanical characteristics, such as high melt-
ing temperature, high thermal conductivity, attractive stiffness, good oxidation resistance and 
metal-like electric conductivity [16]. Nickel aluminium coatings are reported in a number of 
cases with different compositions and have been seen to enhance the oxidation resistance of 
the substrate material. Nickel aluminium coatings are suggested to have a strong grip to sub-
strate, offering strong adhesion and reducing the thermal mismatch between substrate material 
and coatings, in case of nickel or iron-based alloy substrate [39]. This type of coating has been 
seen to have the ability to form protective aluminium-oxide layers, resulting in exceptional ox-
idation resistance, which prevents further diffusion of reactants into the substrate material [40].  

Greater amount of aluminium increases high temperature oxidation resistance, but it com-
promises the creep strength and load-bearing capability, so it is kept to less than 6% level [41]. 
Tortorelli observed that aluminium content must be over 30-35 at% threshold to provide pro-
tection against nitrate salts, however higher concentrations of aluminium constraint ductility 
and fabricability [13]. Therefore, the value of corrosion potential will be influenced by the stoi-
chiometry of coatings and a careful control of the elemental composition will be crucial. Several 
studies have showed the promising properties of this alloy as anticorrosion coating [42]. Five 
intermetallic phases formed with nickel aluminide are NiAl3, Ni2Al3, NiAl, Ni5Al3 and Ni3Al [43] 
[44].  

Figure 2. Binary phase diagram of nickel aluminium system [44] 
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One of the causes of coating failure might be differences in thermal expansion coefficient 
among coating and substrate material. Bond coating of some material can be used for over-
coming this mismatch. Applying a NiCrAlY bond coat prior to nickel aluminide coatings to in-
crease the bond strength and decrease thermal expansion coefficient mismatch, provides 
good protection to the substrate in air and molten salt environments at 900°C [45]. It has been 
reported that addition of rare earth metal as for example yttrium can increase the strength of 
the coating and also enhances nucleation of Al2O3 growth during the high temperature oxida-
tion tests [16]. Formation of NiO, NiAl2O4, and Al2O3 oxides on Ni5Al coating at 900ºC for 100 
cycles provided better hot corrosion resistance in comparison with bare super alloy [46][47]. 
Ni3Al coatings have shown a reasonable corrosion rate in NaNO3-(KNO3)-Na2O2 environments 
while NiAl functioned quite well [13].  

Electrodeposited slurry aluminide and nickel-aluminide coatings have been found to per-
form better than uncoated material, for corrosion resistance in solar salt at 580ºC. Ni3Al coat-
ings are much preferred to be used as corrosion resistant coatings as they possess strength 
at raised temperature, oxidation protection and creep properties. Ni3Al coatings on stainless 
steel substrates have been found to be protective in the presence of NaNO3:KNO3 salt envi-
ronments, with the potential to extend the lifetime of components such as the storage tank 
systems [48]. Laser re-melting of Ni3Al coating has also been observed to enhance the hot 
corrosion resistance [49]. 

3.5 Cost estimation 

Material cost calculated for a molten salt container of size ~35m diameter, ~12.5m height (30 
mm thick wall) made with SS347 costs ~€ 3.5M, while for HA214 ~€ 8.6M and ~€ 15.8M for 
HA214 [50]. Total cost of same size container including 30mm SS347 and 100 µm thick, air 
plasma spray deposited Ni3Al coatings with 25% coating efficiency was given as ~€ 4M, im-
plying Ni3Al coatings enable low manufacturing cost with accomodated wall thickness [50].  

4. Conclusion and outlook  

The main conclusion of this literature review is that the suppression of corrosion in TES is a 
challenging task. The different solar thermal technologies have been reviewed, leading to the 
conclusion that CSP coupled with molten salt heat transfer fluids represents the perfect com-
bination of high efficiency and heat storage capability. However, to make the most of this com-
bination it is crucial to reduce hot corrosion by molten salt in component systems. The literature 
review revealed that there is still a lot to be done in order to find the ultimate solution to this 
problem. There is much to learn from other technologies in the field of hot corrosion.  

Among the molten salts used as TES and HTF, Solar Salt NaNO3 (60wt%) KNO3 (40wt%) 
and related compositions are the most employed till now because of its low melting point and 
low cost. There is a need to study anticorrosion coating to be used with Solar Salt (NaNO3 
(60wt%), KNO3 (40wt%)) for thermal energy storage components. In contrast to system com-
ponents of other technologies dealing with hot corrosion, recoating of molten salt storage and 
distribution components is not straight-forward.  Therefore, it is crucial that the coating survive 
many thermal cycles and performs its protective role for many years during plant operation. It 
would be interesting to see if future work focuses on different coating deposition techniques. 
Corrosion tests in molten salt and oxidation tests in air should be carried out to understand the 
underlying mechanisms and to distinguish between oxidation and corrosion results. Field tests 
should be carried out to observe the coatings in the real environment with fluctuating solar flux, 
wind and dust, compared to the steady temperatures in laboratory tests. 

In conclusion this review document shows the potential for Plasma sprayed Ni3Al protec-
tive coating on SS347 to suppress corrosion and defines the future directions in this field. 
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However more research is needed for investigating the Ni3Al coatings on other substrate ma-
terials. 
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