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Abstract. Artificial intelligence offers the opportunity to use the large amounts of data from 
commercial CSP power plants to supplement the experience of operations personnel through 
accurate predictions to optimize predictive maintenance and operations management. As a 
constant high outlet temperature of the solar field even under fluctuating environmental condi-
tions is a relevant factor for the efficiency of commercial CSP power plants, the focus of this 
work is on the prediction of solar field outlet temperature. The analysis of this work is based 
on operating data of the commercial CSP power plant Andasol III in Spain with a temporal 
resolution of 5 minutes over a period of 5 consecutive years. To optimize the prediction, the 
three models random forest, feed forward artificial neural network – also known as multiple 
layer perceptron (MLP) – and long short-term memory (LSTM) network were compared in their 
performance and optimized separately by means of hyperparameter variation. The best results 
were achieved with the LSTM model with a mean absolute error of 6.78 K averaged over the 
prediction period of one year. By using AI models, future deviating outlet temperatures can be 
predicted at an early stage. These predictions offer the possibility to keep the outlet tempera-
ture more constant by predictive adjustment of the mass flow and thus increase the efficiency 
of the solar field and the whole CSP plant. 
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1. Introduction 

The importance of artificial intelligence (AI) is increasing worldwide. Neural networks are being 
used more and more frequently both in the private and in the professional environment. The 
applicability of AI was also increasingly examined in the CSP context, e.g. for the prediction of 
the outlet temperature of a single collector [1] or the estimation of the energy production of a 
parabolic trough solar thermal power plant [2]. In this work, the predictability of individual sys-
tem parameters for the solar field is examined more closely using AI models, focusing on neu-
ral networks (NN). A constant and high outlet temperature is one of the key factors for efficient 
solar field and power block operation. Ideally, all collector loops are adjusted and operated in 
such a way that they feed the heat transfer fluid (HTF) at its defined maximum operation tem-
perature into the header pipe. Thus, mixing losses are minimized and the maximum storage 
capacity and power block efficiency is reached. 

The focus of this work is the prediction of the solar field outlet temperature in reaction to 
meteorological and operational data. The improved predictive accuracy is expected to enhance 
fault detection, improve predictive maintenance, and increase power plant efficiency in the long 
term. 
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2. Methodology 

This work is based on a data set of five years of operational data from Andasol III, a parabolic 
trough power plant located in Spain. The plant has a nominal turbine capacity of 50 MWel and 
an annual yield of more than 150 GWhel, and is supplied with heat from a solar field consisting 
of 152 loops connected hydraulically in parallel. The time horizon of the examined data is 5 
years (2017-2021) with a resolution of 5 minutes.  

As the pure amount of measured data in commercial power plants is very high (can suc-
ceed 1 GB of raw data per day), only relevant daytime operation data is considered for the 
prediction to reduce the computing power needed. The considered time span between sunrise 
and sunset was calculated individually for each day, considering the geographic location (lati-
tude and longitude) of the examined facility. By considering all possible times with relevant 
DNI, it is ensured that relevant operational data are not excluded from use. A correlation matrix 
of possible input parameters (among others direct normal irradiation DNI, mass flow and wind 
speed) was carried out to investigate which of the available parameters have the greatest ef-
fect on the variable to be predicted (the outlet temperature). With the resulting parameters, 
three different common models were tested: random forest, modern feedforward artificial neu-
ral network – also known as multiple layer perceptron (MLP) – and long short-term memory 
(LSTM) model. 

2.1 Model Training, Testing and Validation 

Following Karunasingha [3], the mean absolute error MAE, applied to quantify the error of AI 
predictions, is defined as follows: 

 
𝑀𝐴𝐸 =

∑ |𝑇meas,𝑖 − 𝑇pred,𝑖|
𝑁
𝑖=1

𝑁
 (1) 

where 𝑇meas is the measured outlet temperature, 𝑇pred is the predicted outlet temperature and 
N the total amount of samples. The model prediction accuracy MPA defined in the context of 
this work also considers the mean of all measured temperatures �̅�meas as follows: 

 
𝑀𝑃𝐴 = 1 −

�̅�meas −𝑀𝐴𝐸

T̅𝑚𝑒𝑎𝑠
 (2) 

The performance of the different models was evaluated by training them with 3 years of 
the operational data (60% of available data), testing them with one year of operational data 
(20% of available data) and validating them with one year of operational data (20% of available 
data).  

2.1 Model Optimization 

Each of the implemented models was optimized by systematic and iterative hyperparameter 
variations. As the random forest is a simple model and there are not many hyperparameters 
to optimize, the focus in this work is on the NN optimization. The NN models (MLP and LSTM) 
were optimized via changing systematically the following hyperparameters: 

 Architecture Parameters:  Number of hidden layers & neurons per (hidden) layer 
 Training Parameters:  Learning rate (lr) & batch size (bs) 
In addition to these hyperparameters, the output sequence (future steps of prediction) and 

the input sequence (historical steps used for prediction, only for LSTM) were varied to analyse 
their impact to the model prediction performance. 
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Figure 1 shows as an example the architecture of a neural network with 10 input features, 
5 hidden layers and 128 neurons per hidden layer used in this work to predict the solar field 
outlet temperature.  

Figure 1. Example Scheme of a MLP model for outlet temperature prediction. 

3. Results 

In this chapter, the determination of the relevant features (input variables), the comparison of 
the performance of the different used models and the optimization of the considered NN mod-
els via hyperparameter variation are shown.  

3.1 Correlation Matrix for Feature Importance Analysis 

For the prediction of the outlet temperature, ten features were considered, which include meas-
ured data (e.g., DNI, wind, ambient temperature) and calculated data (e.g., incidence angle 
modifier (IAM) and sun position angles zenith and azimuth). Figure 2 shows the calculated 
correlation matrix of the outlet temperature and all considered instantaneous input features for 
this work in the order of decreasing importance. The wind direction is not considered but is just 
shown as an example for a feature that is not strongly affecting the outlet temperature. By 
using only 10 input features with the highest correlation to the exit temperature for the AI model 
training, the required computational power is greatly reduced without significantly affecting the 
prediction accuracy. 

 

Figure 2. Correlation matrix including all features considered in this work and wind direction. 

3.2 MLP Model Optimization 

The optimization of the MLP was done on all the hyperparameters mentioned in section 2.1. 
As an example, Figure 3 (left) shows the result of a sensitivity analysis of the hyperparameter 
learning rate. For each different learning rate, the correspondent validation loss (indicated the 
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error of the model) is shown over the amount of epoch (NN training steps). The red framed 
area is shown again on the right – zoomed in for a detailed view. It can be clearly seen, that 
for very high and for very low learning rates, the validation loss increases. The lowest validation 
loss and thus the best MLP model performance is reached with a learning rate of 2E-4. 

 

Figure 3. Hyperparameter variation of learning rate and its influence on validation loss during all 
epochs of the trainings process for MLP model – predicting the outlet temperature of the solar field. 

After optimization of the MLP model hyperparameters on the current time step, the model 
was used to predict the outlet temperature of the solar field for different future time steps. 
Figure 4 shows the mean absolute error for different future predictions between the current 
time step and 100 minutes of forecast of the optimized MLP model. It can be clearly seen, that 
with an increasing time of forecast also the mean absolute error of the prediction increases. 
During the first 15 minutes the mean absolute error is almost constant. The authors assume 
that the reason therefore is the physical time offset between the impact of a change in the input 
features (e.g. decrease of DNI due to clouds) and the measured result on the output sensor 
(reduced outlet temperature), which is also in the range of 5-30 Minutes depending on the 
mass flow rate through the solar field. 

 

Figure 4. Influence of increasing forecast time on the mean absolute error of the optimized MLP 
model prediction. 

3.3 LSTM Model Optimization 

The optimization of the LSTM was also done on all of the hyperparameters mentioned in sec-
tion 2.1. Equivalent to the MLP model, Figure 5 shows the result of a sensitivity analysis of the 
hyperparameter learning rate. The red framed area is shown again on the right – zoomed in 
for a detailed view. As for the MLP model it can be clearly seen, that for very high and for very 
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low learning rates, the validation loss increases. The lowest validation loss and thus the best 
LSTM model performance is reached with a learning rate of 9E-5. 

 

Figure 5. Hyperparameter variation of learning rate and its influence on validation loss during all 
epochs of the trainings process for LSTM model – predicting the outlet temperature of the solar field. 

As described in section 3.2, the effect of forecast time and historical data used for predic-
tion were analyzed. Figure 6 shows the influence of these hyperparameters on the mean ab-
solute error of the prediction. Each color represents a different forecast time. It can be seen 
again (as with the MLP) that increasing the forecast time results in an increase of the MAE. As 
described in chapter 2, 25 minutes correspond to a data series of 5 consecutive time steps of 
the data set, with a time offset of 5 minutes each. The first minutes of historical data have the 
strongest effect on the MAE – a conclusion that can be drawn from the largest negative gradi-
ent. This relevance of the historical data decreases with increasing forecast time. Furthermore, 
up to an optimum, a larger amount of historical data reduces the MAE. From this optimum on, 
a further increase in the amount of historical data for training - with otherwise identical hyperpa-
rameters - results in an increase of the MAE of the prediction.  

 

Figure 6. Influence of forecast time and historical data use on the mean absolute error of the opti-
mized LSTM model prediction. 

3.4 Comparison of Model Performances 

Figure 7 shows the predicted and the measured temperatures of four consecutive days for the 
three considered models. While on sunny days (day 1 and 2) the outlet temperature can be 
predicted quite accurately with all models, the deviation between measured and predicted tem-
perature differs especially on days with fluctuating DNI (day 3 and 4). With a MAE of 6.87 K, 

5



Kraft et al. | SolarPACES Conf Proc 2 (2023) "SolarPACES 2023, 29th International Conference on Concentrating 
Solar Power, Thermal, and Chemical Energy Systems" 

the LSTM achieves the most accurate predictions. The deviations between measured and pre-
dicted temperatures do not show any special systematics, but temperature changes are partly 
predicted too early, partly too late and partly at deviating temperature levels. 

 

Figure 7. Comparison of measured and predicted outlet temperature of the 3 implemented models for 
four consecutive example days. 

The mean absolute error of the three optimized models as well as the corresponding hy-
perparameters are shown in table 1. 

Table 1. MAE and corresponding hyperparameters for the optimized models. 

 Random Forest MLP LSTM 
MAE [K] 10.73 11.87 6.87 
Nr. of Decision Trees [-] 1000 - - 
Nr. of (hidden) layers [-] - 5 2 
Nr. of neurons per (hidden) 
layer [-] 

- 128 100 

Learning Rate [-] - 2E-4 9E-5 
Batch size [-] - 64 64 

With a MAE of 6.87 K, the LSTM achieves the most accurate predictions of the outlet 
temperature. However, the MAE is not constant over the year, but fluctuates over the months. 
Figure 8 shows the MAE for all three models by month. Based on the similar relative distribu-
tion of the MAE over the year as well as the profiles of individual days with and without signif-
icant DNI fluctuations (see Figure 7), it can be deduced that all three models prefer similar 
framework conditions (e.g. low DNI fluctuations). In February, the mean MAE for the LSTM 
model was even less than 4 K. 
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Figure 8. Monthly mean absolute error of all three implemented models. 

4. Conclusion and Outlook

Within the scope of this work, it has been shown that artificial intelligence can be used to predict 
individual physical output variables of a CSP plant – in this work the outlet temperature of the 
solar field. With a mean absolute error of 6.87 over the year, the LSTM model achieved signif-
icantly better prediction accuracies than the random forest or the MLP model. In general, the 
accuracies of the predictions decrease with a higher forecast time for both the MLP and the 
LSTM model. Due to the physical offset between relevant input data (e.g. DNI on collectors) 
and the measurement of the output (outlet temperature at the end of the solar field), highest 
prediction accuracies can be achieved with a forecast time of less than 25 minutes.  

Through deeper investigations of the used models with additional data, the performance 
of the modelled neural networks might be further improved and thus the errors decreased. In 
addition to the usage of a larger amount of CSP plant operation data (including both longer 
time intervals and higher temporal and spatial resolution), especially the usage of generated 
simulation data for AI model training might further improve the prediction accuracy. By using 
the neural network in combination with good weather forecast data, further improvements may 
be achieved like earlier detection of an increase in outlet temperature (reduction of dumping) 
or earlier detection of a reduction in outlet temperature (lower generator efficiency). In the spe-
cific case, for instance, if a lower outlet temperature is predicted due to clouds, the mass flow 
could be reduced in advance to maintain a constant future outlet temperature. During a transi-
tional phase for testing purposes, the AI-powered control system could also provide only an 
alarm or notification to the operating personnel. This way, the operational responsibility re-
mains with the personnel, minimizing the risk of detrimental operations based on incorrect or 
unrealistic predictions. Furthermore, this could contribute to strengthening the trust in using AI 
for operational control. Furthermore, different operating strategies could be tested using cor-
respondent forecast data. By comparing the resulting predictions, the results can be used to 
generate concrete recommendations to maximize thermal efficiency and thus to optimize the 
plant operation. 

In the case of CSP power plants, even small gains in efficiency result in high financial 
saving or revenue potential. The outlet temperature of commercial power plants is usually not 
constant but fluctuates, especially in the case of fluctuating DNI. As a result, early predictive 
control of the mass flows through the solar field or a warning mechanism to prevent overheat-
ing (predictive operation) via usage of AI models is a possible application to reduce the fluctu-
ation of the outlet temperature and thus increase the efficiency of the entire CSP plant.  
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