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Abstract. Computing the flux densities provided by solar concentrators or focusing heliostats 
can be done in two different ways: A grid ray-tracing (GRT) procedure that makes use of a 
large number of ray bundles, starting from the solar disk and finally impinging the focal plane 
of the concentrator. The method is reliable and accurate, but requires extensive computing 
times. Alternatively, the flux densities can be estimated by using convolution algorithms. This 
latter method requires much less computing time, but is known to be less accurate when the 
incidence angle of the sunrays on the reflector increases. The objective of this contribution is 
to define an algorithm based on convolution products and fast Fourier transforms having high 
accuracy. The results show that RMS error differences between both models are typically lower 
then 1%. 

Keywords: Solar Concentrator, Heliostat, Flux Density, Ray Tracing, Optimization 

1. Introduction

Computing the flux densities provided by solar concentrators is a fundamental tool for optimiz-
ing the geometrical parameters of the facility. This contribution mainly deals with the concen-
trating power of focusing heliostats implemented in a solar tower power plant, but can be gen-
eralized to any other type of solar concentrator. Such numerical computations can be per-
formed in two different ways, both described in Ref. [1]:- A ray-tracing model based on grid 
ray-tracing (GRT), starting from the solar disk, impinging the surface of the solar concentrator, 
and finally reaching the focal plane of the installation. This method is reliable and accurate, but 
requires extensive computing times. 

- Alternatively, the flux density can be estimated by using convolution algorithms. This
requires much less computing time, but is known to be less accurate when the incidence angle 
of sunrays at the heliostats increases [2]. 

The purpose of this communication is to define an algorithm based on a convolution model 
and fast Fourier transforms (FFT) algorithm having accuracy comparable to those of GRT 
models (section 2). Numerical results are given in section 3, before a brief conclusion is drawn 
in section 4. 
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2. Improved convolution model 

2.1 Solar tower plant configuration 

Let us consider the case of a solar tower power plant whose general configuration is depicted 
in Figure 1-A. Two main coordinate systems are defined: 

• The X’Y’Z’ reference frame attached to the solar receiver with X’-axis directed from 
South to North, Y’-axis from East to West, and Z’-axis from Nadir to Zenith, 

• The XYZ reference frame attached to an individual heliostat with X its optical axis and 
YZ the lateral dimensions along which its geometry is defined (see Figure 1-B and 
Table 1). 

• In the X’Y’Z’ reference frame are defined three vectors (see Figure 1-A): 

• S is a unitary vector directed to the centre of the moving Sun, 

• R is the unitary target vector directed from the heliostat centre to the solar receiver 
centre, 

• N is the bisecting vector between both previous ones. 
The vectors S, R and N obey the Snell-Descartes law for reflection that writes in vectorial 

form as [3]: 

.     (1) 

The main parameters employed in this paper are summarized in Table 1. The case is 
inspired from the THEMIS solar tower plant built in Targasonne, France [4] and its heliostat 
field: The considered heliostat is located at coordinates (86.6, 50., 0.) expressed in meters into 
the X’Y’Z’ reference frame. It may be noted that the distance d from the heliostat to the solar 
receiver is kept equal to 100 meters and that the heliostat and the solar receiver are located 
at the same altitude along the Z’-axis, which is considered as the worst and most demanding 
case. The heliostat is made of m x n identical spherical modules of focal length f. 

Table 1. Main parameters of the solar power plant and of the focusing heliostat. 

Parameter Symbol Value Unit 
Target vector from heliostat to receiver R (86.6, 50., 0.) m 
Distance from heliostat to receiver d 100 m 
Incidence angle on solar receiver β 30 degrees 
Heliostat width along Y-axis w 3.4 m 
Heliostat height along Z-axis h 3. m 
Number of heliostat modules m x n 4 x 2  
Modules width along Y-axis wM 0.7 m 
Modules height along Z-axis hM 1.4 m 
Modules focal length f 80 ≤ f ≤ 120 m 
Solar receiver diameter d’ 1.2 m 

2.2 Double Fourier transform model 

Most of convolution models developed so far are based on the “pinhole view” defined by F. 
Lipps in 1976 [5]. It states that the flux density distribution I(x’,y’) formed by a heliostat at the 
solar receiver plane Y’Z’ can be approximated as the convolution product of two functions 
L(x’,y’) and PSF(x’,y’): 

,    (2) 

( ) NNNSRS i2cos2=+ =

),(PSF*),(L),(I yxyxyx ′′′′=′′

2



Hénault et al. | SolarPACES Conf Proc 2 (2023) "SolarPACES 2023, 29th International Conference on  
Concentrating Solar Power, Thermal, and Chemical Energy Systems" 

where L(x’,y’) is the ideal geometrical image of the Sun disk projected onto the solar receiver 
plane Y’Z’ and PSF(x’,y’) is the Point spread function of the heliostat, i.e. the image that would 
be observed at the solar receiver if the Sun was reduced to a null or negligible angular diame-
ter. Here the mathematical symbol * denotes a convolution product. 

 

 

Figure 1. Solar tower power plant configuration (A). The geometry of the heliostats is shown in the 
bottom scheme (B). 
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Most of the convolution models developed so far make use of analytical developments of 
the convolution product in Eq. 2, and take astigmatism and defocus aberrations into account 
[3-5]. They may also include some additional “cone error” functions describing the opto-me-
chanical defects of the heliostat [2, 6-8]. Alternatively, this convolution product can be calcu-
lated by means of a double Fourier transform algorithm, whose steps are illustrated in Figure 
2 and are described below: 

1. Start from an analytical expression of the Sun angular radiance law L(ε). Herein was 
used the Jose's formula [9] that is: 

 when 0 ≤ ε ≤ εo and: (3) 

 otherwise, 

with ε the angle of the incident ray with respect to the Sun disk centre, and εo the 
Sun angular radius taken equal to 4.65 mrad. 

2. Define the ideal Sun image at the solar receiver plane Y’Z’ from the previous radiance 
formula, after mapping it by the distance d and the cosine factor 1/cosβ, resulting in the 
function L(x’,y’). 

3. Compute the Point spread function PSF(x’,y’) of the heliostat using GRT ray-tracing. 
4. Compute the Fourier transforms of both functions L(x’,y’)  and PSF(x’,y’) by use of a 

FFT algorithm.  
5. Multiply the Fourier transforms of L(x’,y’)  and PSF(x’,y’) together. 

6. Compute the inverse Fourier transform of the result with the inversed FFT algorithm to 
finally obtain the flux density map I(x’,y’)  at the solar receiver plane. 

 

Figure 2. Illustrating the double Fourier transforms algorithm. Red circles indicate the diameter of the 
ideal image of the Sun. 

The reason why this algorithm is much faster than any GRT model comes from the total 
number of launched rays. Assuming that both functions  and  are digit-
ized into arrays of dimensions 64 x 64 and 128 x 128 at the Sun disk and heliostat respectively, 
GRT simulations involve (64 x 64) x (128 x 128) ≈ 270.106 rays traced one after the other. 
Conversely, the double FFT algorithm only uses grid ray-tracing for determining the function 

 formed by the “pinhole Sun”. Assuming that it has smaller dimensions than the 
ideal Sun image, only a few sampling points are required to get a fair approximation of 

. Here the sampling number is set to 3 x 3, therefore the number of traced rays 
reduces to (3 x 3) x (128 x 128) ≈ 147500. This allows a potential gain in computing time by a 
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factor about 450. Practically however, the computing time required by the three FFT operations 
is not negligible with respect to that needed by PSF ray-tracing. We finally found a gain in 
computing time about 250 with respect to the GRT model.  

3. Numerical results 

Numerical simulations were carried out with the IDL programming language in order to vali-
date the double FFT algorithm and comparing it with the results of the GRT model. For both of 
them, two different cases were considered:  

• Assuming that the latitude of the solar tower plant is 45 degrees, the heliostat described 
in Table 1 is set in Sun tracking mode from 09h00 to 15h00 GMT at the autumnal 
equinox day (case A). 

• For the same heliostat at 15h00 GMT on the same day, different focal lengths are 
introduced on the spherical modules (80 ≤ f ≤ 120) in order to evidence the effect of the 
astigmatism and defocus aberrations (case B). 

The numerical results are expressed in terms of Peak-to-Valley (PTV) and RMS differ-
ences between the flux density maps computed with both models, after normalizing their total 
power to unity. The flux density maps and their difference numbers are given in Table 1 and 
illustrated in the false colors views of Figure 2. The maximal PTV difference is about 7 %, and 
the RMS differences are always lower or equal than 1 %. Hence, we may conclude that the 
double Fourier transform model is validated at the price of a slightly lower accuracy that is 
compensated for by much faster computing times. 

Table 2. Error differences between the GRT and improved convolution models for both cases (A) and 
(B). 

 

Spherical heliostat T = 09h00  T = 10h30 T = 12h00  T = 13h30 T =  15h00 

PTV difference (%) 7,2 6,6 6,4 6,8 7,3

RMS difference (%) 0,8 0,9 0,9 1,0 0,8

Spherical heliostat f  = 80 m f  = 90 m f  = 100 m f  = 110 m f  = 120 m

PTV difference (%) 5,0 6,3 7,3 6,7 5,8

RMS difference (%) 0,8 0,8 0,8 0,8 0,8

09-23-2022,  Day time GMT

Heliostat modules focal length
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Figure 3. Sketch of flux density maps obtained for cases (A) and (B). For both cases the results com-
puted with the GRT model are shown in the first rows and those from the improved convolution algo-
rithm in the central rows. Difference maps are displayed at the bottom rows. All maps are shown in 

false color. Red circles indicate the diameter of the ideal Sun image at the focal plane. 

4. Conclusion 

This paper presents firstly an algorithm based on a convolution product and using Fast Fourier 
transforms for estimating the flux density formed by a solar concentrator. Numerical simula-
tions are applied to the case of a Sun tracking focusing heliostat operating in a solar tower 
power plant. They demonstrate that the accuracy of this algorithm is comparable to those of 
classical grid ray-tracing models, since their RMS error difference is about 1% at most, even 
when the sunrays are impinging the heliostat under high incidence angles. The net gain factor 
in computing time with respect to GRT models is estimated around 250. This gain may be 
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further improved, either by more under-sampling the Point spread function of the heliostat, or 
by developing analytical expressions of the Fourier transform of the Sun disk, therefore reduc-
ing the number of required FFT from three to two. Finally, the double FFT algorithm may pave 
the way to fast and robust optimization of an entire heliostat field and of its pointing strategy. 
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