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Abstract. Ensuring the traffic safety of trees poses a significant challenge for urban
authorities. Conventional manual inspection methods are both time-consuming and
resource-intensive, and they are subject to human error. The following paper presents
an innovative system for automated tree condition assessment using modern camera
technologies and artificial intelligence (AI). As part of a feasibility study, image data
generated by various camera systems was analyzed. Based on this data, a YOLOv8
model was trained, which enables precise detection of trees and damage, such as
deadwood. The results of the prototype system presented are promising in terms of
accuracy and efficiency, suggesting the potential to supplement or replace manual in-
spections with automated procedures. The results of this study lay the foundation for
sustainable and scalable approaches in tree care and can contribute to increasing pub-
lic safety and efficiency in urban management.
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1. Introduction

The maintenance of comprehensive tree inventories constitutes a pivotal aspect of
public safety and environmental management in urban and municipal contexts. The
meticulous compilation of detailed tree information in both urban and rural areas is
imperative for the establishment of comprehensive tree registers, encompassing the
geographical location, species, age, and health status of the trees. This comprehen-
sive data holds significant value not only for effective green space management and
urban planning, but also for ensuring road safety. Damage to trees, such as dead-
wood or unstable branches, harbors potential dangers that need to be minimized. The
challenges in tree cadastre management are increasing considerably due to climate
change [1]. More frequent storms and extreme weather events put tree populations
under increased stress [2], [3] and increase the risk of damage from falling branches or
toppling trees. This requires early identification and repair of the damage or proactive
pruning for maintenance to ensure the safety of people and infrastructure. Conven-
tionally, tree monitoring has been performed manually through regular and visual in-
spections, a process that is both time-consuming and resource-intensive, and subject
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to human error. Concurrently, staff shortages and mounting cost pressures exacer-
bate the challenges associated with manual tree monitoring. Traditional methods are
reaching their limits due to their high resource requirements and inherent human error.
Emerging digital technologies offer a promising solution to address these challenges,
enabling efficient and seamless support. Modern technologies, such as artificial intelli-
gence (AI) and automated image processing, hold particular promise in this regard [4],
[5]. These technologies facilitate the efficient and reliable detection of damage, thereby
ensuring compliance with legal regulations. The implementation of a prototype system
demonstrates the capacity for innovative approaches to address the demands of safety,
sustainability, and efficiency.

In the context of a development initiative, a range of camera systems were em-
ployed to generate image data concerning trees. This data served as the foundation
for the conceptualization and training of an artificial intelligence (AI) model. The primary
objective of the model is to automatically identify trees and accurately detect damage,
with a particular focus on deadwood. This novel approach holds the promise of pro-
viding substantial support to individuals engaged in the management of urban tree
populations, thereby contributing to the sustainable care and safety of tree populations
in society [6].

2. Development process

2.1 Project goals

The development process of the project is outlined below, along with the objectives it
seeks to achieve. The project involves the development of an automated solution for
recording and evaluating the condition of trees. The objectives can be enumerated as
follows:

1. In the initial phase, the focus was on analyzing the applicability of generated im-
age data for training an AI model. The knowledge gained was used to formulate
well-founded recommendations for the selection and optimization of a future pro-
totype. To this end, various camera systems were tested and verified in parallel.

2. Subsequently, a feasibility study was conducted to assess the viability of em-
ploying automated tree condition monitoring through image recording. This study
investigated the extent to which the captured image data and the AI technology
derived from it are suitable for the automated assessment of tree conditions, with
a particular focus on the identification of deadwood.

3. Based on the collected image data and the findings from the feasibility study, an
initial functional prototype was developed. This prototype has been demonstrated
to reliably detect trees and their damage, especially deadwood, in images, thereby
creating an efficient and precise method for automated tree monitoring that has
the potential to supplement or replace manual tree inspection in the long term.

These objectives form the basis for an innovative approach to tree care and should
help to make the safety and care of trees more efficient and future-proof.

2.2 Image recordings

In addition to a Ladybug5+ camera from the manufacturer TELEDYNE FLIR, combina-
tions of GoPro Hero 9 cameras were utilized for the image recordings. For a realistic
and application-oriented feasibility test, the cameras were mounted at several positions
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on a car, as depicted in Figure 1, among other configurations. This approach enabled
the capture of data sets depicting the road and surrounding foliage while in motion.
The Ladybug5+ was also combined with a GPS receiver (NL-442U) from the manu-
facturer NAVILOCK, enabling the recording of the GPS position during the recording
and the creation of recordings at approximately regular intervals. The GoPro camera
also has an integrated GPS receiver, which records the corresponding position data
during recording. To ensure data stability during driving, distance and time-controlled
recording was employed, thereby ensuring regular recording distances and intervals.

The Ladybug5+ offers spherical 360° imaging, enabling the creation of images that
allow the viewer to orient freely. In contrast, the GoPro camera is distinguished by its
particularly wide aperture angle. To implement distance or time-controlled recording,
the Ladybug5+ camera was configured to take a picture approximately every ten me-
ters. In contrast, the GoPro camera utilized the time-lapse mode, capturing an image
every second or every fifth second. During the investigation, multiple car trips were
conducted, and the summer period was selected to facilitate the classification and lo-
calization of deadwood. The positioning and orientation of the cameras varied across
these trips. The orientation of the cameras was adjusted during the test drives, which
enabled better utilization of the field of view.

Figure 1. Camera setup on the test vehicle, with the Ladybug5+ mounted in the center and the GoPro
Hero 9above the windscreen.

3. Prototypical Implementation

3.1 AI Model selection

In this paper, the YOLOv8 model was employed as the AI model for the prototype sys-
tem, with the training and evaluation processes being carried out using the Python
library Ultralytics1. The YOLO family is distinguished by its user-friendly model ap-
proaches, which facilitate the transition between different model sizes as required. In
this particular instance, the YOLOv8m model was utilized for detection. The suffix ‘m‘
in ‘YOLOv8m‘ denotes the model’s size, measured by the number of parameters. The
model selected for this study is of a medium size, a compromise that has been found to
yield a satisfactory balance between accuracy and processing speed. As demonstrated
in Figure 2, a comparison of the performance of different variants of the YOLO model
reveals that marginal enhancements in accuracy are observed only with increasing
model size. The experimental findings demonstrate that the self-trained model per-

1Ultralytics[7] Version 8.2.77: https://pypi.org/project/ultralytics/
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Figure 2. Performance comparison of different YOLO model variants, taken from [8].

forms satisfactorily in comparison to the effort expended in creating the training data
set used.

3.2 Assessment of the Image Data

The present study assesses the suitability of the image data for use in an AI model.
The assessment is based on a pre-trained model (YOLOv8m), which was refined using
an existing data set. The data set used for this purpose comprises a series of images
of trees that were available from a preliminary study and were taken with a smartphone
camera in the Adlershof region of Berlin. In contrast to the images taken with the test
vehicle, this data set has a different perspective. Notwithstanding the discrepancies
mentioned above, an initial evaluation of the suitability of the new image recordings
is conducted by subjecting the images from the data set to a preliminary test. Sub-
sequently, the trained model was evaluated using a set of images from unseen trips,
excluding those utilized during the training data set. The outcomes of this evaluation
were encouraging, though not fully satisfactory. This outcome was anticipated due to
two factors: the modest size of the training data set and the varied perspectives. Con-
sequently, the data set was augmented with additional recordings from various trips.
Initially, a selection of 17 images from the Ladybug5+ data set was compiled, encom-
passing 102 individual images2. In the subsequent stage, the augmented training data
set was utilized to retrain the original YOLOv8 model, yielding encouraging results.
This enabled the formulation of a preliminary prototype based on the model approach.
The outcomes from the initial training methodologies are demonstrated as illustrations
in Figures 3a and 3b. The application of the adapted model to new image data enables
an initial assessment of the extent to which the collected image data offers sufficient
quality and variation to serve as a training basis for automated tree condition detection.

3.3 Training the AI model

As part of the implementation of the prototype, the image data is annotated in detail to
create a valid basis for the subsequent evaluations. In this step, the classes relevant for
the subsequent application of the model are defined again, using the criteria already
known. The classes used initially comprise the categories tree trunk, tree crown, tree
number and a specific class for damage. The latter category was constrained in this
instance to dead wood or to areas in the tree crowns that were devoid of foliage at the
time the images were captured. The images were annotated using the web application

217 Aufnahmen × 6 Kameras = 102 Einzelbilder
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(a) Example 1 (b) Example 2

Figure 3. Examples of the detection results after the first training of the model.

Table 1. Overview of training datasets

Model Dataset Images Composition Epochs
version 1 pre-study 100 smartphone (100) 30
version 3 dataset 1 202 pre-study (100) + Lady-

bug5+ (102)
50

version 4 dataset 2 225 dataset 1 (202) + GoPro
(23)

100

CVAT3, which provides efficient management of the datasets and the corresponding
annotation tools. Examples of the annotation and the interface used are demonstrated
in Figure 4.

As part of the prototype implementation, it is initially planned to extract additional
image data from the existing images in order to expand the training basis of the model.
The images correspond to a greater extent to the later use case and serve to sen-
sitize the model to the envisaged scenario. Particular emphasis was placed on a
balanced representation of healthy trees and trees with visible damage, in order to
optimize the model’s ability to differentiate between these states. Subsequently, two
additional datasets were generated based on the image quality evaluation dataset.
The first dataset comprises 100 additional individual images of the Ladybug5+, which
originate from an existing journey, and the second dataset was supplemented by 23
additional images recorded with a GoPro camera. An overview of the composition of
the datasets used can be found in Table 1.

The models are trained using the aforementioned Python library Ultralytics. Except
for the number of epochs, the standard parameters of the library were utilized. The
number of epochs employed in this study is indicated in the overview provided in Table
1. Subsequently, the models were trained using the extended datasets, which resulted
in two additional trained models that can be compared. The primary focus was on
analyzing the model’s capacity to reliably identify trees and damage features such as

3Computer Vision Annotation Tool – Community
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Figure 4. Annotation view in CVAT

deadwood. The results of the study provide valuable insights into the applicability of
the method in practice, as well as potential further adjustments or optimizations.

3.4 Implementation as demo application

The capabilities of the trained models are evaluated and demonstrated using a bespoke
demonstration application for automated tree condition detection. The prototype is im-
plemented as a straightforward web application in Python using the Flask framework,
with particular attention paid to the integration of the trained models during implemen-
tation. The objective was to offer users the opportunity to upload their own images and
to visualize the results of the models directly. The user interface has been designed
to facilitate the comparison of the results obtained from both models with the original
image, thereby enabling the visual interpretation of the differences in the detection and
classification of tree features. A sample result from the web application is shown in
Figure 5.

3.5 Determination of the tree position

The determination of the tree position is dependent upon the calibration of the camera
system, which allows for the derivation of the geo-positions of the trees from the image
data. The trees are localized with the aid of the recorded image data and image pro-
cessing methods, with the simultaneous recording of GNSS data by the two cameras
used enabling triangulation to calculate the geo-positions of the trees. This process re-
quires, for example, the recognition of the tree trunk from two positions. The integrated
multi-view functionality and the factory calibration of the Ladybug5+ camera facilitate
triangulation from a single image, thereby simplifying the determination of the tree po-
sition.In instances where a tree is captured from two viewing directions and the tree
trunk is recognized by the AI, for instance, these can be assigned to the two images
by selecting suitable pixels on the tree trunk. Three-dimensional information can be
captured in two different ways. The first method involves the movement of the camera,
a process known as Structure from Motion[9]. The second method utilizes the fixed
reference of the internal sensors to each other, a capability inherent in the Ladybug5+
camera, to achieve multi-view geometry[9]. The information obtained through these

6



Fiebelkorn et al. | TH Wildau Eng. Nat. Sci. Proc.2 (2025) ”WiKKI25”

Figure 5. Comparison of the results from the application of the trained models in the demo application.

methods can then be used to compare the geo-position with the tree register, facilitat-
ing the assignment of information to a specific tree. For a more detailed overview of
this subject, please refer to Figure 6b.

(a) Illustration of the viewing areas of the
cameras (dashed lines) and the two projected

3D rays, as well as their intersection point
(black). The gray circle/sphere describes the
spherical surface on which the intersection

point is located.

(b) Representation of the position of the
vehicle/camera (red dot) and the determined

tree position (blue dot) based on the
intersection of the two rays from the adjacent
figure. The underlying map was taken from

OpenStreetMap.

Figure 6. Illustration of how the geo-position of a tree can be determined from the GNSS position of the
camera using triangulation. Figure 6a shows the rays that correspond to the mapping of a specific

image point on two neighboring camera sensors of the Ladybug5+. The intersection of these two rays
then corresponds to the 3D position of the pixel, which represents the position of the tree.

4. Discussion

The procedure delineated in this study establishes the foundation for the development
of a system that automates and optimizes the evaluation of the traffic safety of trees. A
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key innovation is the ability to collect data during existing work processes, such as the
utilization of municipal vehicles. This facilitates cost-efficient integration into everyday
operations and enables comprehensive recording through existing daily routines and
route sequences. The analysis demonstrates the technical feasibility of precise detec-
tion of deadwood using a YOLOv8 model and delivers promising results. This assertion
is further substantiated by the training outcomes, as illustrated by the confusion matri-
ces depicted in Figure 7. These matrices elucidate that augmenting the training basis
enhances the efficacy of the system. The assessment of tree damage and health, a
dimension hitherto unexplored in this feasibility study, is rendered possible by the di-
verse perspectives afforded by the changing seasons and growth periods throughout
the year. To assess and train accordingly, further investment of time is required, which
would, however, significantly improve the training results.In the context of the predictive
maintenance approach, this results in various approaches for ensuring traffic safety, as
well as for shaping and maintenance pruning, which could be planned shortly after the
winter break or before the bird protection season.

The findings and other research work, e.g. [10], demonstrate that AI-based meth-
ods are a future-proof solution for the challenges in tree care that are being exacer-
bated by climate change.In the long term, AI models could not only identify damaged
areas, but also support predictive simulations for planning maintenance and safety
measures, emphasizing the importance of further research and development in this
area. The incorporation of additional data sources, such as the infrared spectral range,
as demonstrated in [11], holds promise for enhancing the depth and scope of condition
assessment.

(a) Confusion matrix of the first
model based on the pre-study
training dataset (see Table 1).

(b) Confusion matrix of the
second model based on dataset

1 (see Table 1).

(c) Confusion matrix of the fourth
model based on dataset 2 (see

Table 1).

Figure 7. Normalized confusion matrices of the different models.

5. Summary

The feasibility study demonstrates the potential of automated systems for tree condition
assessment, in particular by combining image data, AI models and GNSS information.
The study shows that suitable camera systems can be used to efficiently record trees
on roadsides as well as freestanding trees. In addition, the study demonstrates that
their positions can be precisely determined using the recorded GNSS data and thus
reliably assigned to the inventory data.

The development of a YOLOv8 model for damage detection, particularly of dead-
wood, lends further credence to the viability of these approaches. While further refine-
ment of the training data is necessary, the outcomes of the prototype system provide a
substantial foundation for the automation of tree inspection.
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The implementation of such systems has the potential to augment or supplant
manual inspections in the long term, thereby conserving resources and enhancing ef-
ficiency. This project signifies a substantial advancement towards a sustainable, scal-
able approach to tree care in both urban and rural contexts.
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