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Abstract. Due to the growing complexity of modern manufacturing, industrial process
control systems generate vast amounts of data with significant potential for machine
learning applications. While ML offers immense benefits, the lack of data science ex-
pertise poses challenges for adoption. AutoML frameworks tackle these barriers by
automating key ML tasks, enhancing accessibility and efficiency. This study inves-
tigates their effectiveness in a ceramic industry use case, comparing preprocessing
strategies and analyzing explainability with SHAP values validated by domain experts.
The findings highlight AutoML’s potential to streamline ML model development but also
its reliance on domain expertise for effective feature selection and explainability.
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1. Introduction

1.1 Background and Motivation

In modern industrial environments, the demand for accessible machine learning (ML)
tools is surging [1]. This growth is driven by the increasing availability of manufacturing
data, collected through high-tech sensing devices, electronic manufacturing records,
mobile sensors, and Industrial Internet of Things (IIoT) technologies [2]. The applica-
tions based on these data are vast and offer significant benefits to factories, including
predictive maintenance, root cause analysis, anomaly detection, and resource man-
agement [3]. These capabilities not only improve operational efficiency, but also enable
proactive decision-making, helping industries reduce downtime and optimize produc-
tion processes [4].

Despite this abundance of data, many production workers and engineers lack the
formal data science expertise required to design and implement ML models [5]. Build-
ing ML pipelines traditionally involves manual feature engineering, model selection,
hyperparameter tuning, and data preprocessing tasks that are time-consuming, error-
prone, and require advanced technical skills [6]. This gap highlights the need for de-
mocratized ML solutions that empower non-experts to leverage industrial data for ac-
tionable insights [7].
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AutoML frameworks, such as AutoGluon and H2O, aim to bridge this gap by au-
tomating key aspects of the ML pipeline, including feature engineering, model opti-
mization, and validation [8] [9]. These frameworks simplify ML workflows, improve pro-
ductivity, and reduce errors, especially when used correctly. Furthermore, advances
in ML cloud services, such as AWS and Google Cloud, have improved the accessibil-
ity of AutoML tools, integrating them into scalable environments that facilitate efficient
experimentation [10].

This study investigates the applicability of AutoML frameworks in industrial set-
tings using the Edge Curl dataset from high-performance ceramic production as a
case study. By comparing preprocessing strategies across raw, expert-preprocessed
(SILVER), and collaboratively preprocessed (GOLD) datasets by data scientists and do-
main experts, the research evaluates AutoML frameworks such as AutoGluon and H2O,
alongside traditional methods like XGBoost. The evaluation emphasizes model perfor-
mance, explainability, and the extent to which automated preprocessing aligns with ex-
pert insights. To assess trustworthiness, this study systematically inspects framework
outputs, evaluating transparency and alignment with domain expertise. Explainability,
particularly in industrial contexts, is addressed using SHAP (SHapley Additive exPla-
nations) and permutation feature importance values, validated by domain experts to
ensure trust and usability.

2. Related Work

This section explores various dimensions of AutoML research, including its financial
benefits, implications for human involvement, transparency challenges, automated pre-
processing capabilities, and applications in industrial settings. For each topic, multiple
sources were reviewed, but we selected two to three papers based on their relevance
and the quality of the work. Each subsection synthesizes findings, identifies gaps, and
provides context for this study’s contributions.

2.1 Literature Review

Financial Benefits of using AutoML: Ayyalasomayajula [11] analyze the cost-
effectiveness of AutoML workflows in public cloud environments, comparing them with
traditional machine learning methods. The study evaluates tasks like image classifica-
tion and object detection, considering metrics such as model accuracy, computational
cost, and resource utilization. It finds that AutoML pipelines often match or exceed
manual approaches in performance, with significant efficiency gains due to advanced
hyperparameter tuning and resource optimization. The authors suggest hybrid ap-
proaches combining AutoML and human expertise to address these challenges.

Similarly, Rosario [12] emphasized AutoML’s transformative business impact by re-
ducing costs, accelerating decision-making, and improving return on investment (ROI).
The study highlighted operational scalability and market adaptability as key advan-
tages but acknowledged transparency concerns and potential job displacement as crit-
ical challenges. Together, these studies position AutoML as a driver of efficiency but
underscore the need for strategic human oversight and ethical considerations.

Replacing Human Expertise: The debate around AutoML replacing human exper-
tise has produced mixed findings. AutoML in the Wild: Obstacles, Workarounds, and
Expectations [13] investigates this issue through interviews with ML practitioners to
evaluate the real-world usability of AutoML tools. The study identifies significant limita-
tions, with one of the biggest concerns among both technical and management users
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being the inability of AutoML to address complex domain-specific requirements. A key
workaround proposed is the integration of human-in-the-loop systems, where domain
experts contribute at essential stages such as feature selection and model evaluation.
Another prevalent solution involves tailoring AutoML pipelines with custom configura-
tions to meet industry-specific needs, which partially mitigates these challenges.

Crisan [14] echoed these concerns, emphasizing the balance between automa-
tion and human expertise in enterprises. Unlike AutoML in the Wild, which focused on
technical issues and workarounds, this study highlighted organizational factors, show-
ing that human involvement remains indispensable for interpreting results and ensuring
ethical AI practices. Both studies agree that AutoML alone cannot fully replace human
expertise but differ in their emphasis on technical versus organizational challenges.

Azevedo [15], through a systematic review, found that AutoML’s limitations often
outweigh its advantages in replacing human expertise. Challenges include a lack of in-
terpretability, difficulties generalizing across workflows, and reliance on extensive pre-
processing. However, it highlighted AutoML’s strengths in repetitive tasks and accessi-
bility for non-experts. Collectively, these studies affirm that AutoML is best used as a
complement to human expertise rather than a replacement.

Transparency in AutoML: Transparency remains a significant challenge for AutoML
frameworks. Stoica [16] noted that while methods such as SHAP values improve in-
terpretability, processes like automated feature selection and model evaluation remain
opaque. Factors like ensemble techniques and insufficient documentation contribute to
AutoML’s black-box nature.

Drozdal [17] demonstrated that incorporating transparency features such as per-
formance metrics and visualizations enhances trust in AutoML systems. However, they
highlighted limitations, including a lack of detailed explanations for model selection and
feature engineering processes. Both studies agree on the importance of transparency
but emphasize different aspects: Stoica focused on technical challenges, while Drozdal
addressed user trust and information needs.

Automated Data Preprocessing: Mumuni [18] surveyed automated preprocessing
techniques, including data cleaning, transformation, and augmentation, emphasizing
their role in improving model accuracy while reducing manual effort. However, the
study noted that current systems struggle to handle context-specific requirements in-
dependently. Techniques like GAN-based synthetic data generation and meta-learning
for adaptive preprocessing show promise but still require human oversight to address
edge cases.

AutoML on Industrial Data: Garouani [7] introduced AMLBID, an AutoML system
tailored to industrial applications. By leveraging meta-learning and interactive explain-
ers, AMLBID simplifies pipeline selection for non-experts but relies on clean datasets
due to limited preprocessing capabilities.

Chaabi [19] evaluated various AutoML frameworks, including AMLBID, AutoGluon,
and H2O, on manufacturing datasets for predictive maintenance and quality manage-
ment. AMLBID excelled in predictive maintenance tasks due to its meta-feature-driven
model selection. However, its reliance on clean data limited broader applicability.
These studies underscore AutoML’s potential for industrial data but highlight prepro-
cessing as a key limitation.
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2.2 Gap Analysis

Current AutoML research reveals several limitations, particularly in industrial applica-
tions. Despite advancements, gaps persist in applying AutoML to real-world scenarios
with complex, diverse datasets. This study focuses on addressing the following gaps:

1. Lack of Real-World Industrial Data Evaluation: Existing studies, like [17] and
[18], heavily rely on curated datasets that miss industrial complexities such as
noise and missing values. In particular, several works ([7], [16], [19]) highlight
reliance on clean data, limiting applicability in messy, real-world settings. This re-
search uses authentic ceramic production datasets to address these challenges.

2. Neglect of Human Expertise in Preprocessing: Studies such as [15] and [16]
recognize the value of human input but rarely quantify it. The paper of Azevedo [15]
notes AutoML struggles with domain-specific preprocessing, while [16] highlights
the necessity of expert interpretation. This study evaluates the added value of
expert preprocessing through RAW, SILVER, and GOLD datasets.

3. Automated Preprocessing Limitations: Tools often fail to address real-world
issues like inconsistent placeholders or irrelevant features. For instance, Mu-
mumi [18] explores automation but overlooks industrial-specific challenges such
as managing diverse data formats and debugging preprocessing outcomes. This
study analyzes these gaps, assessing their effects on performance and inter-
pretability.

This study addresses these gaps by:

• Evaluating AutoML frameworks with real manufacturing data.
• Quantifying the impact of domain expertise on preprocessing and performance.
• Enhancing pipeline transparency and validating outputs with domain experts.
• Highlighting and addressing preprocessing challenges such as placeholder han-

dling.

These efforts enhance the understanding of AutoML’s capabilities and limitations,
offering practical insights for industrial applications.

3. Method

This section details the methodology employed to evaluate the usability of AutoML
frameworks in the context of industrial data, with a focus on data preprocessing, model
evaluation, model performance, and explainability.

3.1 Dataset and Preprocessing

The dataset used in this study focuses on predicting the occurrence of edge curl, a
production defect in high-performance ceramics, based on parameters recorded at dif-
ferent stages of the manufacturing process. It has been processed by domain experts
and data scientists at three distinct levels, as described in Table 1. For confidentiality
reasons, all feature names in this paper are anonymized.

As shown in the data flow chart in Figure 1, the datasets undergo automated pre-
processing and prediction through the AutoML frameworks. XGBoost, however, could
only process the GOLD dataset due to its strict requirement for clean, fully numeric or
encoded data, making it suitable for structured datasets without noise or non-numeric
entries. The resulting data from the automated preprocessing are then inspected to
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Table 1. Description of the datasets used in the study, including preprocessing levels and modifications.

Dataset Description

RAW Unprocessed dataset. All 197 original columns are included without modifica-
tions or feature selection. The dataset consists of 5456 rows.

SILVER Irrelevant or redundant columns are removed based on domain experts’ knowl-
edge to enhance dataset relevance.

GOLD Fully feature-engineered dataset. Categorical variables are encoded, features
are split where necessary, and dummy variables are created. Additionally, one of
each pair of highly correlated columns is removed. This version is preprocessed
by a data scientist to optimize model performance through advanced feature en-
gineering.

Figure 1. The data flow chart shows the different steps the data went through during preprocessing
and prediction for the RAW, SILVER, and GOLD datasets.

identify whether the frameworks’ automated feature engineering aligns with expert-
driven preprocessing and whether it meaningfully contributes to model performance.

3.2 Evaluation Methodology of the AutoML Frameworks

Our experiments utilize two types of cross-validation: k-fold with subsequent data splits
and repeated k-fold with randomized data splits. These methods are employed to test
the effect of random splitting of data with temporal patterns. Mean Absolute Error
(MAE) was selected as the primary evaluation metric because it offers a clear and
interpretable measure of average prediction errors, expressed in the same units as
the target variable. This characteristic makes MAE particularly suitable for industrial
applications where transparency and interpretability are essential [20].

The default behavior of the AutoML frameworks during model evaluation is ex-
amined to determine whether any inherent issues could affect evaluation reliability or
introduce biases in the results.

The study also conducts an in-depth analysis of the explainability of models gen-
erated in each experiment. Explainability is assessed through the application of SHAP
values [21] and permutation feature importance. These results will be compared with
SHAP explanations that are reviewed and validated by domain experts. This rigor-
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ous validation process is critical in industrial contexts, where trust and usability often
depend on clear and accurate model explanations.

Through this comprehensive methodology, the study aims to reduce the black-
box nature of AutoML frameworks by explaining their outputs, thoroughly inspecting
and analyzing their automated data preprocessing, and evaluating their performance
across datasets of varying quality.

4. Results

4.1 Automated Data-Preprocessing Inspection

This section systematically investigates how the AutoML frameworks H2O [8] and Au-
toGluon [9] handle data preprocessing and compares the resulting data to that pro-
cessed by domain experts and data scientists. These frameworks were chosen for
their widespread adoption and their ability to perform automated data preprocessing.
The evaluation focuses on the transparency of their preprocessing pipelines, the ap-
propriateness of the applied transformations in addressing the dataset’s specific char-
acteristics, and the resulting data quality.

4.1.1 H2O

The preprocessing steps in H2O AutoML encompass automatic imputation of miss-
ing values, normalization when required, and one-hot encoding tailored specifically for
XGBoost models. Furthermore, H2O’s tree-based models, such as Gradient Boosting
Machines (GBM) and Random Forests, inherently support group-splits on categori-
cal variables, allowing them to natively process such data without additional encoding.
However, in contrast to AutoGluon, H2O’s pipeline lacks an interface for interacting with
individual preprocessing steps. This design choice amplifies the ”black-box” nature of
the H2O framework, reducing transparency and constraining the detailed inspection of
intermediate preprocessing outputs. As a result, precise examination of these inter-
nal transformations is not feasible, which can pose significant challenges in scenarios
demanding fine-grained control over preprocessing workflows.

4.1.2 AutoGluon

AutoGluon’s preprocessing pipeline comprises 15 specialized feature generators, each
tailored to address specific preprocessing tasks. These generators can either be
custom-configured to suit dataset-specific requirements or employed using default pa-
rameters provided by the framework. Leveraging metadata and dataset structure, Au-
toGluon intelligently selects the most suitable feature generators, enabling a dynamic
and adaptive preprocessing workflow.

Table 4 provides a general overview of the key feature generators auto-selected
by AutoGluon for the data under consideration, detailing their primary functionality and
usage across different preprocessing stages (RAW and SILVER datasets). Detailed
documentation of the generators is given in the official documentation of AutoGluon
[22].

In the subsequent paragraphs, the differences between the RAW and SILVER datasets
will be discussed first, followed by a detailed analysis of feature generators whose im-
pact deviated from expected behavior based on the official documentation. Generators
that performed as documented will not be examined in detail.
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Differences between RAW and SILVER: The primary differences between the pre-
processing generators used by AutoGluon on the RAW and SILVER datasets lie in the
usage of the text and date feature generators. In the RAW dataset, AutoGluon recog-
nized only one text feature, Position, which was absent in the SILVER dataset. Similarly,
all time-related features were excluded from the SILVER dataset. These features were
removed by domain experts due to their irrelevance, and the higher dimensionality
of the generated features further amplified their irrelevance, adversely affecting both
model performance and interpretability.

Categorical features: The ’CategoryFeatureGenerator’ is tasked with label en-
coding for categorical features, handling data types such as ’object’, ’category’,
and ’bool’. This process utilizes Pandas functions like ’cat.categories’ and
’astype(CategoricalDtype())’ to achieve the desired encoding. In the analyzed
dataset, certain features were misclassified as ’object’ due to inconsistent represen-
tations of missing values, such as the placeholder ’TBD’. AutoGluon failed to identify
’TBD’ as a representation for missing values in a predominantly numeric column, treat-
ing the feature as an object type and label-encoding the ’TBD’ entries.

For instance, the feature ’F92’ contained seven unique floating-point temperature
values along with ’TBD’ entries. This led to the automatic conversion of the column
to the ’object’ data type, followed by label encoding. Using cat.categories ensures
that lower temperature values receive lower index labels if categories are explicitly
defined as ordered (ordered=True) and sorted accordingly. However, inconsistencies
arise when temperature features with placeholders like ’TBD’ are inferred as ’object’

in some instances but as ’float’ in others. Such discrepancies render the encoding
schema invalid.

Moreover, the validity of this approach depends on all temperature-related features
receiving consistent labels for identical temperature values representation through-
out the dataset. Any misalignment in label assignments across columns representing
the same temperature scale can lead to encoding inconsistencies, adversely affecting
downstream machine learning tasks reliant on uniform numerical representations.

To address these challenges, columns containing placeholder strings like ’TBD’

must be explicitly handled before encoding to ensure uniform data types across all fea-
tures with the same units or representing the same concept. This involves converting
placeholder values into a standardized representation, such as NaN, aligning with the
dataset’s semantic expectations and facilitating accurate label encoding.

Text features: Text columns are identified by evaluating the uniqueness of their
rows. Specifically, a column is classified as text if the ratio of unique entries to total rows
exceeds one percent and most rows contain multiple distinct words [9]. In the dataset
used for this study, only one feature, ’F184’, met these criteria and was encoded by
the ’TextSpecialFeatureGenerator’ into the derived features: [’F184.char count’,

’F184.word count’, ’F184.capital ratio’, ’F184.lower ratio’, ’F184.digit

ratio’, ’F184.special ratio’,

’F184.symbol count’, ’F184.symbol ratio’].

As previously mentioned, domain experts identified the Position feature as irrel-
evant in the cleaned dataset versions. As a result, all derived features also inherited
this irrelevance. Retaining this feature in the automatically preprocessed raw data and
amplifying its dimensions introduces unnecessary noise, inflates computational costs,
and reduces overall interpretability. Furthermore, its presence may cause the model to
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identify spurious correlations, thereby compromising both predictive performance and
generalization on unseen data.

Unique features: At the initial stage of automated preprocessing, the ’AsType

FeatureGenerator’ removed the unique features originally present in the RAW dataset
(those not generated by any feature generators). Subsequently, additional features
were generated by the ’DatetimeFeatureGenerator’, ’TextSpecialFeatureGenerator’,
and ’TextNgramFeatureGenerator’. Among these newly created features, some were
identified as unique. These features were removed by the ’DropUniqueFeature

Generator’, effectively eliminating 31 unique features introduced by these generators.

Dropping duplicates: The ’DropDuplicatesFeatureGenerator’ is designed to iden-
tify and remove duplicated features, retaining only the first feature in each group of
duplicates. While this approach ensures the elimination of redundant information, it
also introduces a potential error: the automated removal of an original feature in favor
of a generated feature. Although this issue was not observed in our specific case, an
inspection of the framework revealed no safeguards to prevent such occurrences.

If an original column is replaced by a generated column during the automated
deduplication process, the predictive accuracy of the model remains unaffected. How-
ever, this replacement could significantly reduce the interpretability of the model. Origi-
nal feature names carry semantic meaning that aids in understanding model decisions,
whereas generated feature names can obscure this clarity. For instance, if a dupli-
cation occurs between an original temperature feature and a generated date feature,
the expert interpreting the model may struggle to identify that a generated date feature
appears in the explanation plot because the original temperature feature was removed.

Ensuring that original features are prioritized during the deduplication process is
crucial for maintaining both the interpretability and reliability of machine learning mod-
els.

4.1.3 Conclusion

AutoML frameworks like AutoGluon and H2O streamline data preprocessing but require
domain expertise for optimal outcomes. H2O’s preprocessing pipeline offers limited
transparency due to its black-box nature, whereas AutoGluon provides a structured and
traceable approach through its feature generators. However, AutoGluon struggles with
domain-specific nuances, such as handling inconsistent missing values (e.g., ”TBD”) or
filtering irrelevant features like Position and time-related columns, which were retained
in the RAW data.

While these frameworks significantly reduce manual effort, they lack the capability
to autonomously address domain-specific preprocessing challenges. This underscores
the importance of integrating domain knowledge with automated preprocessing to en-
sure robust and interpretable models.

4.2 Performance Comparison of AutoML and Traditional ML

This section presents the Mean Absolute Error (MAE) of model predictions across dif-
ferent datasets using the cross-validation methods described in the methodology sec-
tion.

Table 2 demonstrates that repeated k-fold cross-validation generally yields better
scores compared to standard k-fold cross-validation. However, whether this improve-
ment indicates genuinely enhanced performance will be analyzed in subsequent sec-
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tions. XGBoost was unable to process the RAW or SILVER datasets due to its require-
ment for clean, fully numeric or encoded data. In contrast, both AutoML frameworks
successfully handled these datasets after automatically preprocessing them.

Among the results, AutoGluon outperformed H2O on the silver dataset, while H2O
achieved the best results for the RAW dataset using standard 3-fold cross-validation.
AutoGluon, however, excelled in repeated 3-fold cross-validation across all datasets.
For the GOLD dataset, AutoGluon achieved superior results with repeated k-fold cross-
validation, while XGBoost performed best using standard 3-fold cross-validation.

Table 2. Comparison of 3x Repeated 2-Fold Cross-Validation and 3-Fold CV. In 3x repeated 2-fold
cross-validation, the dataset is randomly split into two equal parts for each fold, with 50% of the data

used for training and 50% for testing. The sampling is random and non-sequential (the samples in the
figure are hypothetical). In contrast, 3-fold cross-validation divides the data into three consecutive and

fixed folds, with each fold serving as the test set once while the remaining two are used for training.

Cross Validation Dataset AutoGluon H2O XGBoost

3 folds CV
RAW 0.022208 0.018066 -
SILVER 0.022716 0.022862 -
GOLD 0.022449 0.025377 0.020470

Repeated 3 folds
CV with 2 splits

RAW 0.006049 0.006088 -
SILVER 0.009871 0.009902 -
GOLD 0.009903 0.009938 0.009908

4.3 Evaluating Model Validation Strategies in AutoML Frameworks

This section evaluates how the frameworks handle model evaluation and examines any
potential negative effects on the resulting models.

H2O’s AutoML framework employs k-fold cross-validation as its default strategy
for evaluating model performance, utilizing 6 folds by default. A notable feature is its
’split column’ parameter, which allows users to specify a column, such as a time-
related column, for splitting. This ensures that data from the same time frame is not
shared between training and validation sets.

AutoGluon’s cross-validation strategy employs 8 folds by default, using random
splitting of the dataset into training and validation sets to assess model performance.

Random splitting of data in temporally ordered contexts introduces bias in model
evaluation by disregarding the temporal dependencies inherent in the data. This can
lead to data leakage, where information from the same time context influences the
training process, compromising the integrity of model evaluation, and resulting in overly
optimistic performance estimates [23]. While the use of a separate test set that does
not overlap temporally with training or validation data can mitigate data leakage during
testing, it does not address overfitting to temporal patterns while training or the mis-
match between training conditions and real-world scenarios where data from different
time frames are used [24].

The ’split column’ option provided by H2O is a useful feature, but its effective-
ness depends on the user’s awareness of the need for structured splitting. However, the
default settings of both frameworks, which rely on random splitting, can have a negative
effect on model evaluation when data contains temporal or contextual dependencies.
This default behavior disregards the structured nature of the data and risks introducing
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Figure 2. SHAP values for the XGBoost model trained on the GOLD dataset. And the validation of the
outcomes by domain experts

bias and overfitting, making it essential for users to intervene with appropriate expertise
to mitigate these issues and ensure proper handling of data.

4.4 Model Explainability

Figure 2 displays a SHAP values plot generated by explaining an XGBoost model
trained on the GOLD dataset without cross-validation. This plot illustrates the influence
of individual features on the model’s predictions, where features with higher SHAP val-
ues have a greater impact on the output. The validation by domain experts, as shown
in Figure 2, revealed a strong alignment between the model’s results and the input
provided by the experts.

Figures 3a, 3b, and 4 present the permutation feature importance [9] derived from
the predictions of different AutoGluon models. Figure 3a, for the model trained on the
RAW dataset using 3-fold cross-validation, shows 5 matches with the validated features,
with the first date feature appearing at position 19. The role of date variables will
be discussed later. Figure 3b also displays 5 matches, but the date feature appears
earlier, at position 12. Figure 4 represents the feature importance by the predictions
of the model trained on the SILVER dataset using 3-fold cross-validation, showing a
closer alignment with the validated features, with 8 out of 9 validated features appearing
in higher positions. No date variables are present here, as they were removed from
the SILVER dataset based on expert recommendations. Lastly, Figure 5 illustrates the
SHAP values for the H2O model trained on the SILVER dataset, showing 8 matches
and similar directional trends to the validated SHAP plot.
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(a) Feature Importance for AG on the RAW dataset
with 3 folds cv

(b) Feature Importance for AG on the RAW dataset
with repeated 2 splits 3 fold cv

Figure 3. Comparison of permutation feature importance derived from AutoGluon models with different
Cross validation methods.

Figure 4. Permutation feature importance derived from the AutoGluon model trained on the SILVER
dataset using 3-fold cross-validation.
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Figure 5. SHAP values for the H2O model trained on the SILVER dataset. Green features indicate
matches with the validated features from the XGBoost validated SHAP Plot.

5. Conclusions

This study examined AutoML frameworks in industrial process control using a real-
world ceramic production dataset. While AutoML accelerates machine learning model
development, it heavily relies on the data quality and pre-processing applied before-
hand. In our case, this has been investigated with three levels of involved manual
preprocessing, which we term RAW, SILVER, and GOLD. With unprocessed RAW data,
AutoML failed to remove irrelevant features that domain experts had identified for ex-
clusion leading to a reduced model performance. Using the SILVER dataset, it made
errors in feature engineering, mishandled NaN values, and incorrectly encoded data,
demonstrating its limitations in automatically processing data at different refinement
stages.

Nonetheless, AutoML excels in model selection, ensembling, and hyperparame-
ter optimization (HPO), consistently achieving competitive Mean Absolute Error (MAE)
across all dataset versions. It effectively automates the identification of high-performing
models and fine-tunes them for optimal accuracy. These results show that despite pre-
processing challenges, AutoML optimizes architectures and parameters, often generat-
ing strong predictive models even with corrupted or invalid data. This resilience makes
it a valuable tool for rapid model development in industrial applications, particularly for
model selection and tuning, though it still requires high-quality, representative data for
reliable and interpretable results.

While AutoML lowers the technical barrier to machine learning in manufacturing,
it is not a substitute for expert-driven preprocessing. Future research should focus on
enhancing AutoML’s preprocessing capabilities, better integrating domain knowledge,
and refining validation techniques to improve alignment with real-world industrial con-
straints.
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Underlying and related material

Table 4. Overview of AutoGluon’s feature generators [9], their primary functionality, and their usage
across different stages of the Edge Curl dataset ( RAW and SILVER).

Generator Description RAW SILVER

AsTypeFeatureGenerator Enforces type conversion to match
types seen during fitting. - Encodes
features with only two unique values
(including nan) to binary features (0,1).
- Drops unique Features

Used Used

FillNaFeatureGenerator By default takes only features with the
data type object and replaces the nan
with an empty string. The final data
frame still contained Na

Used Used

IdentityFeatureGenerator Identifies the features, that will not be
processed in the subsequent genera-
tors and passes them without change.

Used Used

CategoryFeatureGenerator Converts object types to categories
and removes rare ones. -

Used Used

DatetimeFeatureGenerator Transforms datetime features into
numeric representations. (Unix
time stamp in nanoseconds,
year,month,day,day of week)

Used Used

TextSpecialFeatureGenerator Extracts specific attributes from raw
text features.

Used Not
Used

TextNgramFeatureGenerator Creates n-gram features from text
data.

Used Not
Used

DropUniqueFeatureGenerator Drops features with only one or mostly
unique values.

Used Used

DropDuplicatesFeatureGenerator Removes duplicate features, retaining
one instance.

Used Used
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