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Abstract. We present two novel, fast gradient based optimizer algorithms with dynamic
learning rate. The main idea is to adapt the learning rate a by situational awareness,
mainly striving for orthogonal neighboring gradients. The method has a high success
and fast convergence rate and relies much less on hand-tuned hyper-parameters,
providing greater universality. It scales linearly (of order O(n)) with dimension and is
rotation invariant, thereby overcoming known limitations. The method is presented in two
variants C2Min and P2Min, with slightly different control. Their impressive performance
is demonstrated by experiments on several benchmark data-sets (ranging from MNIST
to Tiny ImageNet) against the state-of-the-art optimizers Adam and Lion.
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1. Introduction

Numerical optimization of functions obviously relies on data obtained from the function
f(z) landscape. One key problem is that we are lacking meaningful global information
about f(x) usually making it necessary to rely on local information instead. Approaches
based on local properties range from using the function value in physics-inspired
relaxation approaches [1], to algorithms using the topographical structure of the
function landscape directly, such as gradient descent-like approaches, to biology inspired
algorithms such as swarm optimization [2].

Among these, the gradient descent-like methods have the longest history and
are (due to their linear scaling with the problems dimension) the only practically
applicable algorithms in high dimensional problems (e.g. deep neural networks). In
these approaches the gradient G = V f(z) of the function f(z) is computed and
thus also the best descent direction —G. However, while the idea of going downhill
is obviously reasonable, an optimal step-length A = «a - ||V (f(z))|| remains to be
chosen cost-efficiently. The parameter « is the learning rate (or step size). Most current
gradient based algorithms use a fixed learning rate a, which additionally may depend
on time/steps t. This holds in particular for the Ada-family' of optimizers, widely used

'Such as: AdaGrad, RMSProp, AdaDelta, Adam, Lion, which all scale the gradient components individually
(precondition-like).
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for training neural networks. To eliminate the initial tuning of «, there are some modern
approaches which adapt o dynamically, such as AdaDelta or Prodigy (proposed in
[3]) or DoG (proposed in [4]). Yet, they perform not better then the most prominent
Ada-optimizer Adam [5] or its successful predecessor Lion [6] and converge ultimately
to constant « in most cases.

The use of a fixed learning rate « is in part due to the fact that it allows for precise
mathematical analysis, guaranteeing or almost surely guaranteeing (for SGD) a lower
bound on convergence rates (e.g. see [7], 1.2.3).

We propose a paradigm changing algorithm that estimates in each step self-
consistently a near optimal learning rate o from low-cost local knowledge of the
function, thereby achieving a jump close to the next minimum along the gradient
direction. In particular, a approaches a problem-specific good scale exponentially fast
and, depending on the problem, the adaption leads to continual changes of a.

We propose ELRA — Exponential Learning Rate Adaption as a name for the class
of optimizers, based on this idea.

Recent articles indicate that large variations of o might be very beneficial. In [8], it
is for the first time mathematically proven that (periodically) varying step sizes lead to
much better convergence rates, which our experimental results confirm. In [9] it is shown
that estimating the best « via backtracking using Armijo’s condition (see [7], 1.2.3) can
lead to faster convergence then the Ada-family. However, each backtracking step needs
a separate and expensive function value. Hence, backtracking more than once is seldom
justified by the speed gained. ELRA does not suffer from this computational conundrum,
as we provide two low-cost estimators for the best «, thereby retaining the benefit of a
good « without losing speed.

The first essential advantage of ELRA is that a strongly adaptive « completely
eliminates the need to find 'by hand’ a good constant « for each specific problem.
Secondly, most modern training schemes rely on decreasing « over time to achieve
better test accuracy. Yet the best timing is a priori unknown and often determined by
educated guesses. The strong performance of the ELRA optimizers C2Min and P2Min
(cf. Fig. 7-12) shows that a strongly adaptive o« needs no external timing. Thirdly, ELRA is
invariant under orthogonal transformations of z, such as rotations, unlike the Ada-family,
see [10]. Such an invariance is preferable not only for geometric optimization, [10], but
also important near saddle points (see Results 3).

In addition to the learning rate, we propose also dynamic adaption of the momentum
and the batch size and provide a kind of soft restart (necessary, as big « can lead to
temporary instability). Moreover, we present a technique that can improve the final result,
which we call boosting.

We are convinced that each of these features on its own can, to a varying degree,
be also beneficial for other types of optimizers, like the Ada-family (see App. table 3 for
a summary of their properties). This article is a further development of our original idea
from preprint[11].

2. Dynamical Adaptions

This section explains how we dynamically control the learning rate «, the momentum,
the batch size and soft restarts and explains boosting.

The code of the ELRA optimizers is online available via [12], using PyTorch.
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2.1 Optimal « Updates via Orthogonal Gradients

All gradient descent methods for minimizing a function f(z) boil down to the following
update scheme for «

Tpy1 = Tt — a'((l—ﬁ)Gt + BMt>, (1)

where G; = V f(z;) is the gradient at x;, M; the momentum, § the ratio between
G, and M, (possibly zero). For the Ada-family, a is essentially constant while G, is not
actually the gradient, but a component-wise modification, which is dynamically adapted.
However, this leads to a dependency on the coordinate system and the speed of the
algorithm depends heavily on the concrete representation of the data (see Fig. 3).
Moreover « has to be chosen with care, either using past results or initial try and error
runs.

We provide a completely new approach which overcomes many of these problems.
The main idea is to use the cosine cos; := cos(£(Gy, G;_1)) of the angle between the
current gradient GG; and the previous gradient G;_; to determine the adaptation of the
learning rate a. A short proof of why and how this is reasonable can be given as follows:
To find «, such that z; = z;,_; — oG, is a local minimizer to the differentiable? function
f near a non-critical point x;_; in the negative gradient direction —G,_, one considers
h(a) == f(zy—1 — a-Gy_1) = f(z¢), Which is f(x;) at the next point z;, depending on the
learning rate «. Differentiating h with respect to « yields:

h/(a) = <Vf(l't), —Gt71> = —<Gt, Gt,1> (2)
= —Cos (&(Gt,Gt_l)) NGl |Gl
where (a,b) denotes the scalar product and ||a|| = +/{a,a) the euclidean norm.
Note that #/(0) = —||G;_1||? is negative. This means that %, and hence f, decreases for
small «. In fact, h decreases until it reaches a critical point a,,,;;, > 0, where we have
W (min) = 0 < cosy = 0. If ayy IS @ NON-degenerate critical point of A, then h has
necessarily a local minimum at «,,;, and thus also f in the direction of —G,_;. This
gives the following conclusion: For the optimal learning rate «, which leads locally to the
smallest f(x,), the current and previous gradients G; and GG,_; are orthogonal to each
other or equivalently cos; = 0. Moreover if cos; > 0 then an increased « gives better
results, while for cos; < 0 a smaller « is better. Figuratively speaking (cf. Fig. 1): If we
see Zig-zag or anti-parallel steps we should decelerate, while for primarily parallel steps
we should accelerate.

As «,,;, depends continuously on z;_;, we can expect that the optimal «; for z;
does not vary too much from the optimal «;_; for z;_;. This justifies the use of cos; as
an oracle for the next a;. Note that cos, is computational much cheaper than Armijo’s
condition, as no extra gradient/function values are needed.

There are infinitely many ways to use this result to update «, which can all be written
in the form a; = a;—1-(1 + cos; -g), Where g can be any positive function. We use the
following two competing update formulas for a, which are implemented in two distinct

2See Math. suppl. (5), why even for non-differentiable activation functions (e.g. ReLU), one can assume that f is
smooth.
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Figure 1. Situations during optimization and associated o updates.

optimizers C2Min and P2Min?:

C2Min : o = y_q- (1 + max(0.5- cosy, 0.6 cost)>
. COS;
P2Min : oz:a_l-(l—i— )-/{
o |Gl /1GH]] = cos,

The formula for C2Min leads to a mild exponential changes, as 0.5-a;_; < a; <
1.6-a4_1, and has an asymmetric update behaviour, i.e. it decreases faster and increases
slower, providing a more conservative and hence stable behaviour. The different weights
0.5 and 0.6 for negative/positive cos; also improve stability of « in the case where cos;
oscillates lightly around 0, as (1 — 0.5¢)(1 + 0.6¢) is slightly above 1 for 0 < ¢ < 1/3.

In the formula for P2Min, «, is chosen such that x; ., = =, — ;G is the minimizer
of f along the line through z,_, and z,, if f were a parabola* in this direction (see
Methods, A.2, for details). Note that the updated step size «; can in principle be arbitrary
between —oo and +oo for P2Min. We prevent this potentially catastrophic behaviour by
imposing bounds of the form 0 < a;/a;—1 < Ymaz, Where v,...° can be chosen at will, e.g.
Ymaz ~ 10%. Moreover, we found that it is beneficial to set fixed bounds for . Currently
these bounds are set as follows: 1078 < o < 10°. These are additional hyper-parameters,
yet they are sufficient in all our experiments.

An initial oy still has to be chosen for C2Min and P2Min. However, the specific
choice is marginal, as both algorithms adapt « exponentially fast. We chose o, small
(e.g. ap = 107°) to prevent initial instabilities (explosions of f(z)). This leads to a
negligible fixed number of initial extra steps to increase « to the right magnitude (see
Fig. 4).

We remark that C2Min and P2Min are by construction rotation invariant®, as they use
only scalar products, and their computation is relatively cheap (effort of O(n) for time and
space), as computing scalar products (or norms and cosines) has a low computational
resource demand.

3The factor x ~ 1 neutralizes noise-effects in neural networks (see Methods, A.3, for details).

“The parabola ansatz is chosen, as near a local minima, each function is almost a parabola (cf. Math. Suppl. C).

S5For neural networks, Ymaz = 10 is probably sufficient, we use Vimaz = 106/(1+d), where 0< d <10° is a damper,
increased whenever we have a soft restart and decreased otherwise.

SActually even invariant under orthogonal transformations.
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2.2 Soft Restarts

The ELRA update-schemes for o can lead to numerical instabilities, due to overestimated
increases for « (happening more often for P2Min, as it is more aggressive). To prevent a
fatal increase of f(x), we use retracing/soft restarts, if the new value f(z;) increases too
much’. In these situations, we retrace back to the previous z,_,, decrease o, (at least
a; < 0.5-a4_1) and calculate the next point z; by:

Tip1 = T + (o1 — ) Gyq

= (21 + 1Gi1) — Gy = 121 — Gy

The question when to retrace is quite delicate and leaves room for much
improvement. At the moment, we retrace if f(xz;) > min (25 f (zpest), 1.1-f(20) ), Where
is the starting point and f(z:.s:) @ moving average over the best function values. For the
more mathematical experiments, such as Rosenbrock, we actually use for P2Min a more
involved condition of the form f(z;) < f(zwst)/D, Where D is a damping parameter,
which increases whenever f(x;) > f(z:—1) and decreases otherwise.

2.3 Momentum Control

The optimizer P2Min uses no momentum, i.e. M, = 0 or equivalently z,,1 = z; — o, G,
for P2Min!

C2Min on the other hand uses a simple decaying average of gradients as momentum
M, = 0-M;_4 + (1-6)-G4_1, where we use § = 0.8. It is important to observe, that
we use a different, dynamically controlled update parameter 3, for the actual step
xy = 21 — oy ((1=B¢) Gt + BiM;—1). By experiments, we found it beneficial to have

8, < & and we control it by 3, = 0.85 — 1.25,, where o, = avg(\@b is the average

relative oscillation of f(x) around the mean function value f (see Methods, A.5, for
details). We bound o by 0.043 <o < 0.7, to guarantee that 0.01 < 3, < 0.7984 < 0.8.

2.4 Dynamical Batch Size

Influenced by the article "Don’t Decay the Learning Rate, Increase the Batch Size" [13],
we lately decided to also dynamically adapt the batch size b. We use integer multiples
m, > 2 of a minimal base batch size® b,,;,, i.€. by = m; - b,.;n. We always start with an
initial batch size of by = 8-b,,in, as it turned out to be beneficial for the whole optimization
to first use a lager batch size, to let the optimizer find the right magnitude for o, and a
good optimization direction.

We update m, every 100 steps, depending on the deviation of the gradients GG, within
the t"-batch from their mean G,. To measure this deviation, we compute two gradients
G, = Zﬁ Gy and Gy = ZZ;bt/QH G, representing each the gradient obtained from
half of the batch. Then s, := cos (£(G1,G>)) estimates the cosine of the deviation
angle between single gradients G, within a batch and the batch gradient G,. Taking the
mean of s; over 100 steps yields 5. We control the multiplier m, (and thus b,) via s by
my = max (2, [my_1-k,—1]), where k,_y > 0 for s < 0.015, k1 = 1 for 0.015 <5 < 0.025
and k;_; < 1fors > 0.025 (see Methods, A.6, for details).

"One cannot avoid some increment of f(z) with stochastic gradients, as G might not be the direction of steepest
descent.
8bmin is a hyperparameter to be chosen for each problem.

5
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We want to point out that s; is calculated at a single point x; and therefore
independent of the optimizer, suggesting that this control parameter should also work
for other optimizers, such as the Ada-family, an idea we deem worthy of investigation.

The constants 0.015 and 0.025 were obtained by experiments, however increasing
the batch size b; if 5 < ¢ is mathematically justified by the fact that for 5 < ¢ the stochastic
gradients G, are so noisy that on average they point in directions almost perpendicular
to the actual gradient of f(z;), leading to random walks rather than gradient descent.

Finally, we want to draw the attention to the last batch of an epoch, which may
contain fewer elements than the other batches. If this is the case, then we skip the last
bacth, i.e. do not use it in this epoch, as it would yield a gradient that is much noisier
than all others, thus often disrupting the optimization for some steps. This is in particular
an issue for all optimizers which use larger learning rates « such as C2Min and P2Min.

2.5 Final Boosting

We noticed that C2Min and P2Min tend to oscillate round the optimal descent path (see
Fig. 2). It follows that the mean 7 = %(E’,jzl x74) Of points x; for a certain number n
of steps (e.g. an epoch) can give better results, i.e. f(Z) < f(zry,). However, it is not
beneficial within the optimization process to replace z,,, with Z, as 7 is relatively to the
optimal descent path still further up than =1, (in Fig. 2, T is roughly in the middle, while
xr.n IS at the back, at the end of the green arrow). Yet in the final epochs, calculating
7 and f(Z) can boost the final result. We plot in our experiments below f(z) for every
epoch to illustrate the possible benefit.

Figure 2. Oscillating optization path along a valley

3. Results

As shown above (see section 2.1), we have a mathematical justification for our approach.
Yet, giving guaranteed convergence rates for our proposed optimizers is intractable using
current methods (even for convex landscapes), due to the adaptive nature of the learning
rate «. Thus we rely on experiments to show the usefulness of ELRA. We conducted
low dimensional mathematical experiments and high-dimensional experiments with
neural networks for image classification. The latter are almost all executed for multiple
random initializations, as gradient descent methods show partially chaotic behaviour.
However, for cost reasons (limitations of an academical budget) we restrict ourselves

6
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to 10 different initializations per experiment (except for Wide-ResNet on CIFAR-10 and
Tiny ImageNet, where we conducted only 3 or single runs respectively) and provide
graphics of the median.

We stress that no scan of the seed space was performed for ELRA, nor hyper-
parameter tuning via validation data!

3.1 Mathematical 2D experiments

As proof of concept and to explore certain standard problems in gradient descent, we
first show 2-dimensional results on saddle points, bowls/parabolas and the Rosenbrock
function.

3.1.1 Saddle points

Saddle points (where V f(z) =0 but f(z) is not a local max/min) can pose problems in
gradient descent methods, as the gradient becomes arbitrarily small near them, which
might lead to catastrophic speed loss. Generically, in suitable coordinates, these saddle
points look locally like z = (0,0) for f(x) = 2? — 22 (see Math. Suppl., (4)). However,
for a given data representation, it is more likely that the coordinates near a saddle are
rotated!

We looked at the performance of the optimizers AdaDelta, Adam (with o = 0.01, 8; =
0.9, B, = 0.999), C2Min and P2Min near the standard saddle f(z) = 22 — 22 starting at®
zo = (1,107%) and the problem rotated by 45°. Fig. 3 (Up) shows the value of f over
steps t. The dashed lines belong to the rotated situation. The fastest are C2Min and
P2Min, which have the same graph with or without rotation (invariance). AdaDelta and
Adam are slower and suffer significantly from 45°-rotation, as it makes the component
wise modification of the Ada-family completely useless. Fig. 3 (Down) illustrates the
paths in the z1-z,—plane chosen by the different optimizers. One sees that C2Min and
P2Min follow fast the gradient direction, while the Ada-family either try to avoid the
saddle directly (unrotated situation) or follow slowly the gradient direction. This shows
one drawback of conditioning individual axis weights within the Ada-family. It illustrates
also that the different optimizers often find different local/global minima. Noteworthy:
C2Min (green) shows visible oscillations around the z,-axis, which we use by design to
decelerate.

3.1.2 Bowls and Rosenbrock

As a second class of mathematical experiments, we considered higher dimensional
parabolas (so called bowls), i.e. functions of the form f(z) = >, ¢; - 27, and the infamous
Rosenbrock function f(z) = (1—xz;)?+100(z,—x%)?. Bowls provide the simplest non-trivial
functions for convex optimization, while the Rosenbrock function with its curved valley
is a difficult standard optimization problem. Here, we used for Adam « = 0.05, 5, =
0.8, 5, = 0.9 and for RMSprop « = 0.05.

Table 1. Stepst to reach f(x;) < e from xg = (—5.75,1.75)
for the bow! f(z) = 322 + 2423

accuracy || Adam | RMSprop | C2Min | P2Min

e=10""1 128 142 20 9

e=10"6 184 00 42 12

°All true gradient descent methods fail when starting at (1, 0).
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Table 2. Stepst to reach f(xz;) < 1 from start point xg
for Rosenbrock f(z) = (1 — x1)? + 100(z2 — 23)?

start point || Adam | RMSprop | C2Min | P2Min
(—3,-2) 208 176 227 10
(—11,121) || > 10* [ > 10? >10* | 300

The Tables 1 and 2 give the minimal number of steps ¢ needed for the different
optimizers to reach a certain threshold for f(x;). One sees that for these examples
(together with the saddle from above) P2Min is by far the fastest and for Rosenbrock
with bigger starting points, it is the only optimizer that produces any meaningful results.
C2Min’s bad performance for Rosenbrock might be due to non-optimal momentum
control. We hope to improve this result in the near future (see Future work B).

3.2 Neural networks

We conducted 7 different experiments (each for 10 initializations/seeds) with neural
networks for image classification, involving the 5 training data sets MNIST, Fashion-
MNIST, CIFAR-10, CIFAR-100 and Tiny ImageNet and 6 different neural networks
ranging from tiny (~ 8k parameters) to substantial (~ 36 mil. parameters). We use
varying data augmentations and batch shuffling after each epoch.

All experiments are conducted for the ELRA-optimizers C2Min, P2Min and the
state-of-the-art optimizers Adam and Lion for comparison and we plot the median of
each performance metric (train-loss', test-loss, test-accuracy). All optimizers have fixed
hyperparameters for all experiments, with the batch size being the only exception! The
batch size for Lion and Adam is b = 256 and the learning rates are a = 1073 for Adam
and o = 10~* for Lion. The minimal batch sizes b,,;, (see section 2.4) are b,,;, = 24
for C2Min, b,,;, = 32 for P2Min for problems with 10 classes (MNIST, Fashion-MNIST,
CIFAR-10) and b,,;,, = 256 for C2Min, b,,;,, = 48 for P2Min for problems with at least
1000 classes (CIFAR-100, Tiny ImageNet).

2.5 T T
. AdabDelta ———
Adam
P2Min —
Cc2Z2Min —

batch loss median (10 seeds)

o L I I I
(@] 50 100 150 200

steps t (epoch = 60000/256 = 234.4)

Figure 4. Median Batch-Train-Loss for MNIST over 15t epoch.

Before presenting the experiments, we show in Fig. 4 the behaviour of C2Min and
P2Min in the first epoch. The initial plateau phase for C2Min comes from the small initial
learning rate oy = 1075, requiring a fixed amount of steps to increase « to the right

°Train-loss is computed on all training data after each epoch.
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magnitude, due to exponential adaptation. Note that P2Min has a significantly shorter
adaption phase.

3.2.1 MNIST and Fashion-MNIST

We conducted experiments on the MNIST and Fashion-MNIST data set containing each
(60+10)k pictures (28x28 pixels, gray-scale) of handwritten single digits (for MNIST)
or fashion items of 10 different classes (for Fashion-MNIST). We used a primitive
fully connected network with 1 hidden layer (10 neurons) and RelLU-activation for
MNIST and the 3-layer convolutional network FashionCNN for Fashion-MNIST. No
data augmentation was used for MNIST, while we utilized random horizontal flips for
Fashion-MNIST. Each experiment was run for 80 epochs.
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Figure 5. Median Test-accuracy for MNIST for 80 epochs

In Fig. 5 and Fig. 6, we show the median test accuracy. The dotted values are the
possible results provided by the final boost after each epoch (see section 2.5). The test-
and train-loss data can be found in Fig. 14a-15b in the appendix.

Particular remarkable is that for MNIST and Fashion-MNIST, C2Min and P2Min have
significantly lower test-losses than Adam and Lion by comparable test-accuracy.

3.2.2 CIFAR-10

The CIFAR-10 data set contains (50+10)k images (32x 32 pixels, RGB color) of objects of
10 different classes. We use the standard residual neural networks ResNet18, ResNet34,
see [14], and Wide-ResNet-28-10, see [15]. For data augmentation, we use PyTorch’s
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Figure 6. Median Test-accuracy for Fashion-MNIST for 80 epochs

RandomCrop with padding=4 in reflect mode, random horizontal flips and batch shuffling.
Here, each experiment was run for 60 epochs. Note that we tested Wide-ResNet-28-10
only on 3 seeds each, due to computational costs.

We show in Fig. 7-10 the median test accuracies (see App., Fig. 16a-19b for test-
and train-loss). The most striking observation from these experiments is the huge
accuracy gap between Adam and Lion on one side and P2Min and C2Min on the other
(see section 3.3 for possible explanations).

The steep increase of P2Min between epochs 35 and 40 in all these experiments
comes from the fact that around this time this optimizer starts to increase the batch size.
As a consequence, the oscillations around the optimal descent path (see section 2.5)
are also drastically reduced and the benefit of boosting vanishes almost completely.

It is noteworthy that the test-loss obtained by P2Min is by far the smallest, although
the train-loss is comparable to that of C2Min (and smaller than that of Adam and Lion).
This suggests that P2Min reaches in fact a different local minimum than all the other
optimizers.

As a final result, Fig. 10 shows the performance of C2Min and P2Min for ResNet18
with fixed (!) batch sizes 256 or 64 resp. (see Fig. 19a and Fig. 19b for test- and
train-loss). This illustrates that the dynamically adapted learning rate alone is already a
strong tool which leads to better performances than that of Lion or Adam. It shows also
that P2Min benefits strongly from dynamic batch sizes, while C2Min has even a better
accuracy result with the fixed batch size, suggesting that the batch size control is not yet
optimal.
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Figure 7. CIFAR-10, ResNet18: Median Test-accuracy for 60 eps.

3.2.3 CIFAR-100 and Tiny ImageNet

The CIFAR-100 data set is similar to CIFAR-10, containing (50+10)k images (32x32
pixels, RGB color) of objects of 100 classes, so that each object is represented only
on 500 images in the training set (compared to 5000 for CIFAR-10). This explains
partly, why ResNet18, which we use here, performs much worse on CIFAR-100 than on
CIFAR-10. As for CIFAR-10, the experiments run for 60 epochs and we use the same
data augmentations, i.e. RandomCrop and random horizontal flips.

The final data set Tiny ImageNet contains (95+5)k images (64 x 64 pixels, RGB color)
of objects of 200 classes. Here, we trained ResNet50 (see [14]). As this is a downsized
version of the much larger data set ImageNet, we resized the images to 256 x 256 pixels
and then cropped 16 pixels in all directions. For data augmentation, we only used random
horizontal flips. As these experiments are much larger (and consequently require much
more computation time), we have only performed two runs, one for C2Min and one for
P2Min, each running over 60 epochs.

Fig. 11-12 show the median test accuracies (see App., Fig. 20a-21b for test- and
train-loss). For CIFAR-100, the test-accuracy behaves similar to CIFAR-10, but the gap
between Lion/Adam and C2Min/P2Min is even bigger (note the different scaling). Again,
the effect of the increased batch size on P2Min is clearly visible around the 30" epoch.

For Tiny ImageNet, we included in Fig. 12 for comparison test/validation accuracies
obtained by other authors (see also Fig. 13). The better result of C2Min could be chance
(only 1 seed!).
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Figure 8. CIFAR-10, ResNet34: Median Test-accuracy for 60 eps.
3.3 Analysis

While for the almost trivial problems MNIST and Fashion-MNIST, advantage of the ELRA
optimizers over whose from the Ada-family is only marginal, it is overwhelming for CIFAR.
This might stem from the fact that ELRA is closer to the generic stochastic gradient
descent (SGD) optimizer, which corresponds to setting a = const. and § = 0 in the
update scheme (1). For SGD it has been observed that, albeit being very slow, it tends
to yield minimizers, which generalize better to the test data. This is explained by SGD
having noisier optimization paths, which helps to escape steep local minima, which
generalize less optimal. See [19] and [20] for some explanations of this effect. This
means that our algorithms combine the best of two worlds: the speed of Adam/Lion with
the better generalization of SGD.

Moreover, dynamical adaption of the batch size has the same effect as a learning
rate schedule, but much faster, illustrated by Fig. 13, taken from [21] and [18], where we
included for comparison our results from Fig. 9 and Fig. 12.

The advantage of P2Min over C2Min on all CIFAR experiments comes probably
from the fact that P2Min uses no momentum. Momentum can help to gain speed and
optimization path stability at the beginning, yet hampers increasingly the progress close
to the minimum until it forces x essentially to rotate around the critical point, unless «, 5
or ¢ are reduced.
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Figure 9. CIFAR-10, Wide-ResNet-28-10: Median Test-accuracy for 60 epochs

4. Limitations

Our implementations still leave much room for improvements. For instance (with very
small batch sizes), C2Min and P2Min can fail by increasing « over a long period, thereby
increasing the noise and finally becoming unstable. This could be prevented by more
conservative a updates, yet these can lead to speed loss and reduced performance.
Moreover, the controls for momentum and batch size are functional, yet far from optimal.
Finding a more universal solution here requires more research.

Finally, our code and consequently the computational resources would benefit
from ELRA specific adaptations of the PyTorch or Jax architecture, such as providing
by default the function value f(x;) and the scalar products (G, G;), (G:-1,G:) to the
optimizer and a flexible data loader for varying batch sizes.

5. Conclusion

We presented a novel, simple, mainly self consistent, robust and fast optimizing method
with linear dimensional scaling and rotational invariance, realized in two algorithms.
Typical runs on mathematical standard problems and statistical tests on neural networks
for the MNIST, CIFAR and Tiny ImageNet data sets with several initializations showed
better final test losses then the best state of the art optimizers Adam or Lion with
hand-tuned optimal parameters!

We believe that nobody has thought about trying steep and fast «-adaptions before
due to the following reasons: for small dimensions good solvers exist (often using matrix
inversions, e.g. the Levenberg—Marquardt algorithm), mathematical optimizers strive
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Figure 10. CIFAR-10, ResNet18: Median Test-accuracy for 60 epochs, with constant batch-size 256

for provability (which restricted until recently to constant «: compare [7] and [8]) and
previous conditions (Armijo) for updating « are too expensive in high dimensions.

Additionally, better control systems for learning rate, momentum and soft restarts
promise increased performance and universality (see Future works below). Meta-
learning, e.g. applying a small neural network to fine-tune the control parameters,
could also lead to further improvement.

We strongly believe that the above ideas will create a completely new research field
in gradient descent-based optimization.
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A. Methods details

A.1 Summary

Table 3. Properties of Adaptive Optimizer Features

Main feature Level of maturity General applicable

dynamic alpha great (fast, robust, universal) yes, simple

dynamic beta working, but poorly motivated could be, not tried

dynamic batch-size good (fast, robust, universal)  yes, independent of any SGD optimizer
(final) boosting great, improves most results  could help Adam (etc.) in final epochs
soft restart good, reverts failed step simple, more robustness with high «

A.2 Estimating « using a parabola ansatz

To get the update formula for « of P2Min, we consider f only along the straight line
through z;_; and z;, whose direction is z; — x;_y = —a;_1G;_1. We assume that f
along this line is a parabola, i.e. f(x) = ax? + b, where we chose (in practice unknown)
coordinates such that = = 0 is the minimizer of f. In this setting, the derivatives of f are:
(Geo1,Go)
|Gl
where 0, _, is the directional derivative of f with respect to G;_;. Together with z;,—z,_; =
—O{t_th_l, we get
<Gt—17 Gt)
jrey]

2azi-1 = f'(21-1) = Og,_y f(2em1) = [|Gin||  and  2az, = f'(21) = Og,_, f(2:) =

(Gie1, Gr) — |G| (G1o1, 1) — [|GiaP
— G, 4| = = a =
H t 1” HGt—IH —20_1 - HGt—1||2

2a(xy —x41) =

As we want z; — oy - f'(z;) = z441 = 0 to be the minimizer of f, we obtain with =, = %
that

Lt 1 HGtAHQ . (1 + (Gi1,Gy) )

o = = — =1 =y -
T f(w)  2a TGl = (Gimt, Gy) ! |Gl = (Gi1, Gy)

— s COS;
G |l/1|Gal[ = cos; )
(3)

where we used (G,;_1, G;) = cos; -||Gi_1]| - ||G,]| in the final step.

A.3 Noise correction multiplier ~ for P2Min

When training neural networks, the update scheme (3) for « in P2Min estimates « too
small. We believe that this is due to stochastic noise in the gradients G,, coming from
the use of data batches much smaller than the full data set. To rectify this behaviour,
we introduce a corrective multiplier x, such that a; = a1+ (1 + TemRITilte ) - k. The

/|G| —cost
multiplier is calculated by the formula:

| _ 2.35? o
—=1—min (0.1 ,0.14 - (W : f(xbest)) ) :

Here, f(z.s:) iS @ moving average over the best function values (see below A.4). The
value f(zo) is the initial value of f. The term fz(ff; is a dimensional correction term,
which compensates the fact that for networks with more output classes, f(z.s:) is higher.

The constant 2.35 is the typical initial value f(z,) for networks with 10 classes, such
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as for MNIST or CIFAR-10. We expect that f(z,) could be replaced by the stochastic
expected value of f, if the network is initialized randomly. Note that we assume for this «
that the loss function satisfies f(x) > 0 away from the global minimum.

A.4 Averaging the best function values

At several control points, such as soft restarts and the above presented corrective
multiplier x, we use an average f(x,.s:) over the best values of f. It is recursively defined

as follows: |
F(Tpest) = {f(ﬁt) if f(z) < f(@pest) |

1.1- f(xpest) oOtherwise

This definition gives roughly the best value of f, but slowly moves away from it, if no
better value is seen. This guarantees that one is not stuck with a very small f(zpes ),
which was only obtained by chance. Note that 1.1 - f(z.s) Only increases f(zpes:) if we
have always f(x) > 0 away from the global minimum.

A.5 Momentum control

As explained above (see section 2.3), we use a typical momentum update scheme
M =6-M;_1 + (1-6)-Gy—; with 6 = 0.8, but a dynamically controlled different parameter
B, for the actual step ;1 = x; — at((l—ﬁt)Gt + 5:M;). We control 3, by the average

relative oscillation o of f(z) around the mean function value f given as follows:

fi=09-f, , +0.1- f(x,1) (moving mean of f),
B . f(gvt—l) - ?t At
0oy = max | 0.043, min ( 0.7, 7— (oscillation at z, truncated to [0.043,0.7])
t
0, =09-0,+0.1-0 (moving mean of oscillations)

B,=085—12-3,

The truncation of o, to the interval [0.043,0.7] guarantees that the momentum control
parameter j, lies between 0.01 and 0.7984 < ¢ = 0.8. Here, larger oscillations lead to less
momentum, while small oscillations give more. The idea is that a large momentum in a
landscape with high curvature can induce additional oscillations and consequently slow
down the optimization. However, this control was designed purely phenomenological (by
try and error) and relies on the fact, that for neural networks, the loss function f(z) > 0
away from the global minimum, so that the fraction in o, is well-defined. Ideally, f should
be replaced by the mean distance to the optimal z, yet this is in practice unknown.
Hence, controlling the momentum leaves much room for future improvement.

A.6 Dynamical batch size control

As explained above (see section 2.4), we control the batch size b, = m; - b, Dy an
integer multiplier m;, which is updated every 100 steps using the mean s of the cosines
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of deviation angles for the gradients G;. The explicit update formula is:

(0.015—73)-254+1  fors < 0.015
k=<1 for 0.015 < 5 < 0.025
(0.025—73)-125+1 fors > 0.025

max (2, [my - k) ) +2 if s <0.015
mys =
: max (2, [my - k] otherwise

This formula guarantees that m, increases by at least 2, if s < 0.015 (needed as m; =
|my - k] if my - k. < my + 1). Moreover, it increases the batch size faster, than decreasing
it.

B. Future work

Opening a new field creates lots of opportunities for continuation. Here we mention
some of the most promising directions:

* a=a-(1+cos-g(z)) is the general update scheme for o obtained from our idea of
orthogonal gradients (2). Here, g can be any function with g(x) > 0. What is the
best ¢? Different answers for different problems?

« Short initial phase (warm-up) to find faster ideal initial «y and ideal minimal batch
Size byin

» Problem specific fine tuning (selected hyper-parameters) is possible and could give
further improvement:

— fixed bounds for o (i.e. 1077 < o < 10~!) based on statistics gathered during
current run. Could speed up P2Min significantly (fewer soft restarts, shorter
time to recover from restart)

— better dynamic adaption of momentum parameters 3, § for C2Min
 Further applications: electronic structure optimizations, protein folding, molecular
dynamics, finite element methods
* Possible landscape characterization as a side-result

C. Mathematical supplements
C.1 Extremal points sit inside quadratic surrounding

In principle, critical points z,, such as local/global minima and saddle points, can be
degenerate, i.e. the Hessian at xy can have 0 as an eigenvalue. However, functions with
all critical points non-degenerate, so called Morse functions, are the generic situation,
meaning that they form an open and dense subset within C?(R"), see [22]. So figuratively
speaking, "almost all" two times continuously differentiable functions have only non-
degenerate critical points. For these functions f, we find then by Taylor expansion, that
they are locally dominated by their Hessian, i.e. they behave locally around critical points
like quadratic functions:

flz) = ici -3, ¢ € {+1,—1}. 4)
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C.2 Random noise convolution removes discontinuities in Gradients

In some applications, the function f, which we want to optimize, is not differentiable,
such as f(z) = ||z|| or f(z) = max{x,0}. Then, the gradient is not everywhere defined
and most optimization methods suffer. However, if the data contains some random noise,
i.e. the function f is slightly blurred, then we can expect differentiability. Indeed, the
effect of random noise can be thought of as convoluting f with a probability density
function ¢, such as the density of the normal distribution ¢(x) = exp(—22/20%)/(0+/7)
(if the blurring can be arbitrarily large) or a density with finite support, if the blurring is
limited. Now, if ¢ is continuously differentiable and f integrable or locally integrable (for
finite support), then it is a well known fact that the convolution f x ¢ is also differentiable
with differential

0.1 2 0)(w) = D, [ (0)-0la — )0 = [ (1) Du0a — )t = (/% 0.,0) (2). ()

Especially DNN learning should be affected by noise from the input and from batching,
resulting in smooth landscapes.

D. Additional performance plots
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Figure 15. Median Test-/Train-loss over 80 epochs for Fashion-MNIST, with learning rates o = 10~3

(Adam), a = 10=% (Lion).
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Figure 16. Median Test-/Train-loss over 60 epochs for CIFAR-10 using ResNet18, with o = 10~3 (Adam),
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Figure 17. Median Test-/Train-loss over 60 epochs for CIFAR-10 using ResNet34, with o = 10~2 (Adam),

0.5

0.45

0.4

0.35

0.3

0.25

test loss median (3 seeds)

0.2

a = 10"* (Lion).

T
Adam
Lion
P2Min
P2Min+boost
C2Min
C2Min+boost

0.5

0.4

03 -

0.2 -

train loss median (3 seeds)

10 20 30 40 50
epochs t, batchsize = 256 & dyn

(a) Test-loss

T
Adam
Lion
P2Min
P2Min+boost
C2Min
C2Min+boost

e ———

60 0

10

20 30 40 50 60
epochs t, batchsize = 256 & dyn

(b) Train-loss

Figure 18. Median Test-/Train-loss over 60 eps. for CIFAR-10 on Wide-ResNet-28-10, with a = 1073

(Adam), a = 10=* (Lion).
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Figure 19. Median Test-/Train-loss over 60 eps. for CIFAR-10 on ResNet18, with b = 256 (fixed),
a = 1072 (Adam), o = 10~* (Lion).
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Figure 20. Median Test-/Train-loss over 60 epochs for CIFAR-100 using ResNet18, with o = 1073
(Adam), o = 10~* (Lion).
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Figure 21. Median Test-/Train-loss over 60 epochs for Tiny ImageNet using ResNet50
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E. Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There
are many potential societal consequences of our work, none which we feel must be

specifically highlighted here.
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