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Abstract. This paper presents a small review on the technological advances made on the 
perovskite-based solar cell. Through this summary of the results of the research on 
perovskite, the reader will have an overview of the perovskite material, the different 
structures of a perovskite solar cell, and the opto-electrical properties of such cell as well as 
the electrical models used in its simulation. Finally, the paper presents in a very brief way the 
challenges that this technology will have to overcome before finding its place in the 
photovoltaic market. 
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Introduction 

Among the photovoltaic cell technologies, perovskite solar cell technology has become 
probably the hottest topic in photovoltaics as can be seen in the number of publications and 
conference topics on the subject. In 2009, Miyasaka et al. developed a perovskite-based cell 
with an efficiency of 2.2%. But, by replacing Boron with Iodine, the efficiency improved to 
3.8%. Ten years later, the confirmed efficiency of the single junction cell of a perovskite-
based cell was 21%. In 2020, a perovskite-based solar cell with a conversion efficiency of 
25.5% was achieved by Jeong M. and all. Several models of perovskite –based solar cell 
structure, elaboration and optimization method and simulation models have been proposed 
in the published studies. In spite of the visible advances in terms of structure stability and 
conversion performance, much research effort remains to be done to ensure the thermal 
stability of this cell which will guarantee its commercial success. The objective of this paper is 
to highlight these advances and to review the manufacturing and simulation models of the 
perovskite cell in order to bring together the similarities in the methods and structure that will 
ensure its thermal stability.  

Structure of the perovskite solar cell 

Perovskite mineral is used as a photovoltaic solar cell absorber. It can be elaborated from a 
variety of materials and different synthesis methods. Perovskite was discovered in 1839 in 
the Ural Mountains in Russia and named after the Russian mineralogist L.A.Perovskite [1]. 
The chemical formula of this mineral is CaTiO3 (calcium titanium oxide). Compounds that 
have a similar structure to CaTiO3 (ABX3) are called perovskites. In general, in the ABX3 
structure of perovskite, A is a large monovalent cation that occupies the cubooxctahedral 
sites in a cubic space. B is a small divalent metal cation that occupies the octahedral sites 
and X is an anion (typically a halogen, however, X can be oxygen, carbon or nitrogen). The 
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structure of perovskite and its stability is quantified by two crucial parameters: the tolerance 
factor (𝑡) given by equation 1 and the octahedral factor ().  

𝑡 =
(𝑅𝐴 + 𝑅𝑋)

√2(𝑅𝐵 + 𝑅𝑋)
         (1) 

This factor is a ratio of the ionic radius of the divalent cations 𝑅𝐴, 𝑅𝐵 and the radius of the 
anion 𝑅𝑋. These two parameters are generally between 0.81 and 1.11 for 𝑡 and then 0,44 
and 0.90 for µ µ [1]. The perovskite-based solar cell has a variety of architecture. As in other 
photovoltaic cell technologies, the perovskite cell has an electron transport layer (ETL) and a 
hole transport layer (HTL) in addition to the perovskite absorber layer. Thus, the 
configuration of the cell is very crucial to expect a high-performance perovskite cell. From the 
literature, two configurations stand out for perovskite based cells: the planar configuration 
and the mesoporous configuration. Each configuration can be elaborated according to the 
conventional structure (N-i-P) or the inverse structure (P-i-N). The following figures illustrates 
its two configurations. 

 
Figure 1. The perovskite-based solar cell configuration: a) the planar configuration and b) 

the mesoporous configuration. 
The evolution of this technology is meteoric with a yield that has evolved from 3.3% in 2009 
to 25% in 2020 (figure 2). 

 

Figure 2. The best annual yield of solar cells based on perovskite. 
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This performance is partly due to the understanding in the structure of the layers of this cell, 
the treatment reserved to their interface and the interest that this technology arouses in 
research. The following table summarizes the different structures of the perovskite-based cell 
studied in the literature. It is necessary to recall that the choice of a structure aims at the 
improvement and the stability of the existing cell. 

Table 1. The different structures of the perovskite-based cell studied in the literature. 

Structures PCE Stability 
time 

Ref 

FTO / TiO2-Cl / MAPbI3 / Spiro-OMeTAD / Au 21% 2000 h [3] 
FTO / Doped C60 / mixed perovskite / Spiro-OMeTAD / Au 17% 650 h [4] 
Glass / ITO / PEDOT:PSS / MAPbI3 / PCBM / EFGnPs-F / Al 14.3% 30 days [5] 
FTO / LBSO / MAPbI3 / PTAA / Au 21.2% 120 h [6] 
FTO / TiO2 / MAPbI3 / PTAA / Au 19.6% 120 h  
FTO / LBSO / MAPbI3 / NiO / Au - 100 h  
GlassFTO / c-TiO2 / mp-TiO2 / mixed perovskite / Spiro-
OMeTAD-SWCNT 

15% 580 h  

FTO / c-TiO2 / m-TiO2 / perovskite / Spiro-OMeTAD / Au 14.6% 300 h [7] 
FTO / c-TiO2 / m-TiO2 / perovskite / ZrO2 / Carbon 11.9% 12000 h [8] 
FTO / c-TiO2 / m-TiO2 / Cs5M / HTL / Au 21.2% 250 h [8] 
FTO / c-TiO2 / m-TiO2 / Cs0M / HTL / Au - 250 h  
ITO / cp-TiO2 / ms-TiO2 / perovskite / PTAA / Au 20.6% 160 h [9] 
ITO / cp-TiO2 / ms-TiO2 / perovskite / Spiro-mF / Au 
ITO / cp-TiO2 / ms-TiO2 / perovskite / Spiro-oF/ Au 

24.8% 500 h [10] 

FTO / bl-TiO2 / mp-TiO2 / MAPb(I1-xBrx) / PTAA / Au 16.2% - [11] 
FTO / PEDOT:PSS / MAPb(I3-xClx) / PCBM / Al 17.7% - [12] 
ITO / PEIE / TiO2 / perovskite / Spiro-OMeTAD / Au 19.3% - [13] 
FTO / bl-TiO2 / mp-TiO2 / FAPbI3 / PTAA / Au 20.2% - [14] 

If these different structures of the perovskite cell are inexpensive to develop, it should be 
noted that the structural, electrical and optical properties of the perovskite cell degrade when 
exposed to the ambient air. This degradation, which is one of the major challenges to 
overcome if the technology is to appear on the photovoltaic market, is simply due to the 
reaction of the perovskite layer with the oxygen in the air and with water vapor. 

Electrical and optical properties of the perovskite solar cell 

The optical band gap of the halide-based perovskite materials used is about 1.6 eV. The 
absorption of these materials covers only a fraction of the ultraviolet and visible light; 45% to 
50% of the entire solar spectrum [15] [16]. 
However, the absorption range of single crystal perovskite is red-shifted [17]. The absorption 
in single crystal perovskite starts from 850 nm while it starts at 780 nm for polycrystalline thin 
films [18]. 
This absorption shift in the single crystal is due to the enhanced use of below-bandgap 
absorption attributed mainly to the indirect-bandgap absorption transition with a bandgap of 
60 meV smaller than the direct bandgap. The absorption coefficient of the below bandgap is 
small compared to that of the above-gap transition making the below bandgap absorption 
negligible in polycrystalline thin films but abvious in thick single crystals [19].  
Z. Cheu showed that the absorption coefficient of single crystal perovskite is an order of 
magnitude higher than those of conventional ruthenium dyes. Liu et al., have shown that 
perovskite material is an excellent absorber in the visible spectrum, but very transparent in 
the near infrared spectrum [19]. 
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 Blessing E. et al  [20], observed similar results to those demonstrated by Aharon et al  [21],  
concerning the improvement of the absorption of the perovskite cell and the decrease of the 
optical conductivity when the volumetric ration of methylammonium lead bromine introduced 
in a fixed volume of MAPbI3 increases. The knowledge of the different optical properties and 
absorption limits and the search for methods to extend the absorption range will contribute to 
the improvement of the performance of the perovskite technology. This quest for 
performance improvement also involves simulation studies using electrical models of the 
solar cell. 

Electrical model of the perovskite cell 

The current-voltage characteristic of a cell does not provide reasonable insight into the actual 
mechanisms of charge transport, recombination and storage. As such, an evaluation of the 
response of a solar cell to a small perturbation of various real inputs such as voltage or light 
in the frequency domain of the cell remains an essential method. These mechanisms are 
summarized in the form of an equivalent circuit that describes the actual physical processes 
in terms of the passive electrical element and the voltage and current sources. The 
perovskite cell has been treated theoretically as an ordinary direct band gap semiconductor  
[22]. Therefore, it is considered as a simple p-i-n diode governed by the equivalent circuit 
equations of the said diode. Many authors have used the one-diode (figure 3a) and two-
diode models for the equivalent circuit of the perovskite-based solar cell  [23] [24]. In addition 
to these commonly encountered models, other models often used for organic cells have 
been used to model perovskite solar cell. 
Huang et al. have developed for a perovskite-based solar cell, an equivalent circuit model 
very close to the one developed by Mazhai for organic cells. The model is shown in Figure 
3b.  
Ebadi et al, proposed an equivalent circuit model for the perovskite cell including electrical 
components and ionic components  [25] (figure 3c).  

 
Figure 3. Electrical model of perovskite solar cell: (a) one diode equivalent circuit model, 

Figure (b) The solar cells' lumped-parameter equivalent circuit model proposed by Mazhari 
[26] and (c) Equivalent circuit for the fitting photo-voltage rise and decay plots [25] 
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Future challenges in perovskite solar cell 

The commercialization of the perovskite-based solar cell remains closely linked to the 
improvement and stability of its performance. If its efficiency reached 25% in 2020, the future 
challenge of the cell remains its stability.  
J. Zhang et al., have shown that the Spiro-OMeTAD hole transport layer used in the 
elaboration of the perovskite cell contributes to its poor stability when exposed to ambient air 
[27]. 
Much effort has been made to develop hole transport layer to replace the Spiro-OMeTAD 
layer  [28] [29] [30]. This layer could be replaced by a Cu:NiOx layer. However, Damian et 
al., have shown in their study that using Cu:NiOx as the hole transport layer results in a huge 
drop in open circuit voltage and short circuit current. On the other hand, by using 
Cu:NiOx/PTAA, the quality of the cell improves as well as its efficiency  [31].  In 2020, 
Mingyu J. et al., replaced the Spiro-OMeTAD hole transport layer with two fluorinated 
isomers. This process resulted in a perovskite-based cell with 24.8% efficiency stable at 87% 
of its efficiency after 500 hours under humidity conditions without encapsulated  [10]. Based 
on this observation, Yanjie Wu sought to improve the stability of the perovskite-based cell 
and the mobility of the holes by replacing this layer with a MoO3 layer. In addition, they 
sought to improve the performance of the cell through the extension of the absorption range 
to the infrared. For this purpose, a PBDB-TF:BTP-4Cl bulk-heterojunction layer was 
integrated into the cell [32]. 
In 2018, Constantina E. et al, developed a perovskite cell with ambition to improve its 
performance and stability. Thus, by varying the cations (A= Cs, FA, MA) and halogen (X= I, 
Br, Cl) in the perovskite APbX3, the authors noted not only an improvement in efficiency to 
17%, but also a high stability of the cell, low presence of impurity, and low hysteresis when 
Cesium is used as a cation  [33]. 
The other challenge in perovskite-based cell research is the substitution of Pb in perovskite 
with a non-toxic metal. The metals of group 14 of the Mendeleyev table are possible 
candidates, but their major problem is their chemical instability in the required oxidation state  
[34]. Considering the enthusiasm that researchers have for this technology, it is certain that 
in a few years to come, these barriers will be lifted. 

Conclusion 

There is no doubt about the performance that perovskite cell can achieve, which rivals 
crystalline silicon with 25.5% efficiency in 2020. The major future challenge facing research 
on perovskite before its commercialization is the stability of its current structure in outdoor 
conditions, as it reacts with oxygen in the air and water vapor. 
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