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Abstract. This paper presents the theory and implementation of techniques to predict the time 
available for the Control Center personnel of transmission and distribution system operators 
to respond to an alarming event related to a grid asset. The described techniques include 
trendline, linear regression, value-at-risk and k-means classification-based prediction and are 
implemented to support decision-making even with poor quality SCADA data. These tech-
niques have already been deployed in a modular transmission control center alarming and 
logging system and can be applied for a variety of assets in power systems as well as in other 
utilities and process industries. 
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1. Introduction

The primary objective of grid operation is to maintain system security and reliability, ensuring 
the continuation of normal operation during and after large disturbances in the grid, while also 
minimizing operating cost. In order to accomplish these objectives, a typical transmission sys-
tem operator (TSO) employs separate tools for outage management, power flow calculations, 
voltage management, congestion management, frequency control and market operations, with 
often opaque dataflows between applications. These tools are based on the information sup-
plied through the Supervisory Control and Data Acquisition (SCADA) systems, which monitor 
and display measurements from the system in real time. Operators also have the means to 
directly control the assets in the transmission network, which include switching of transmission 
lines and transformers, as well as controlling and regulating transformers and other series and 
shunt devices [1]. 

Real-time operation of the network involves round-the-clock monitoring and management 
of complex processes, in which dynamic events must be addressed. These dynamic events 
include monitoring measurement deviations and generating alarms. Alarms are a special class 
of dynamic events used to alert operators to situations that can negatively affect the normal 
operation of the system. These situations demand that measures be taken to prevent malfunc-
tion in the grid and ensure safety of the assets and personnel. 

As the frequency of extreme weather events increases and assets in the grid age, the 
corresponding risk of their malfunction also rises [2]. The other challenge facing system oper-
ation is complexity. As the number of relatively volatile renewable distributed energy resources 
(DER) increase, the grid must expand to seamlessly integrate them and ensure reliable supply 
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of electricity to consumers. Many of these DERs connect to the low and medium voltage net-
works but require the transmission grid to transport electricity to consumers over large dis-
tances, necessitating a corresponding increase in the number of substations and transformers. 
Consequently, it is reasonable to expect that alarm events will become more frequent, which 
will need to be actively managed to ensure secure and reliable grid operations.  

In addition to these challenges, the grid operators are increasingly faced with a shortage 
of skilled control center operators who can rely on their experience and intuition to undertake 
countermeasures to respond to an alarming event. Typically, the operators have a number of 
means at their disposal to respond to each alarm and must select the most appropriate recti-
fying measure based on the following factors:  

• severity of the issue, 
• cost of the response, 
• speed of the response and complexity of the approval process, 
• benefit of the measure and 
• any negative consequences of the measure on grid security. 

When an event occurs that requires intervention by the operators, the overriding concern 
of the operator is to consider actions that can have the desired effect considering the time 
available to implement them, with the available time to respond usually being the limiting factor. 
Depending on the available time, the operator selects the measure which fulfills the criteria of 
lowest cost and highest effectiveness.  

This paper introduces several methods to predict the time available to operators in the 
control center to respond to an alarm event. The innovations of this paper are the following: 1. 
Multiple approaches are employed to robustly predict the available response time after an 
alarm has occurred, even with poor quality data; 2. The integration of these approaches in the 
control center of a Transmission System Operator (TSO) to aid the decision-making process 
for the use-case example of an overheating transformer. This paper is organized as follows: 
Chapter 2 introduces alarms as a use case for the implementation of these approaches. Chap-
ter 3 describes the modeling approaches in detail. Chapters 4 and 5 describe the integration 
of the method in the control center and the outlook is discussed in Section 6. 

2. Alarm as a use case 

The traditional systems (SCADA, EMS etc.) used in today’s system operation do not provide 
any estimates of the time available to the operator to analyze the issue, decide an appropriate 
response and trigger the necessary actions. This decision-making (depicted in  

Figure 1) is left to the individual judgement of the operator, who rely on their experience and 
ad-hoc assessment of the validity and priority of the alarm [3]. 

Figure 1. Stages of operator’s response to an alarming event 
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Some EMS systems provide relatively undifferentiated guidance based on the alarm class-
based rules (see Figure 2). These policies define reference values derived either from evalu-
ations of previous alarms, underlying issues or on the basis of technical/causal considerations. 
Operators use these predictions to process the alarms based on the priority of their class. 
However, efforts to provide real-time intelligent decision-making support to the operators have 
so far not resulted in implemented solutions. 

Figure 2. Example of a Priority Matrix according to alarm classes in a standard EMS 

3. Prediction model 

Conventional approaches to time series forecasting include variations on the moving average 
technique, with SARIMA being a popular choice [4]. Popular machine learning algorithms in-
clude neural networks and long-short-term memory (LSTM) networks, which require large and 
consistent measurement data sets to take into account complex patterns, seasonality and de-
pendencies. These characteristics offer two challenges to prediction of alarming response 
times. The real-time measurements available from the power system assets are generally of 
an inferior quality and not suitable for generating reliable forecasts using the conventional ap-
proaches. The prediction of the alarm response time is short-term in nature, where most meas-
urements prior to the alarming thresholds offer no prediction value to the operators. This makes 
the conventional approaches over-dimensioned for this purpose, utilizing scarce computational 
and storage resources.  

The concepts described in this chapter utilize multiple methods to aid the operators in the 
selection of the mitigating measures when an alarm is triggered, depending on the quality of 
the available measurement data immediately prior to the triggering of the alarm. Only the ob-
servations from the preceding 30 minutes are incorporated in the prediction calculation. This 
approach is adapted due to the lack of meaningful information derived from observations that 
extend further into the past, as well as to conserve system resources. The steps from the 
triggering of an alarm to the recommendation of a response time is illustrated in Figure 3. 
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Figure 3. Alarm response time prediction steps 

Once the calculated time 𝑡𝑡𝑟𝑟 to reachcritical value is calculated using each method, the 
standardized recommended response time (RRT) in the lookup Table 1 is selected based on 
whichever range the calculated time lies inside. The time ranges are set wide to avoid overfit-
ting the recommended values to the calculated value and allow for uncertainty due to limited 
data points. The RRT corresponding to the calculated value thus overestimates the time to 
reach critical value and thereby errs on the side of caution. 

Table 1. Recommended Response Time1 

𝒕𝒕𝒓𝒓 RRT 
> 60 min 40 min 
40 - 60 min 30 min 
20 - 40 min 10 min 
0 - 10 min React immediately 

The methods discussed in the following subchapters are listed in Table 2. Normative re-
sponse time is modeled for alarm types, asset groups, or individual assets to ensure that re-
sponse time is always recommended as a fail-over strategy. 

  

                                                
1 The standardized RRT slots can be set smaller if large data sets with high quality measurements are 
available 
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Table 2. Prediction techniques for calculating response time 

Prediction technique Method of use 
Trend analysis The gradients between multiple observations are extrapolated 

to calculate 𝑡𝑡𝑟𝑟 
Linear Regression Linear regression is applied on multiple arrays created from 

observations to calculate 𝑡𝑡𝑟𝑟 
Value-at-risk (VaR) Gradients with the highest level of confidence are used for pre-

diction of 𝑡𝑡𝑟𝑟 
K-means K-means is used to cluster and classify gradients from histori-

cal observations. Membership of present gradients in clusters 
is used to calculate 𝑡𝑡𝑟𝑟 

3.1 Trend and Linear Regression 

3.1.1 Trend-based prediction 

The trend forecast is the basic approach available even when only a handful of observations 
are available. It uses the available time series measurements 𝑥𝑥(t) =  {𝑥𝑥𝑡𝑡 , 𝑡𝑡 =  1, 2, . . . ,𝑇𝑇} of 
discreet observable signals to extrapolate the available time until the critical value 𝑥𝑥𝑐𝑐 is 
reached. When the alarm is triggered, measurements recorded during the preceding 30 
minutes are selected as a data set 𝐷𝐷 with end time 𝑡𝑡𝑛𝑛 and beginning time 𝑡𝑡𝑎𝑎  . Multiple start-
end value pairs from this data set are used to calculate the response times.  

The first value pair 𝐷𝐷1 has as its last value 𝑥𝑥n1 at which the alarm was triggered, corre-
sponding to the time 𝑡𝑡𝑛𝑛1= 𝑡𝑡𝑛𝑛. If the measurement value 𝑥𝑥𝑎𝑎 at time 𝑡𝑡𝑎𝑎 is higher than the end 
value 𝑥𝑥𝑛𝑛, immediately succeeding elements of the data set 𝐷𝐷 are checked successively until a 
smaller value is observed, which is then used as the first value 𝑥𝑥𝑎𝑎1, with a corresponding time 
𝑡𝑡𝑎𝑎1: 

 𝑥𝑥𝑛𝑛1 = 𝑥𝑥𝑛𝑛 (1) 

 𝑥𝑥𝑎𝑎1 = min{𝑥𝑥𝑖𝑖|𝑖𝑖 =  𝑎𝑎,𝑎𝑎 + 1,𝑎𝑎 + 2, . . . ,𝑛𝑛 𝑎𝑎𝑛𝑛𝑎𝑎 𝑥𝑥𝑖𝑖 <  𝑥𝑥𝑛𝑛}  𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖 𝑖𝑖𝑛𝑛 𝐷𝐷 (2) 

The second value pair 𝐷𝐷2 starts with the smallest value in the data set 𝐷𝐷, and the corre-
sponding time 𝑡𝑡𝑎𝑎2 and ends at point 𝑥𝑥𝑛𝑛2 and the corresponding 𝑡𝑡𝑛𝑛2 the same as the first data 
set 𝐷𝐷1: 

 𝑥𝑥𝑎𝑎1 = min𝐷𝐷 (3) 

 𝑥𝑥𝑛𝑛2 = 𝑥𝑥𝑛𝑛 (4) 

The third value pair 𝐷𝐷3 starts with the smallest value 𝑥𝑥a3 with the corresponding 𝑡𝑡𝑎𝑎3 and 
takes the highest value of 𝐷𝐷 as the end value 𝑥𝑥𝑛𝑛3 with the corresponding 𝑡𝑡𝑛𝑛3: 

 𝑥𝑥𝑎𝑎3 = min𝐷𝐷 (5) 

 𝑥𝑥𝑛𝑛3 = max𝐷𝐷 (6) 

The three value pairs provide three different gradients 𝐺𝐺, with 𝑘𝑘 representing the value 
pairs 1, 2 and 3, 
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 𝐺𝐺𝑘𝑘 =
𝑥𝑥𝑛𝑛,𝑘𝑘 − 𝑥𝑥𝑎𝑎,𝑘𝑘

𝑡𝑡𝑛𝑛,𝑘𝑘 − 𝑡𝑡𝑎𝑎,𝑘𝑘
 (7) 

The corresponding three response times 𝑡𝑡𝑟𝑟,𝑘𝑘 are calculated as, 

 𝑡𝑡𝑟𝑟,𝑘𝑘 =
𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑎𝑎,𝑘𝑘

𝐺𝐺𝑘𝑘
 (8) 

The calculated response time is used as basis for the selection of a standard recom-
mended response time (RRT) from Table 1. If the RRTs calculated using the three data sets 
are different, the operator is provided a choice to select one of these values as final. 

3.1.2 Linear regression 

The linear regression approach is used when a relatively larger set of observations for the last 
30 minutes is available. If the values continuously rise with each subsequent observation, a 
single array is sufficient, otherwise multiple arrays are built. In the latter case, the first array is 
built by comparing the last measurement 𝑥𝑥𝑛𝑛 at the alarm timestamp 𝑡𝑡𝑛𝑛 with the preceding 
values until a positive difference (value is smaller than 𝑥𝑥𝑛𝑛) is found, beginning with the third-
last measurement 𝑡𝑡𝑛𝑛−3 to ensure there are always multiple data points to perform the linear 
regression, as shown in (9). This value is then selected as the end of the first array.  

 𝑥𝑥𝑛𝑛 >  𝑥𝑥𝑛𝑛−3 (9) 

The starting value of this array is selected by continuing to go further back in time until a 
value is found with a difference that is no longer positive. 

The condition (9) is tested for subsequent values until it becomes true again. This obser-
vation is used as the last value of the second array. The array is populated until the condition 
becomes untrue again. This process is repeated until all values in the last 30 minutes have 
been allocated to arrays. 

Once the arrays have been built, linear regression with curve fitting is performed to create 
the function 𝑦𝑦 for each array to compute characteristic parameters 𝛽𝛽0 and 𝛽𝛽1 using (10). 

 𝑦𝑦(𝑡𝑡) = 𝛽𝛽0 + 𝛽𝛽1.𝑥𝑥(𝑡𝑡) (10) 

The calculated fitted regression line is used to forecast the time until the critical value 𝑥𝑥𝑐𝑐  is 
reached, as depicted in Figure 4 for a transformer temperature. 
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Figure 4. Temperatures extrapolated by linear regression 

In case of multiple arrays, the arithmetic mean of their times to reaches 𝑥𝑥𝑐𝑐 is used to select 
the RRT from Table 1. 

3.2 Value at risk (VaR) based prediction 

The Value at Risk (VaR) based method is a risk management technique primarily used in the 
financial sector to estimate the potential loss on an investment over a specific time horizon, 
providing a quantitative measure of the maximum amount of loss that can be expected with a 
given level of confidence [5].  

The VaR approach is applied to the time series observations and the 90th percentile con-
fidence value is calculated and reported as the RRT. Immediately after an alarm is triggered, 
all preceding measurements during the last 30 minutes are read and entered into the corre-
sponding tables for the asset and a forecast for the gradient for different time horizons is cal-
culated, with the gradient ordered from highest to the lowest values and the 90th percentile for 
each time horizon is calculated. The temperature rise for each time horizon is added to the 
currently measured temperature value to forecast the future temperature at the end of the time 
horizon and compared with the threshold value. The time horizon in which the forecasted value 
exceeds the threshold serves as the response time available to the operator. 

The algorithm is activated when alarm is triggered at temperature 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑛𝑛 sampled at time 
𝑡𝑡𝑛𝑛, where 𝑖𝑖 represents the event ID of the measurement and 𝑛𝑛 is the total number of observa-
tions. The gradients (°C/min) 𝑅𝑅 for temperature changes between all consecutive measure-
ments 𝑥𝑥𝑖𝑖- 𝑥𝑥𝑖𝑖−1 are calculated, with only the positive gradients used for calculation, 
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𝑅𝑅𝑖𝑖−1 = �

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1
𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1

       𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 > 0

0                      𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 < 0
 (11) 

Similarly, gradients 𝑅𝑅 for temperature changes between all measurements 𝑥𝑥𝑖𝑖- 𝑥𝑥𝑖𝑖−2 are 
calculated as: 

 
𝑅𝑅𝑖𝑖−2 = �

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−2
𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−2

       𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 > 0

0                      𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 < 0
 (12) 

This is repeated for all 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−3, 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−4, …𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−𝑎𝑎, where 𝑎𝑎 is the index of the first 
value in the time series, until all combinations (CR) of measurements (nC2) are calculated. The 
calculations for the example case are shown in Table 3. 

Table 3. Calculation of gradients 

Event 
ID 

𝒙𝒙 (°C) 𝒕𝒕  𝑹𝑹𝒊𝒊−𝟏𝟏 𝑹𝑹𝒊𝒊−𝟐𝟐 𝑹𝑹𝒊𝒊−𝟑𝟑 𝑹𝑹𝒊𝒊−𝟒𝟒 𝑹𝑹𝒊𝒊−𝟓𝟓 𝑹𝑹𝒊𝒊−𝟔𝟔 𝑹𝑹𝒊𝒊−𝟕𝟕 𝑹𝑹𝒊𝒊−𝟖𝟖  𝑹𝑹𝒊𝒊−𝟗𝟗 

111 51 0:01          
112 52 1:01 0.02          
118 52 1:30 0.00 0.01         
119 54 2:00 0.07 0.03 0.03        
121 56 3:00 0.03 0.04 0.03 0.03       
130 59 3:29 0.10 0.06 0.06 0.05 0.04      
131 61 3:45 0.13 0.11 0.07 0.07 0.05 0.04     
132 65 4:00 0.27 0.19 0.15 0.09 0.09 0.07 0.06    
133 68 4:05 0.60 0.35 0.25 0.18 0.11 0.10 0.09 0.07   
135 70 4:11 0.33 0.45 0.35 0.26 0.20 0.12 0.11 0.09 0.08 

The calculated gradients are placed in histograms according to their values with bins of 
equal sizes as shown in Table 4 for the example use case: 

Table 4. Placement of gradients in bins 

Bin Nr. Bin lower bound 
(°C/min) 

Bin upper bound 
(°C/min) 

 Values  Cumulative 

1 0 0.05 12 12 
2 0.05 0.1 14 26 
… … … … … 
11 0.5 0.55 0 44 

The 90th-quantile ordinal rank of the measurements is calculated by (13) 

 𝑃𝑃90 =
90

100
∙ (CR) (13) 

and the corresponding gradient R90 is selected. The response time is calculated as fol-
lows: 

 𝑡𝑡𝑟𝑟 =
𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑖𝑖

R90
 (14) 
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3.3 K-means based prediction 

K-means has been shown to perform well when applied in time series forecasting, as shown 
in [6] and [7]. Historical measurement data is leveraged to derive intelligent estimation of the 
available response time using k-means clustering. This is performed by identifying the mem-
bership of the value change data points from the observations in the 30 minutes preceding the 
alarm in the clusters already identified from historical measurements of the asset type. The 
time series data is converted to data points of temperature changes and the corresponding 
elapsed time between two adjacent observations. This conversion is shown in Table 5 for the 
example use-case. 

Table 5. Data points for clustering 

Event ID 111 112 118 119 121 130 131 132 133 135 
Measurement (°C) 51 52 52 54 56 59 61 65 68 70 
Time stamp 0:01 1:01 1:30 2:00 3:00 3:29 3:45 4:00 4:05 4:11 
Time change (s)  60 29 30 60 29 16 15 5 6 
Temperature change 
(°C)  1 0 2 2 3 2 4 3 2 

An example of a k-means clustering trained on limited historical data with 5 clusters is 
shown in Figure 5, with the quickest gradient indicated by cluster 0. 

Figure 5. Clustering of temperature differences with labels 

3.3.1 S-curve 

The purpose of assigning weights to each cluster based on a reverse s-curve (illustrated in 
Figure 6) is to ensure that slower changes in temperature do not excessively affect the results 
of the response time calculation. For this purpose, longer gradients are assigned smaller 
weights and shorter gradients vice versa. 

 

0

1 2 3 4
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Figure 6. The weightage is assigned to each data point using a reverse s-curve 

Table 6 shows the use of the reverse s-curve with the 5 clusters. The assigned response 
time to each cluster is determined by its centroid. 

Table 6. Assignment of weights to data points to calculate the RRT 

Clus-
ter 

Assigned re-
sponse time 

Data 
points  

S-curve as-
signed weight  

Total 
weight 
(𝒘𝒘𝒊𝒊)  

Weighted Re-
sponse time (𝑹𝑹𝒊𝒊)  

0  0  120  1.00  0.08  0 .00 
1  5  110  1.00  0.07  0.37 
2  10  120  0.99  0.08  0.80 
3  30  1000  0.29  0.20  5.86  
4  60  150  0.00  0.00  0.00 

The response time t𝑟𝑟 is calculated according to (15) and then used to select the RRT from 
Table 1. 

  
t𝑟𝑟 =  �𝑅𝑅𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�  
(15) 

4. Use case implementation 

Depending on the RRTs provided, the operator can select one or multiple counter-measures, 
examples of which are shown in Table 7. 
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Table 7. Example of counter-measures based on the RRT 

RRT Action 
40 min Switching / Topology changes 
30 min Interrupt loads 
10 min Redispatch 
React immediately Load shedding 

5. Implementation as online tool 

The described prediction methods have been deployed in the alarming and logging system of 
a modular control center system of a grid operator as illustrated in Figure 7. The alarm events 
are consumed in real-time from the event stream and the calculated RRT is displayed in col-
umns with the corresponding alarm in the dashboard. The operator is able to view the results 
of each method and select the preferred value for displaying via a drop-down selection menu 
or overwrite them completely. 

Figure 7. Integration of RRT functionality in the architecture of a transmission system operator 

6. Outlook 

The trend analysis, linear regression and VaR approaches calculate the predicted response 
time using only the preceding 30 minutes measurements and are thus also useful for assets 
for which no historical measurements are available. The k-means method leverages historical 
measurements from previous alarm events and thus provides a more intelligent prediction, 
which improves as more measurements are recorded. These methods are of different levels 
of sophistication and their use can be rule-based, depending on the frequency and quality of 
available observations. In the absence of a rule-based approach, all methods are used to cal-
culate predictions and the interpretation and selection of the results is left to the operator re-
sponsible for the alarm, who can select the preferred result to be displayed in the notification 
window. 

The introduced methods help operators in the decision making process of selecting ap-
propriate preventive measures and will be successively incorporated into other system opera-
tions processes and extended to change from alarm-based to alert-based predictions, in which 
the parameters of the asset are continuously monitored and the time to reach an alarm-state 
is predicted, so that if it is detected that the asset’s operation is becoming unstable, an warning 
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flag is triggered in the SCADA monitoring system to bring the potential triggering of an alarm 
to the operator’s attention, so that preventive measures can be taken. 

Aside from being useful for monitoring assets controlled by electric utilities and grid oper-
ators, use-cases have been identified for gas utilities and process industry, which can use 
these methods to predict available time to respond to temperature, pressure, fluid/gas flow and 
level alarms. 

More advanced artificial intelligence techniques can provide further improvements in this 
area. Two such feasible techniques include: 

• deep learning models trained on historical alarm data to improve the accuracy of pre-
dictions over time and adapting to the specific characteristics of the asset and opera-
tional environment, and 

• natural language processing to analyse operator logs and incident reports and training 
using reinforced learning to learn optimal response strategies and implement them au-
tomatically. 

Both of these techniques are currently under investigation to further enhance situational 
awareness and decision support for operators. 
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