Effects of Agrivoltaics on the Microclimate in Horticulture

Enhancing Resilience of Agriculture in Semi-Arid Zones





Agrivoltaics Microclimate, Evatranspiration, Climate Change Adaption


Chilean agriculture must adapt to climate change as droughts are already affecting the country and water availability is expected to further decline. In this context, Agrivoltaics (AV) systems, that install photovoltaic (PV) panels over crops and thus provide shading and an altered microclimate could enhance the resilience of agriculture in semi-arid zones. We compare data measured under an AV system with a reference measurement to quantify the effects of AV on microclimate in horticulture in the Metropolitan Region of Santiago, Chile. Data on irradiation, air temperature, air humidity, and wind speed allow us to compute potential evapotranspiration (PET). We observe a reduction of Global Horizontal Irradiation (GHI) under the AV system of 42%. Mainly, as a result of the decreased GHI, we derive a diminution in PET of 31%, quantifying the potential to lower the water demand of crops and thus irrigation. Measured soil moisture is on average 29% higher under the AV system compared to the reference condition, hence validating PET computations. Also, we find a more moderate climate with slightly stabilized air temperature and lower soil temperatures. Our results give a glimpse of the effects of installing PV panels over horticulture crops concerning the challenges of Chilean agriculture. AV systems have the potential to increase water availability by lowering irrigation demand and protecting crops from the effects of extreme irradiation, such as sunburn and heat stress. Thus, AV could foster the transformation of agriculture towards sustainable production systems. The documented effects should be verified over longer periods with different crops to understand the impact of AV within seasonal and interannual climatical variation and the diversity of Chilean agriculture.


Download data is not yet available.


World Resources Institute, “17 Countries, Home to One-Quarter of the World’s Population, Face Extremely High Water Stress,” 2019. https://www.wri.org/blog/2019/08/17-countries-home-one-quarter-world-population-face-extremely-high-water-stress (accessed Feb. 24, 2021).

CR2, “La megasequía 2010-2019: Una lección para el futuro,” 2019. https://www.cr2.cl/megasequia/.

EH 2030, “Radiografía del Agua Brecha y Riesgo Hídrico en Chile,” 2018.

M. Salinas Ballevona and C. Anguita Salinas, “Resultados y lecciones en: Uso de mallas fotoselectivas en el cultivo del manzano. Proyecto de innovación en Región del Maule.,” FIA, 2019.

M. Pontillo, “Cobertores plásticos en arándano: el ‘para qué’ lo define todo,” Redagrícola, 2017. https://www.redagricola.com/cl/cobertores-plasticos-arandano-lo-define/ (accessed Feb. 17, 2021).

G. A. Barron-Gafford et al., “Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands,” Nat. Sustain., vol. 2, no. 9, pp. 848–855, 2019, doi: https://doi.org/10.1038/s41893-019-0364-5.

Q. Yu, K. Shah, D. Wang, Y. Ma, and Z. Wang, “Model Based Study of Crop Evapotranspiration under Canopy Shading,” Agronomy, vol. 9, no. 6, p. 334, Jun. 2019, doi: https://doi.org/10.3390/agronomy9060334.

P. Juillion, G. Lopez, D. Fumey, V. Lesniak, M. Génard, and G. Vercambre, “Shading apple trees with an agrivoltaic system: Impact on water relations, leaf morphophysiological characteristics and yield determinants,” Sci. Hortic. (Amsterdam)., vol. 306, p. 111434, Dec. 2022, doi: https://doi.org/10.1016/j.scienta.2022.111434.

H. Marrou, L. Dufour, and J. Wery, “How does a shelter of solar panels influence water flows in a soil-crop system?,” Eur. J. Agron., vol. 50, pp. 38–51, 2013, doi: https://doi.org/10.1016/j.eja.2013.05.004.

Fraunhofer Chile, “CONCEPTO AGRO PV Y SU APLICACIÓN EN EL SECTOR HORTALIZAS EN LA REGIÓN METROPOLITANA DE SANTIAGO,” 2018. https://www.fraunhofer.cl/es/cset/areas_negocio/proyecto/agropv.html (accessed Apr. 28, 2023).

Ministerio de Energía, “Explorador Solar,” 2021. http://www.minenergia.cl/exploradorsolar/ (accessed Feb. 17, 2021).

DGAC, “Reporte Anual De La Evolución Del Clima En Chile,” 2021.

W. McKinney, “Data Structures for Statistical Computing in Python,” 2010, pp. 56–61, doi: https://doi.org/10.25080/Majora-92bf1922-00a.

J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput. Sci. Eng., vol. 9, no. 3, pp. 90–95, 2007, doi: https://doi.org/10.1109/MCSE.2007.55.

H. L. Penman, “Natural evaporation from open water, bare soil and grass,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 193, no. 1032, pp. 120–145, Apr. 1948, doi: https://doi.org/10.1098/rspa.1948.0037.

J. L. Monteith, “Evaporation and Environment,” Symp. Soc. Exp. Biol., vol. 19, pp. 205–234, 1965.

R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, “Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper,” in FAO, 1998.

M. Vremec and R. Collenteur, “pyet - a Python package to estimate potential and reference evapotranspiration,” 2021, doi: https://doi.org/10.5194/egusphere-egu21-15008.

A. Groot and D. W. Carlson, “Influence of shelter on night temperatures, frost damage, and bud break of white spruce seedlings,” Can. J. For. Res., vol. 26, no. 9, pp. 1531–1538, Sep. 1996, doi: https://doi.org/10.1139/x26-172.




How to Cite

Jung, D., Schönberger, F., & Spera, F. (2024). Effects of Agrivoltaics on the Microclimate in Horticulture : Enhancing Resilience of Agriculture in Semi-Arid Zones. AgriVoltaics Conference Proceedings, 2. https://doi.org/10.52825/agripv.v2i.1033

Conference Proceedings Volume


System Accessment and Performance Indicator

Funding data