Life Cycle Assessment of an Exemplary Agrivoltaic System in Thuringia (Germany)

Authors

DOI:

https://doi.org/10.52825/agripv.v1i.537

Keywords:

Agrivoltaic, Life Cycle Assessment, Environmental Impact

Abstract

Agrivoltaic systems create numerous synergies between the aspects of agriculture, climate protection, climate change adaptation, land use and energy. For this reason, the present study examined the environmental impact of this technology using the life cycle assessment approach. Three scenarios were developed: An APV scenario with combined production of electricity and potatoes on one field (scenario 1), a PV scenario with separate production of PV electricity and potatoes (scenario 2) and a scenario in which electricity production is covered by the German electricity mix (scenario 3). All three scenarios showed the same output in energy production (500.13 kWp) and in potato production (307.87 dt/a or 9,236 dt/30 years). The results show that APV systems have similar impacts as open-space PV systems and achieve significantly better performances than the German electricity mix. In half of the impact categories examined, the environmental impacts were caused by potato production, in the other half by electricity production. Due to current developments in system design and solar module development, it can be expected that the life cycle impact of APV systems will continue to improve in the future.

Downloads

Download data is not yet available.

References

Bundesregierung. “Klimaschutzgesetz 2021: Generationenvertrag für das Klima.” https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaschutzgesetz-2021-1913672 (accessed Dec. 4, 2021).

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU), Ed., “Klimaschutzprogramm 2030 der Bundesregierung zur Umsetzung des Klimaschutzplans 2050,” 2019. Accessed: May 29, 2021. [Online]. Available: https://www.bundesregierung.de/resource/blob/975226/1679914/e01d6bd855f09bf05cf7498e06d0a3ff/2019-10-09-klima-massnahmen-data.pdf

F. N. Tubiello et al., “Greenhouse gas emissions from food systems: building the evidence base,” Environ. Res. Lett., vol. 16, no. 6, p. 65007, 2021, doi: https://doi.org/10.1088/1748-9326/ac018e.

Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The Physical Science Basis (Working Group I Contribution to the Fifth Assessment Report of theIntergovernmental Panel on Climate Change). Cambridge, Vereinigtes Königreich, New York, USA: Cambridge University Press, 2013. Accessed: Apr. 25, 2021. [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf (Accessed 25 April 2021)

A. E. Putnam and W. S. Broecker, “Human-induced changes in the distribution of rainfall,” Science advances, early access. doi: https://doi.org/10.1126/sciadv.1600871.

X. Zhang, H. Wan, F. W. Zwiers, G. C. Hegerl, and S.-K. Min, “Attributing intensification of precipitation extremes to human influence,” Geophys. Res. Lett., vol. 40, no. 19, pp. 5252–5257, 2013, doi: https://doi.org/10.1002/grl.51010.

Gesamtverband der Deutschen Versicherungswirtschaft e.V. (GDV), Ed., “Landwirtschaftliche Mehrgefahrenversicherung für Deutschland: Stand: November 2016,” Berlin, 2016. [Online]. Available: https://www.gdv.de/resource/blob/8942/fa2dc37ecb8fafbb8b6fe7c2ae1a10d1/publikation---landwirtschaftliche-mehrgefahrenversicherung-fuer-deutschland-data.pdf

H. Nier. “Dürre und Hitze. Trockenheit verursacht größte Ernteschäden.” https://de.statista.com/infografik/14926/schadenaufwand-durch-wetterextreme/

M. Agovino, M. Casaccia, M. Ciommi, M. Ferrara, and K. Marchesano, “Agriculture, climate change and sustainability: The case of EU-28,” Ecological Indicators, vol. 105, pp. 525–543, 2019, doi: https://doi.org/10.1016/j.ecolind.2018.04.064.

I. Loladze, “Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition,” eLife Sciences, vol. 3, e02245, 2014, doi: https://doi.org/10.7554/eLife.02245.001.

A. J. Challinor, J. Watson, D. B. Lobell, S. M. Howden, D. R. Smith, and N. Chhetri, “A meta-analysis of crop yield under climate change and adaptation,” Nature Clim Change, vol. 4, no. 4, pp. 287–291, 2014, doi: https://doi.org/10.1038/nclimate2153.

C. Mbow et al., “Food security,” in An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and green-house gas fluxes in terrestrial ecosystems, Intergovernmental Panel on Climate Change (IPCC), Ed., 2019, pp. 437–550. Accessed: Apr. 24, 2021. [Online]. Available: https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SRCCL-Chapter-5.pdf

S. S. Myers et al., “Increasing CO2 threatens human nutrition,” Nature, early access. doi: https://doi.org/10.1038/nature13179.

W. Schlenker and D. B. Lobell, “Robust negative impacts of climate change on African agriculture,” Environ. Res. Lett., vol. 5, no. 1, p. 14010, 2010, doi: https://doi.org/10.1088/1748-9326/5/1/014010.

J. Scharf, M. Grieb, and M. Fritz, Agri-Photovoltaik: Stand und offene Fragen, 1st ed. (Berichte aus dem TFZ 73). Straubing: Eigenverlag, 2021.

P. Smith et al., “Agriculture, Forestry and Other Land Use (AFOLU),” in Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change (IPCC), Ed., 2014, pp. 811–922. [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf

N. Kostik, A. Bobyl, V. Rud, and I. Salamov, “The potential of agrivoltaic systems in the conditions of southern regions of Russian Federation,” IOP Conf. Ser.: Earth Environ. Sci., vol. 578, no. 1, p. 12047, 2020, doi: https://doi.org/10.1088/1755-1315/578/1/012047.

E. H. Adeh, J. S. Selker, and C. W. Higgins, “Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency,” PloS one, early access. doi: https://doi.org/10.1371/journal.pone.0203256.

Y. Elamri, B. Cheviron, J.-M. Lopez, C. Dejean, and G. Belaud, “Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces,” Agricultural Water Management, vol. 208, pp. 440–453, 2018, doi: https://doi.org/10.1016/j.agwat.2018.07.001.

K. Wydra, V. Vollmer, S. Schmidt, S. Prichta, R. Kunze, and H. Aulich, “Potential der Agri-Photovoltaik in Thüringen,” 2022. [Online]. Available: https://solarinput.de/wp-content/uploads/2022/05/APV-Studie_19052022_Final.pdf

Bundesregierung, Entwurf eines Gesetzes zur Änderung des Erneuerbare-Energien-Gesetzes und weiterer energierechtlicher Vorschriften: Stellungnahme des Bundesrates und Gegenäußerung der Bundesregierung (Bundesrat-Drucksache 19/24234). Berlin, 2020.

Bundesrat, Wirtschaftsausschuss (Bundesrat Wi), Bundesrat, Ausschuss für Agrarpolitik und Verbraucherschutz (Bundesrat AV), and Bundesrat, Ausschuss für Umwelt, Naturschutz und nukleare Sicherheit (Bundesrat U), Entwurf eines Gesetzes zur Änderung des Erneuerbare-Energien-Gesetzes und weiterer energierechtlicher Vorschriften: Empfehlungen der Ausschüsse zu Punkt 33 der 995 (Sitzung des Bundesrates am 6. November 2020. 28.10.20 (Wi – AV – U)) (Bundesrat-Drucksache 569/1/20). Berlin, 2020.

A. S. Pascaris, R. Handler, C. Schelly, and J. M. Pearce, “Life cycle assessment of pasture-based agrivoltaic systems: Emissions and energy use of integrated rabbit production,” Cleaner and Responsible Consumption, vol. 3, p. 100030, 2021, doi: https://doi.org/10.1016/j.clrc.2021.100030.

A. Agostini, M. Colauzzi, and S. Amaducci, “Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment,” Applied Energy, vol. 281, p. 116102, 2021, doi: https://doi.org/10.1016/j.apenergy.2020.116102.

Umweltmanagement – Ökobilanz – Grundsätze und Rahmenbedingungen (ISO 14040:2006); Deutsche und Englische Fassung EN ISO 14040:2006, DIN EN ISO 14040, Deutsches Institut für Normung e.V., Berlin, 2006.

Umweltmanagement – Ökobilanz – Anforderungen und Anleitungen (ISO 14044:2006); Deutsche und Englische Fassung EN ISO 14044:2006, DIN EN ISO 14044, Deutsches Institut für Normung e.V., Berlin, 2006.

Thüringer Landesamt für Statistik (TLS). “Erneut unterdurchschnittliche Kartoffelernte in Thüringen: Pressemitteilung 332/2019 vom 26. November 2019.” https://statistik.thueringen.de/presse/2019/pr_332_19.pdf

A. Weselek, A. Bauerle, J. Hartung, S. Zikeli, I. Lewandowski, and P. Högy, “Agrivolta-ic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate,” Agron. Sustain. Dev., vol. 41, no. 5, 2021, doi: https://doi.org/10.1007/s13593-021-00714-y.

P. Stolz, R. Frischknecht, F. Wyss, and M. de Wild-Scholten, “PEF screening report of electricity from photovoltaic panels in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilots: 24 April 2016 - v.2.0,” Switzerland, Netherlands, 2016. [Online]. Available: http://pvthin.org/wp-content/uploads/2020/05/174_PEFCR_PV_LCA-screening-report_v2.0.pdf

R. Frischknecht et al., “Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems: International Energy Agency (IEA) PVPS Task 12,” (Report IEA-PVPS 12-04:2015), 2015. [Online]. Available: https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_Task_12_LCI_LCA.pdf

J. Hengstler et al., “Aktualisierung und Bewertung der Ökobilanzen von Windenergie- und Photovoltaikanlagen unter Berücksichtigung aktueller Technologieentwicklungen: Abschlussbericht,” Dessau-Roßlau, Rep. 35/2021, 2021. [Online]. Available: https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2021-05-06_cc_35-2021_oekobilanzen_windenergie_photovoltaik.pdf

EcoInvent. “ecoinvent.” https://ecoinvent.org/ (accessed Jul. 22, 2022).

Blonk. “Agri-footprint: The world's leading source of environmental footprint information in agri-food.” https://blonksustainability.nl/tools/agri-footprint (accessed Jul. 22, 2022).

PRé Sustainability B.V. “SimaPro: LCA software for informed change-makers.” https://simapro.com/ (accessed Jul. 22, 2022).

S. Wagner, E. Angenendt, O. Beletskaya, and J. Zeddies, “Costs and benefits of ammonia and particulate matter abatement in German agriculture including interactions with greenhouse gas emissions,” Agricultural Systems, vol. 141, pp. 58–68, 2015, doi: https://doi.org/10.1016/j.agsy.2015.09.003.

E. Pattey and G. Qiu, “Trends in primary particulate matter emissions from Canadian agriculture,” Journal of the Air & Waste Management Association (1995), vol. 62, no. 7, pp. 737–747, 2012, doi: https://doi.org/10.1080/10962247.2012.672058.

C. Busch and K. Wydra, “Life cycle assessment of an agrivoltaic system with conventional potato production,” Journal of Renewable and Sustainable Energy, vol. 15, pp. 043501, 2023, doi: https://doi.org/10.1063/5.0156779.

Downloads

Published

2024-02-06

How to Cite

Busch, C., & Wydra, K. (2024). Life Cycle Assessment of an Exemplary Agrivoltaic System in Thuringia (Germany). AgriVoltaics Conference Proceedings, 1. https://doi.org/10.52825/agripv.v1i.537

Conference Proceedings Volume

Section

Environmental, Legal and Socio-Economic Aspects