Evaluation of Agrivoltaic System in Thar Desert of India

Authors

DOI:

https://doi.org/10.52825/agripv.v1i.601

Keywords:

Agri-Voltaic System, PV-Based Electricity Generation, Crop Production, Photosynthetically Active Radiation (PAR)

Abstract

The present study examined the performance of the 100 kWp agri-voltaic systems at ICAR-CAZRI, Jodhpur. The average PV generation from the 100 kWp AVS connected to the grid via a bi-directional energy meter or net meter was about 342 kWh day-1. The average yields of mung bean, moth bean, and cluster bean in the inter-row spaces between the modules in the two-row and three-row PV array were 1155, 670, and 2008 kg.ha-1, respectively. Thus, there were 4.6%, 8.6%, and 11.8% reductions in the yield of mung bean, moth bean, and cluster bean, respectively, in inter-row spaces between the panels compared to control. During Rabi (irrigated) 2021-22, the yield of chickpea, cumin, and isabgol (2490, 1000, and 700 kg ha-1, respectively) in interspaces of the AVS was lower than that of the control (2670, 1120, and 760 kg ha-1, respectively). AVS resulted in a yield reduction of 6.6, 10.3, and 7.8% in chickpea, cumin, and isabgol, respectively, compared to the control. The AVS shows the maximum IRR (20.38%), while PV-GM shows the lowest (19.42%) at the prevailing bank loan interest rate of 12%. The PBP estimated 7.47 years for AVS with irrigated crops and 8.11 years for AVS with rainfed crops, while it was 8.61 years for PV-GM. The lower value of the discounted PBP, the faster the repayment of the investment cost. Therefore, the highest LCOE (INR 3.45 kWh-1) is estimated based on the break-even electricity tariff in PV-GM, and the lowest LCOE is calculated in AVS (INR 3.17 kWh-1).

Downloads

Download data is not yet available.

References

S. Poonia, S., A.K. Singh, D. Jain, “Performance evaluation of phase change material (PCM) based hybrid photovoltaic/thermal solar dryer for drying arid fruits”, Materials Today: Proceedings 52P3, 1064-1070, (2022a), https://doi.org/10.1016/j.matpr.2021.11.058.

A. Goetzberger, A. Zastrow, A., “On the coexistence of solar energy conversion and plant cultivation” International Journal of Solar Energy, 1(1), 55-69, (1982).

C. Dupraz, H. Marrou, G. Talbot, L. Dufour, A. Nogier, Y. Ferard, “Combining solar photo-voltaic panels and food crops for optimising land use: towards new agrivoltaic schemes”, Renewable energy, 36 (10), 2725–2732, (2011), https://doi.org/10.1016/j.renene.2011.03.005.

H. Marrou, L. Guilioni, L. Dufour, C. Dupraz, J. Wéry, “Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels?”, Agricultural and Forest Meteorology, 177, 117–132 (2013), https://doi.org/10.1016/j.agrformet.2013.04.012 .

S. Amaducci, X. Yin, M. Colauzzi, “Agrivoltaic systems to optimise land use for electric energy production”, Applied energy, 220, 545–561, (2018), https://doi.org/10.1016/j.apenergy.2018.03.081.

G. A. Barron-Gafford, M. A. Pavao-Zuckerman, R. L. Minor, L. F. Sutter, I. Barnett-Moreno, D. T. Blackett, M. Thompson, K. Dimond, A. K. Gerlak, G. P. Nabhan, J.E. Macknick, “Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands”, Nature Sustainability, 2(9), 848-855, (2019), https://doi.org/10.1038/s41893-019-0364-5.

H. Dinesh, J. M. Pearce, “The potential of agrivoltaic systems”, Renewable and Sustainable Energy Reviews, 54, 299–308, (2016), http://doi:10.1016/j.rser.2015.10.024.

Y. Elamri, B. Cheviron, J.-M. Lopez, C. Dejean, G. Belaud, “Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces”, Agricultural Water Management, 208, 440–453, (2018) https://doi.org/10.1016/j.agwat.2018.07.001.

D. Majumdar, M. J. Pasqualetti, “Dual use of agricultural land: Introducing ’agrivoltaics’ in phoenix metropolitan statistical area, USA, Landscape and urban planning 170, 150–168, (2018), https://doi.org/10.1016/j.landurbplan.2017.10.011

P. R. Malu, U. S. Sharma, J. M. Pearce, “Agrivoltaic potential on grape farms in india”, Sustainable Energy Technologies and Assessments 23, 104–110, (2017), https://doi.org/10.1016/j.seta.2017.08.004.

P. Santra, P.C. Pande, S. Kumar, D. Mishra, R.K. Singh, “Agrivoltaics or solar farming: The concept of integrating solar PV based electricity generation and crop production in a single land use system” International Journal of Renewable Energy Research, 7(2), 694-699, (2017).

P. Santra, R.K. Singh, D. Jain, O.P. Yadav, “Agri-voltaic system to increase land productivity and income” Indian Farming, 68(9), 108-111, (2018).

A. Weselek, A. Ehmann, S. Zikeli, I. Lewandowski, S. Schindele, P. Högy, “Agropho-tovoltaic systems: applications, challenges, and opportunities. A review”, Agronomy for Sustainable Development, 39 (4), 35, (2019), https://doi.org/10.1007/s13593-019-0581-3.

S. Poonia, P. Santra, N.K. Jat, D. Jain, H.M. Meena, “Agri-voltaic system: A novel technology for doubling the farmer’s income in hot arid ecosystem of western Rajasthan, India” Indian Farmer 8(5), 351-360 (2021).

P. Santra, R. K. Singh, H. M. Meena, R. N. Kumawat, D. Mishra, D. Machiwal, D. Dayal, D. Jain, O. P. Yadav, “Agri-voltaic system for crop production and electricity generation from a single land unit”, Advances in Energy Research, Springer Nature Singapore Pvt Ltd. 1, 45-56, (2020), https://doi.org/10.1007/978-981-15-2666-4_6.

P. Santra, H.M. Meena, O.P.Yadav, “Spatial and temporal variation of photosynthetic photon flux density within agrivoltaic system in hot arid region of India”, Biosystems Engineering, 209, 74-93, (2021), https://doi.org/10.1016/j.biosystemseng.2021.06.017.

S. Poonia, S., N.K. Jat, P. Santra, A.K. Singh, D. Jain, H.M. Meena, “Techno-economic evaluation of different agri-voltaic designs for the hot arid ecosystem India” Renewable Energy 184, 149-163, (2022b). https://doi.org/10.1016/j.renene.2021.11.074.

B. Valle, T. Simonneau, F. Sourd, P. Pechier, P. Hamard, T. Frisson, M. Ryckewaert, A. Christophe, “Increasing the total productivity of a land by combining mobile photo-voltaic panels and food crops”, Applied Energy 206, 1495–507. https://doi.org/10.1016/j.apenergy.2017. 09.113.

S. Schindele, M. Trommsdorff, A. Schlaak, T. Obergfell, G. Bopp, C. Reise, C. Brauna, A. Weselekb, A. Bauerlec, P. Högyb, A. Goetzbergera, E. Weber, “Implementation of agrophotovoltaics: Techno-economic analysis of the price performance ratio and its policy implications”, Applied Energy, 265, 114737. https://doi.org/10.1016/j.apenergy.2020.114737.

A. Agostini, M. Colauzzi, S. Amaducci, “Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment”, Applied Energy, 281, 116102, (2021), https://doi.org/10.1016/j.apenergy.2020.116102.

S. Pulipaka, M. Peparthy, “Agrivoltaics in India: Overview of operational projects and relevant policies”, National Solar Energy Federation of India (NSEFI): New Delhi, India; Indo-German Energy Forum Support Office (IGEF-SO): New Delhi, India, pp.1-56, (2021).

Downloads

Published

2024-02-06

How to Cite

Poonia, S., & Santra, P. (2024). Evaluation of Agrivoltaic System in Thar Desert of India . AgriVoltaics Conference Proceedings, 1. https://doi.org/10.52825/agripv.v1i.601

Conference Proceedings Volume

Section

Technical Aspects