Forage Biomass and Nutritive Value of Grasses and Legumes Grown Under Agrivoltaic Systems




Forages, Agrivoltaic Systems, Organic


Forage crops grown underneath ground-mounted photovoltaic systems (PV) may provide a feed source for livestock production. The objective was to evaluate forage biomass and nutritive value of crops, grasses and legumes grown under different PV conditions. Forages were planted underneath a 30-kilowatt PV site (30kW), a 50-kilowatt PV site (50kW) and one control site without PV (CON) in May 2022 with four replicates per site. Forage crops included alfalfa, field peas, meadow fescue, orchard grass, red clover, brown midrib sorghumsudan grass, white clover and 3 grass and legume mixes with either alfalfa, red clover, or white clover. Biomass samples were clipped at appropriate maturity levels for grazing. Samples were sorted for botanical composition and analyzed for nutrient value. Crop biomass, dry matter and nutrient values were analyzed with PROC Mixed of SAS with the fixed effects of site (30kW, 50kW, or Con), crop nested within site, and cutting (1st or 2nd) and the random effect of replicate nested within site. Forages produced less biomass at the 30kW (563.7 kg/ha) and 50kW (446.4 kg/ha) solar sites compared to CON (1099.7 kg/ha). The 50kW forages had greater crude protein on a dry matter basis (25.8%) than the 30kW (21.4%) and CON (20.9%). The 50kW (57.1%) forages also had greater total tract neutral detergent fiber (NDF) digestibility than the 30kW (52.5%) and CON (51.0%). Additionally, the 50kW forages had greater percent calcium (1.05%) compared to the 30kW (0.75%) and CON (0.84%). Forage biomass and nutrient values varied based on the solar array design and amount of sun exposure.


Download data is not yet available.


X. Zhang, X. Cai, “Climate change impacts on global agricultural land availability,“ Environ. Res. Lett., vol.6, no.1, p. 014014, Mar., 2011, doi:

C. Dupraz, H. Marrou, G. Talbot, L. Dufour, A. Nogier, Y. Ferard, “Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes,” Renew. Energy, vol.36, no.10, pp. 2725-2732, Oct., 2011, doi:

S. Amaducci, X. Yin, M. Colauzzi, “Agrivoltaic systems to optimise land use for electric energy production,” Appl. Energy, vol.220, pp. 545-561, Jun., 2018, doi:

M. Trommsdorff, J. Kang, C. Reise, S. Schindele, G. Bopp, A. Ehmann, A. Weselek, P. Hogy, T. Obergfell, “Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany,” Renew. Sust. Energ. Rev., vol.140, p. 110694, Apr., 2021, doi:

Z. Zhang, F. Zhang, W. Zhang, M. Li, W. Liu, A. A. O. Altyeb, J. Zheng, X. Zhang, W. Liu, “Spectral-splitting concentrator agrivoltaics for higher hybrid solar energy conversion efficiency,” Energy Convers. Manag., vol.276, p. 116567, Jan., 2023, doi:

A. C. Andrew, C. W. Higgins, M. A. Smallman, M. Graham, S. Ates, “Herbage Yield, Lamb Growth and Foraging Behavior in Agrivoltaic Production System,” Front. Sustain. Food Syst., vol.5, Apr., 2021, doi:

K. W. Proctor, G. S. Murthy, C. W. Higgins, “Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy,” Sustainability, vol.13, no.1, p. 137, Jan., 2021, doi:

E. P. Thompson, E. L. Bombelli, S. Shubham, H. Watson, A. Everard, V. D’Ardes, A. Schievano, S. Bocchi, N. Zand, C. J. Howe, P. Bombelli, “Tinted Semi-Transparent Solar Panels Allow Concurrent Production of Crops and Electricity on the Same Cropland,” Adv. Energy Mater., vol.10, no.35, p. 2001189, Aug., 2020, doi:

W. Lytle, T. K. Meyer, N. G. Tanikella, L. Burnham, J. Engel, C. Schelly, J. M. Pearce, “Conceptual Design and Rationale for a New Agrivoltaics Concept: Pasture-Raised Rabbits and Solar Farming,” J. Clean. Prod., vol.282, p. 124476, Feb., 2021, doi:

H. Marrou, L. Guilioni, L. Dufour, C. Dupraz, J. Wery, “Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels?,” Agric. For. Meteorol., vol.177, pp. 117-132, Aug., 2013, doi:

G. A. Barron-Gafford, M. A. Pavao-Zuckerman, R. L. Minor, L. F. Sutter, I. Barnett-Moreno, D. T. Blackett, M. Thompson, K. Dimond, A. K. Gerlak, G. P. Nabhan, J. E. Macknick, “Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands,” Nat. Sustain., vol.2, no.9, pp. 848-855, Sep., 2019, doi:

M. A. Sturchio, J. E. Macknick, G. A. Barron-Gafford, A. Chen, C. Alderfer, K. Condon, O. L. Hajek, B. Miller, B. Pauletto, J. A. Siggers, I. J. Slette, A. K. Knapp, “Grassland productivity responds unexpectedly to dynamic light and soil water environments induced by photovoltaic arrays,” Ecosphere, vol.12, no.12, p. e4334, Dec., 2022, doi:

H. J. Williams, K. Hashad, H. Wang, K. Max Zhang, “The potential for agrivoltaics to enhance solar farm cooling,” Appl. Energy, vol.332, p. 120478, Feb., 2023, doi:

K. T. Sharpe, B. J. Heins, E. S. Buchanan, M. H. Reese, “Evaluation of solar photovoltaic systems to shade cows in a pasture-based dairy herd,” J. Dairy Sci., vol.104, no.3, pp. 2794–2806, Mar., 2021, doi:




How to Cite

Portner, S., Heins, B., Buchanan, E., & Reese, M. (2024). Forage Biomass and Nutritive Value of Grasses and Legumes Grown Under Agrivoltaic Systems. AgriVoltaics Conference Proceedings, 2.

Conference Proceedings Volume


Plant & Crop Physiology

Funding data