The Common Ground of DAE Approaches
An overview of diverse DAE frameworks emphasizing their commonalities
DOI:
https://doi.org/10.52825/dae-p.v3i.2547Keywords:
Differential-Algebraic Equation, Higher Index, Regularity, Critical Points, Singularities, Structural Analysis, Persistent Structure, Index Concepts, Canonical Characteristic ValuesAbstract
We analyze different approaches to differential-algebraic equations with attention to the implemented rank conditions of various matrix functions. These conditions are apparently very different and certain rank drops in some matrix functions actually indicate a critical solution behavior. We look for common ground by considering various index and regularity notions from literature generalizing the Kronecker index of regular matrix pencils. In detail, starting from the most transparent reduction framework,
we work out a comprehensive regularity concept with canonical characteristic values applicable across all frameworks and prove the equivalence of thirteen distinct definitions of regularity.
This makes it possible to use the findings of all these concepts together.
Additionally, we show why not only the index but also these canonical characteristic values are crucial to describe the properties of the DAE.
Downloads
References
M. Arnold, "DAE Aspects of Multibody System Dynamics", in Surveys in Differential-Algebraic Equations IV, A. Ilchmann, and T. Reis, Eds., Springer Verlag Berlin Heidelberg, 2017, pp. 41–106.
A. Baum, "A Flow-on-Manifold Formulation of Differential-Algebraic Equations", J Dyn Diff Equat, vol. 29, pp. 1259–1281, 2017. DOI: 10.1007/s10884-015-9511-5.
T. Berger, and A. Ilchmann, "On the standard canonical form of time-varying linear DAEs", Quarterly of Applied Mathematic, vol. LXXI, no. 1, pp. 69–87, 2013.
T. Berger, A. Ilchmann, and S. Trenn, "The quasi–Weierstrass form for regular matrix pencils", Linear Algebra Appl., vol. 436, pp. 4052–4069, 2012.
T. Berger, and T. Reis, "Controlability of Linear Differential-Algebraic Systems–A Survey", in Surveys in Differential-Algebraic Equations I, A. Ilchmann, and T. Reis, Eds., Springer Verlag Berlin Heidelberg, 2013, pp. 1–61.
Y. E. Boyarintsev, Regulyarnye i singulyarnye sistemy linejnykh obyknovennykh differentsial’nykh uravnenij, Nauka, Sibirskoe Otdelenie Novosibirsk, 1980, In Russian.
K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, North-Holland New York Amsterdam London, 1989.
S. L. Campbell, "A general form for solvable linear time varying singular systems of differential equations", SIAM J. Math. Anal., vol. 18, pp. 1101–1115, 1987.
S. L. Campbell, and C. W. Gear, "The index of general nonlinear DAEs", Numer. Math., vol. 72, pp. 173–196, 1995.
S. L. Campbell, and P. Kunkel, "Applications of Differential-Algebraic Equations: Examples and Benchmarks", Differential-Algebraic Equations Forum, Springer, Cham, 2019, ch. General Nonlinear Differential Algebraic Equations and Tracking Problems: A Robotics Example.
S. L. Campbell, and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, San Franzisco, CA, 2009.
S. L. Campbell, and L. R. Petzold, "Canonical forms and solvable singular systems of differential equations.", SIAM J. Alg. Discrete Methods, vol. 4, pp. 517–521, 1983.
Y. Chen, and S. Trenn, "On geometric and differentiation index of nonlinear differential-algebraic equations.", in IFAC PapersOnline, ScienceDirect, 2021, pp. 86–191.
V. F. Chistyakov, Algebro-differentsial’nye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996, In Russian.
V. F. Chistyakov, "K metodam resheniya singulyarnykh linejnykh sistem obyknovennykh differentsial’nykh uravnenij", in Vyrozhdennye sistemy obyknovennykh differentsial’nykh uravnenij, Y. E. Boyarintsev, Ed., In Russian, Nauka, Sibirskoe Otdelenye, 1982, pp. 37–65.
V. F. Chistyakov, and A. A. Shcheglova, Izbrannye glavy teorii algebro-differentsial’nych sistem, Nauka, Novosibirsk, 2003, In Russian.
R. Dokchan, "Numerical integration of differential-algebraic equations with harmless critical points", Ph.D. dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2011. DOI: http://dx.doi.org/10.18452/16318.
H. Elschner, A. Möschwitzer, and A. Reibiger, Rechnergestützte Analyse in der Elektronik, VEB Verlag Technik Berlin, 1977.
D. Estévez Schwarz, and R. Lamour, "A new approach for computing consistent initial values and Taylor coefficients for DAEs using projector-based constrained optimization", English, Numer. Algorithms, vol. 78, no. 2, pp. 355–377, 2018. ISSN: 1017-1398. DOI: 10.1007/s11075-017-0379-9.
D. Estévez Schwarz, and R. Lamour, "A new projector based decoupling of linear DAEs for monitoring singularities", English, Numer. Algorithms, vol. 73, no. 2, pp. 535–565, 2016. ISSN: 1017-1398. DOI: 10.1007/s11075-016-0107-x.
D. Estévez Schwarz, and R. Lamour, "A projector based decoupling of DAEs obtained from the derivative array", English, in Progress in differential-algebraic equations II. Proceedings of the 9th workshop on descriptor systems, Paderborn, Germany, March 17–20, 2019, Cham: Springer, 2020, pp. 3–38. ISBN: 978-3-030-53904-7; 978-3-030-53905-4. DOI: 10.1007/978-3-030-53905-4_1.
D. Estévez Schwarz, and R. Lamour, "InitDAE: computation of consistent values, index determination and diagnosis of singularities of DAEs using automatic differentiation in Python", English, J. Comput. Appl. Math., vol. 387, p. 15, 2021, Id/No 112486. ISSN: 0377-0427. DOI: 10.1016/j.cam.2019.112486.
D. Estévez Schwarz, R. Lamour, and R. März, "Singularities of the robotic arm DAE", English, in Progress in differential-algebraic equations II. Proceedings of the 9th workshop on descriptor systems, Paderborn, Germany, March 17–20, 2019, Cham: Springer, 2020, pp. 433–480. ISBN: 978-3-030-53904-7; 978-3-030-53905-4. DOI: 10.1007/978-3-030-53905-4_14.
C. W. Gear, "Differential-algebraic equation index transformation", SIAM J. Sci. Statist. Comp., vol. 9, pp. 39–47, 1988.
C. W. Gear, "Simultaneous numerical solution of differential-algebraic equations", IEEE Trans. Circuit Theory, vol. CT-18, no. 1, pp. 89–95, 1971.
C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall Englewood Cliffs N.J., 1971.
E. Griepentrog, "Index Reduction Methods for Differential-Algebraic Equations", in Berlin Seminar on Differential-Algebraic Equations, vol. 92-1, Fachbereich Mathematik der Humboldt-Universität zu Berlin, 1992, pp. 14–29. ISSN: 0863-0968.
E. Griepentrog, M. Hanke, and R. März, "Toward a better understanding of differential-algebraic equations (Introductory survey)", in Berlin Seminar on Differential-Algebraic Equations, vol. 92-1, Fachbereich Mathematik der Humboldt-Universität zu Berlin, 1992, pp. 2–13. ISSN: 0863-0968.
E. Griepentrog, and R. März, Differential-Algebraic Equations and Their Numerical Treatment, ser. Teubner Texte zur Mathematik 88, BSB Teubner Leipzig, 1986.
E. Hairer, and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer, 1991.
M. Hanke, and R. März, "Basic Characteristics of Differential-Algebraic Operators", in Progress in Differential-Algebraic Equations II, T. Reis, S. Grundel, and S. Schöps, Eds., Springer Heidelberg, 2020, pp. 39–70. [Online]. Available: https://doi.org/10.1007/978-3-030-53905-4_4.
M. Hanke, and R. März, "Canonical Subspaces of Linear Time-Varying Differential-Algebraic Equations and Their Usefulness for Formulating Accurate Initial Conditions", DAE Panel, vol. 1, pp. 1–32, 2023. ISSN: (online): 2939-9084. DOI: https://doi.org/10.52825/dae-p.v1i.191.
M. Hanke, R. März, and C. Tischendorf, "Least-squares collocation for higher-index linear differential-algebaic equations: Estimating the stability threshold", Math. Comp., vol. 88, no. 318, pp. 1647–1683, 2019. [Online]. Available: https://doi.org/10.1090/mcom/3393.
L. Jansen, "A Dissection Concept for DAEs. Structural Decoupling, Unique Solvability, Convergence Theory and Half-Explicit Methods", Ph.D. dissertation, Humboldt-Universität zu Berlin, 2014. [Online]. Available: https://doi.org/10.18452/17166.
O. Koch, R. März, D. Prätorius, and E. Weinmüller, "Collocation methods for index 1 DAEs with a singularity of the first kind", Math. Comp., vol. 79, no. 269, pp. 281–304, 2010.
P. Kunkel, and V. Mehrmann, "Canonical forms for linear differential-algebraic equations with variable coefficients", Journal of Computational and Applied Mathematics, vol. 56, pp. 225–251, 1994.
P. Kunkel, and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Treatment, ser. Textbooks in Mathematics, European Mathematical Society Zürich, 2006.
P. Kunkel, and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Treatment, ser. Textbooks in Mathematics, European Mathematical Society, 2024
P. Kunkel, and V. Mehrmann, "Local and global invariants of linear differential-algebraic equations and their relations", Journal of Computational and Applied Mathematics, vol. 4, pp. 138–157, 1996.
R. Lamour, and D. Estévez Schwarz, "Discovering Singular Points in DAE Models", in Modeling, Simulation and Optimization of Complex Processes HPSC 2015, H. G. Bock, H. Phu, R. Rannacher, and J. P. Schlöder, Eds., Cham: Springer International Publishing, 2017, pp. 93–102. ISBN: 978-3-319-67168-0.
R. Lamour, R. März, and C. Tischendorf, Differential-Algebraic Equations: A Projector Based Analysis, ser. Differential-Algebraic Equations Forum, Springer-Verlag Berlin Heidelberg New York Dordrecht London, 2013, eds. Achim Ilchmann and Timo Reis. [Online]. Available: http://doi.org/10.1007/978-3-642-27555-5.
R. Lamour, R. März, and E. Weinmüller, "Boundary-Value Problems for Differential-Algebraic Equations: A Survey", in Surveys in Differential-Algebraic Equations III, A. Ilchmann, and T. Reis, Eds., Springer Heidelberg, 2015, pp. 177-309.
V. H. Linh, and R. März, "Adjoint Pairs of Differential-Algebraic Equations and Their Lyapunov Exponents", J Dyn Diff Equat, vol. 29, no. 2, pp. 655–684, 2017. [Online]. Available: https://doi.org/10.1007/s10884-015-9474-6.
R. März, "Differential-Algebraic Equations from a Functional-Analytic Viewpoint: A Survey", in Surveys in Differential-Algebraic Equations II, A. Ilchmann, and T. Reis, Eds., Springer Heidelberg, 2015, pp. 163-285.
V. Mehrmann, "Index concepts for differential-algebraic equations.", in Encyclopedia of Applied and Computational Mathematics, Springer nature, 2015, pp. 676–681.
C. C. Pantelides, "The consistent initialization of differential algebraic systems", English, SIAM J. Sci. Stat. Comput., vol. 9, no. 2, pp. 213–231, 1988. ISSN: 0196-5204. DOI: 10.1137/0909014.
L. Petzold, "Differential/Algebraic Equations are not ODEs", SIAM J. Sci. Stat. Comput., vol. 3, pp. 367–384, 1982.
J. Pryce, "Solving high-index DAEs by Taylor series", Numer. Algorithms, vol. 19, pp. 195–211, 1998.
J. Pryce, N. Nedialkov, and G. Tan, "DAESA – a Matlab tool for structural analysis of differential-algebraic equations: theory", English, ACM Trans. Math. Softw., vol. 41, no. 2, p. 20, 2015, Id/No 9. ISSN: 0098-3500. DOI: 10.1145/2689664.
P. Rabier, and W. Rheinboldt, "Theoretical and Numerical Analysis of Differential-Algebraic Equations", in Handbook of Numerical Analysis, Vol. VIII, Elsevier Science, 2002, pp. 189–541.
S. Reich, "Existence and Uniqueness Results for nonlinear Differential-Algebraic Equations", in Berlin Seminar on Differential-Algebraic Equations, vol. 92-1, Fachbereich Mathematik der Humboldt-Universität zu Berlin, 1992, pp. 61–81. ISSN: 0863-0968.
G. Reißig, W. S. Martinson, and P. I. Barton, "Differential-algebraic equations of index 1 may have an arbitrarely high structural index.", SIAM J. Sci. Comput., vol. 21, pp. 1987–1990, 2000.
W. C. Rheinboldt, "Differential-algebraic systems as differential equations on manifolds", Math. Comput., vol. 43, pp. 473–482, 1984.
R. Riaza, "DAEs in Circuit Modelling:–A Survey", in Surveys in Differential-Algebraic Equations I, A. Ilchmann, and T. Reis, Eds., Springer Verlag Berlin Heidelberg, 2013, pp. 97–136.
R. Riaza, Differential-Algebraic Systems. Analytical Aspects and Circuit Applications, World Scientific, 2008. [Online]. Available: https://doi.org/10.1142/6746.
W. M. Seiler, and E. Zerz, "Algebraic Theory of Linear Systems: A Survey", in Surveys in Differential-Algebraic Equations II, A. Ilchmann, and T. Reis, Eds., Springer Heidelberg, 2015, pp. 287–333.
B. Simeon, "On the History of Differential-Algebraic Equations", in Surveys in Differential-Algebraic Equations IV, A. Ilchmann, and T. Reis, Eds., Springer Heidelberg, 2017, pp. 1–39.
S. Trenn, "Solution Concepts for Linear DAEs: A Survey", in Surveys in Differential-Algebraic Equations IV, A. Ilchmann, and T. Reis, Eds., Springer Heidelberg, 2013, pp. 137–172.
Chislennye metody resheniya singulyarnykh sistem, O. V. Vasil’ev, Ed., Nauka, Sibirskoe Otdelenie Novosibirsk, 1989, In Russian.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Diana Estévez Schwarz, René Lamour, Roswitha März

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-08-05
Published 2025-08-26