Using Cubic Splines in Crop Insurance Models – A Replication Study
DOI:
https://doi.org/10.52825/gjae.v74i.2635Keywords:
Replication, Weather Index Insurance, Risk ManagementAbstract
This study replicates the work of Bucheli et al. (2022) to evaluate the reliability and generalizability of their findings on the use of cubic spline methods in weather index insurance design in Eastern Germany. The study consists of two parts: a direct replication and an extended replication using different crops and another regional focus of yield data from Saxony, Germany. The direct replication confirms the original findings, while the extended replication reveals limitations in the model's risk reduction capacities. The gain in model fit, compared with daily temperature data, seems to be modest. It is questionable if an index insurance, which is solely based on temperature, will be considered as an attractive risk management tool, given the substantial basis risk that remains with farmers. The study highlights the importance of considering crop-specific risk profiles, regional climate, and agricultural conditions in insurance design. Moreover, our analysis highlights the relevance of FAIR (findable, accessible, interoperable, reusable) data for the performance of replication studies.
Downloads
References
Albers, H., Gornott, C., Hüttel, S. (2017): How do inputs and weather drive wheat yield volatili-ty? The example of Germany. Food Policy 70: 50-61. https://doi.org/10.1016/j.foodpol.2017.05.001. DOI: https://doi.org/10.1016/j.foodpol.2017.05.001
Anastassiadis, F., Feil, J.-H., Musshoff, O., Schilling, P. (2014): Analysing Farmers’ Use of Price Hedging Instruments: An Experimental Approach. Journal of Agricultural & Food In-dustrial Organization 12(1): 181-192. https://doi.org/10.1515/jafio-2014-0007. DOI: https://doi.org/10.1515/jafio-2014-0007
Annan, F., Tack, J., Harri, A., Coble, K. (2013): Spatial pattern of yield distributions: implica-tions for crop insurance. American Journal of Agricultural Economics 96 (1): 253-268. https://doi.org/10.1093/ajae/aat085. DOI: https://doi.org/10.1093/ajae/aat085
Blanc, E., Schlenker, W. (2017): The use of panel models in assessments of climate impacts on agriculture. Review of Environmental Economics and Policy 17(2): 258-279. https://doi.org/10.1093/reep/rex016. DOI: https://doi.org/10.1093/reep/rex016
Bras, T.A., Seixas, J., Carvalhais, N., Jagermeyr, J. (2021): Severity of drought and heat-wave crop losses tripled over the last five decades in Europe. Environmental Research Letters 16(6): 6. https://doi.org/10.1088/1748-9326/abf004. DOI: https://doi.org/10.1088/1748-9326/abf004
Bucheli, J., Dalhaus, T., Finger, R. (2022): Temperature effects on crop yields in heat index insurance. Food Policy 107: 102214. https://doi.org/10.1016/j.foodpol.2021.102214. DOI: https://doi.org/10.1016/j.foodpol.2021.102214
Cao, X., Okhrin, O., Odening, M., Ritter, M. (2015): Modelling spatio-temporal variability of temperature. Computational Statistics 30: 745-766. https://doi.org/10.1007/s00180-015-0561-2. DOI: https://doi.org/10.1007/s00180-015-0561-2
Challinor, A.J., Watson, J., Lobell, D.B., Howden, S.M., Smith, D.R., Chhetri, N. (2014): A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change 4 (4): 287-291. https://doi.org/10.1038/nclimate2153. DOI: https://doi.org/10.1038/nclimate2153
Chen, Z., Lu, Y., Zhang, J., Zhu, W. (2024): Managing Weather Risk with a Neural Network-Based Index Insurance. Management Science 70 (7): 4306-4327. https://doi.org/10.1287/mnsc.2023.4902. DOI: https://doi.org/10.1287/mnsc.2023.4902
Cornes, R., G. van der Schrier, E.J.M., van den Besselaar, Jones, P.D. (2018): An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. Journal of Geophysical Research: Atmospheres 123: 9391-9409. https://doi.org/10.1029/2017JD028200. DOI: https://doi.org/10.1029/2017JD028200
D'Agostino, A. L., Schlenker, W. (2016): Recent weather fluctuations and agricultural yields: implications for climate change. Agricultural Economics 47: 159-171. https://doi.org/10.1111/agec.12315. DOI: https://doi.org/10.1111/agec.12315
Doherty, E., Mellett, S., Norton, D., McDermott, T. K.J., Hora, D.O., Ryan, M. (2021): A dis-crete choice experiment exploring farmer preferences for insurance against extreme weather events. Journal of Environmental Management 290 (112607). https://doi.org/10.1016/j.jenvman.2021.112607. DOI: https://doi.org/10.1016/j.jenvman.2021.112607
Falco, S.D., Chavas, J.P. (2008): On Crop Biodiversity, Risk Exposure, and Food Security in the Highlands of Ethiopia. American Journal of Agricultural Economics 91 (3): 599-611. https://doi.org/10.1111/j.1467-8276.2009.01265.x. DOI: https://doi.org/10.1111/j.1467-8276.2009.01265.x
Femenia, F., Gohin, A., Carpentier, A. (2010): The Decoupling of Farm Programs: Revisiting the Wealth Effect. American Journal of Economics 92 (3): 836-848. https://doi.org/10.1093/ajae/aap029. DOI: https://doi.org/10.1093/ajae/aap029
Gammans, M., Merel, P., Bobea, A.O. (2017): Negative impacts of climate change on cereal yields: Statistical evidence from France. Environmental Research Letters 12.
https://doi.org/10.1088/1748-9326/aa6b0c. DOI: https://doi.org/10.1088/1748-9326/aa6b0c
Harri, A., Coble, K. H., Ker, A.P., Goodwin, B. J. (2011): Relaxing heteroscedasticity assump-tions in area-yield crop insurance rating. American Journal of Agricultural Economics 93 (3): 703-713. https://doi.org/10.1093/ajae/aar009. DOI: https://doi.org/10.1093/ajae/aar009
Heino, M., Kinnunen, P., Anderson, W., Ray, D.K., Puma, M.J., Varis, O., Siebert, S., Kum-mu, M. (2023): Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Scientific reports 13 (3583). https://doi.org/10.1038/s41598-023-29378-2. DOI: https://doi.org/10.1038/s41598-023-29378-2
Just, R.E., Weninger, Q. (1999): Are crop yields normally distributed? American Journal of Agricultural Economics 81 (2): 287-304. https://doi.org/10.2307/1244582. DOI: https://doi.org/10.2307/1244582
Ker, A.P., Tolhurst, T.N. (2019): On the Treatment of Heteroscedasticity in Crop Yield Data. American Journal of Agricultural Economics 101 (4): 1247-1261. https://doi.org/10.1093/ajae/aaz004. DOI: https://doi.org/10.1093/ajae/aaz004
Leppert, D., Dalhaus, T., Lagerkvist, C.J. (2021): Accounting for geographic basis risk in heat index insurance: how spatial interpolation can reduce the cost of risk. Weather, climate, and society 13 (2): 273-286. https://doi.org/10.1175/WCAS-D-20-0070.1. DOI: https://doi.org/10.1175/WCAS-D-20-0070.1
Möller, M., Boutarfa, L., Strassemeyer, J. (2020): PhenoWin - A R Shiny application for visu-alization and extraction of phenological windows in Germany. Computers and Electronics in Agriculture 175. https://doi.org/10.1016/j.compag.2020.105534.
Möller, M. (2020): Data for: PhenoWin - A R Shiny application for visualization and extraction of phenological windows in Germany, Mendeley Data, V1. https://doi.org/10.17632/37jxk3n9fy.1. DOI: https://doi.org/10.1016/j.compag.2020.105534
Möllmann, J., Buchholz, M., Musshoff, O. (2019): Comparing the Hedging Effectiveness of Weather Derivatives Based on Remotely Sensed Vegetation Health Indices and Meteoro-logical Indices. Weather, Climate, and Society 11 (1): 33-48. https://doi.org/10.1175/WCAS-D-17-0127.1. DOI: https://doi.org/10.1175/WCAS-D-17-0127.1
Mußhoff, O., Odening, M., Xu, W. (2011): Management of Climate Risks in Agriculture – Will Weather Derivatives Permeate? Applied Economics 43 (9): 1067-1077. https://doi.org/10.1080/00036840802600210. DOI: https://doi.org/10.1080/00036840802600210
Odening, M., Filler, G., Schmidt, L., Mußhoff, O., Michels, M., Mahler, S., Böttcher, F. (2022): Mehrgefahrenversicherung in der Landwirtschaft im Freistaat Sachen. Machbarkeitsstudie im Auftrag des Sächsischen Staatsministeriums für Energie, Klimaschutz, Umwelt und Landwirtschaft, Berlin. Mimeo.
Odening, M., Shen, Z. (2014): Challenges of Insuring Weather Risk in Agriculture. Agricultural Finance Review 74 (2): 188-199. https://doi.org/10.1108/AFR-11-2013-0039. DOI: https://doi.org/10.1108/AFR-11-2013-0039
Oikonomidis, A., Catal, C., Kassahun, A. (2022): Hybrid Deep Learning-based Models for Crop Yield Prediction. Applied Artificial Intelligence 36 (1): 2031822. https://doi.org/10.1080/08839514.2022.2031823. DOI: https://doi.org/10.1080/08839514.2022.2031823
Ortiz-Bobea, A., Knippenberg, E., Chambers, R.G. (2018): Growing climatic sensitivity of U.S. agriculture linked to technological change and regional specialization. Science Ad-vances 4 (12). https://doi.org/10.1126/sciadv.aat4343. DOI: https://doi.org/10.1126/sciadv.aat4343
Ritter, M., Mußhoff, O., Odening, M. (2014): Minimizing Geographical Basis Risk of Weather Derivatives Using A Multi-Site Rainfall Model. Computational Economics 44: 67-86. https://doi.org/10.1007/s10614-013-9410-y. DOI: https://doi.org/10.1007/s10614-013-9410-y
Schmidt, L., Odening, M., Schlanstein, J., Ritter, M. (2022): Exploring the weather-yield nex-us with artificial neural networks. Agricultural Systems 196. https://doi.org/10.1016/j.agsy.2021.103345. DOI: https://doi.org/10.1016/j.agsy.2021.103345
Shen, Z., Odening, M., Okhrin, O. (2018): Adaptive local parametric estimation of crop yields: Implications for crop insurance rate making. European Review of Agricultural Economics 45 (2): 173-203. https://doi.org/10.1093/erae/jbx028. DOI: https://doi.org/10.1093/erae/jbx028
Snyder, R.L. (1985): Hand calculating degree days. Agricultural and Forest Meteorology 35: 353-358. https://doi.org/10.1016/0168-1923(85)90095-4. DOI: https://doi.org/10.1016/0168-1923(85)90095-4
Sun, Y. (2022): Enhanced Weather-Based Index Insurance Design for Hedging Crop Yield Risk. Frontiers in Plant Science 13: 895183. https://doi.org/10.3389/fpls.2022.895183. DOI: https://doi.org/10.3389/fpls.2022.895183
Tack, J., Coble, K., Barnett, B. (2018): Warming temperatures will likely induce higher premi-um rates and government outlays for the US crop insurance program. Agricultural eco-nomics 49 (5): 635-647. https://doi.org/10.1111/agec.12448. DOI: https://doi.org/10.1111/agec.12448
Tan, K. S., Zhang, J. (2023): Flexible weather index insurance design with penalized splines. North American Actuarial Journal, 28(1), 1-26. https://doi.org/10.1080/10920277.2022.2162924. DOI: https://doi.org/10.1080/10920277.2022.2162924
Trnka, M., Rötter, R.P., Ramos, M.R., Kersebaum, K.C. (2014): Adverse weather conditions for European wheat production will become more frequent with climate change. Nature climate change 4 (7). https://doi.org/10.1038/NCLIMATE2242. DOI: https://doi.org/10.1038/nclimate2242
Turvey, C.G. (2001): Weather Derivatives for Specific Event Risks in Agriculture. Review of Agricultural Economics 23 (2): 333-351. https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9353.00065. DOI: https://doi.org/10.1111/1467-9353.00065
van der Velde, M., Tubiello, F.N., Vrieling, A., Bouraoui, F. (2012): Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against ob-served data. Climatic Change 113: 751-765. https://doi.org/10.1007/s10584-011-0368-2. DOI: https://doi.org/10.1007/s10584-011-0368-2
Vedenov, D.V., Barnett, B.J. (2004): Efficiency of weather derivatives as primary crop insur-ance instruments. Journal of Agricultural and Resource Economics 29 (3): 387-403. https://www.jstor.org/stable/40987240.
Vroege, W., Finger, R. (2020): Insuring Weather Risks in European Agriculture. EuroChoices 19 (2): 54-62. https://doi.org/10.1111/1746-692X.12285. DOI: https://doi.org/10.1111/1746-692X.12285
Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., ..., Mons, B. (2016): The FAIR Guiding Principles for scientific data management and stew-ardship. Scientific data 3 (1): 1-9. https://doi.org/10.1038/sdata.2016.18. DOI: https://doi.org/10.1038/sdata.2016.18
Woodard, J.D., Garcia, P. (2007): Basis risk and weather hedging effectiveness. Agricultural Finance Review 68 (1): 99-117. http://dx.doi.org/10.22004/ag.econ.9254. DOI: https://doi.org/10.1108/00214660880001221
Woodard, J. D., Sherrick, B.J. (2011): Estimation of Mixture Models using Cross-Validation Optimization: Implications for Crop Yield Distribution Modelling. American Journal of Agri-cultural Economics 93 (4): 968-982. https://doi.org/10.1093/ajae/aar034. DOI: https://doi.org/10.1093/ajae/aar034
Zhang, J., Tan, K.S., Weng, C. (2019): INDEX INSURANCE DESIGN. ASTIN Bulletin: The Journal of the IAA 49 (2): 491-523. https://doi.org/10.1017/asb.2019.5. DOI: https://doi.org/10.1017/asb.2019.5
Zou, J., Odening, M., Okhrin, O. (2023): Plant Growth Stages and Weather Index Insurance Design. Annals of Actuarial Science. https://doi.org/10.1017/S1748499523000167. DOI: https://doi.org/10.1017/S1748499523000167
Zou, J., Odening, M., Okhrin, O. (2024): Data-driven determination of plant growth stages for improved weather index insurance design. Agricultural Finance Review. https://doi.org/10.1108/AFR-01-2024-0015. DOI: https://doi.org/10.1108/AFR-01-2024-0015
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lorenz Schmidt, Martin Odening, Günther Filler, Masud Heydarli

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-07-15
Published 2025-08-26
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers 501899475