Iron-Doped Magnesium Aluminosilicate Transparent Glass-Ceramics. Mg-Petalite or Spinel Nanocrystals? Competing Mechanisms

Authors

DOI:

https://doi.org/10.52825/glass-europe.v3i.2519

Keywords:

Mg-Petalite, Spinel, Ferrous Ions, Transparent Glass-Ceramics, Nucleating Agents, Nanocrystals

Abstract

Transparent glass-ceramics based on Fe2+:Mg-petalite and/or Fe2+:MgAl2O4 nanocrystals were obtained from the initial glass by single and two-stage heat-treatments at temperatures from 800 to 1000 °C. ZrTiO4 and spinel crystallized during the DSC scan up to 1000 °C. Spinel nanocrystals 9-12 nm in size also appeared during single and two-stage heat-treatments at temperatures of 850 - 1000 °C. Mg-petalite crystallites ~30 nm in size evolved in the narrow temperature range from 850 to 900 °C during single-stage holding periods. A maximum fraction of Mg-petalite crystallized at 850 °C. Once formed, Mg-petalite is preserved upon further heating and holding even at 1000 °C for 6 h. Mg-petalite and spinel transformed into sapphirine and highly siliceous residual glass during heating at 1100 °C. Competing crystallization mechanisms are discussed. In materials with a weakly developed liquid-liquid phase-separated structure, crystallization of Mg-petalite from the magnesium aluminosilicate glass predominates, and spinel becomes an additional phase. Spinel crystallizes as the main phase from glasses with the developed liquid-liquid phase-separated structure. Its crystallization is accompanied by the formation of highly siliceous glass, from which Mg-petalite crystallization is impossible. Intense absorption band with maximum at ~1.9 μm due to fourfold coordinated Fe2+ ions in spinel nanocrystals is used as a spectral indicator of spinel formation. Glass-ceramics are relevant for the development of saturable absorbers intended for lasers operating at 1.6-2.4 μm.

Downloads

Download data is not yet available.

References

J. B. d’Andrada, “Description of some new fossils,” (Old English translation), A Journal of Natural Philosophy, Chemistry, and the Arts, vol. 5, pp. 211-213, 1801.

A. Zemann-Hedlik, and J. Zemann, “Die Kristallstruktur von Petalit, LiAlSi4O10,” Acta Cryst., vol. 8, pp. 781–787, 1955, doi: 10.1107/S0365110X55002405.

F. Liebau, “Structural Chemistry of Silicates – Structure, Bonding and Classification,” Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1985.

P. Černý and D. London, “Crystal chemistry and stability of petalite,” TMPM Tschermaks Min. Petr. Mitt., vol. 31, pp. 81-96, 1983, doi :10.1007/BF01084763.

G. H. Beall, Q. Fu, and C. M. Smith, “High strength glass-ceramics having petalite and lithium silicate structures”, U.S. Patent Application US20160102010A1, 2017.

W. Schreyer and J. F. Schairer, “Metastable solid solutions with quartz-type structures on the join SiO2 – MgAl2O4,” Z. Kristallogr. Krist., vol. 116, pp. 60-82, 1961, doi: 10.1524/zkri.1961.116.16.60.

W. Schreyer and J. F. Schairer; “Metastable osumilite- and petalite-type phases in the system MgO-Al2O3-SiO2,” Amer. Mineral., vol. 47 (1-2), pp. 90–104, 1962.

S. B. Holmquist, “A note on a “Mg petalite″ phase”, Z. Kristallogr. Krist., vol. 118, (1-6) pp. 477-478, 1963, doi: 10.1524/zkri.1963.118.16.477.

M. A. Conrad, “Phase transitions in a zirconia-nucleated MgO Al2O3·3SiO2 glass – ceramic,” J. Mater. Sci., vol. 7, pp. 527 – 530, 1972, doi: 10.1007/BF00761951.

I. Alekseeva, O. Dymshits, V. Golubkov, A. Shashkin, M. Tsenter, A. Zhilin, and W.-B. Byun, “Phase transformations in NiO and CoO doped magnesium aluminosilicate glasses nucleated by ZrO2,” Glass Technol., vol. 46 (2), pp. 187–191, 2005.

B. G. Varshal, L. Y. Baiburt, A. M. Gelberger, N. N. Malakhovskaja, and A. P. Naumkin, “Synthesis of metastable Mg- and Zn-containing petalite-like phases,” Isv. Akad. Nauk S.S.S.R. Neorg. Mater., vol. 7 (4), pp. 712, 1971; VINITI Publ. N2482-71, 1971 (Vsesoyusnyi Institut Nauchno-Tekhnicheskoi Informatsii).

L. R. Pinckney and G. H. Beall, “Nanocrystalline non-alkali glass-ceramics,” J. Non-Cryst. Solids, vol. 219, pp. 219-227, 1997, doi: 10.1016/S0022-3093(97)00272-X.

A. V. Bortkevich, O. S. Dymshits, A. A. Zhilin, A. Yu. Polushkin, M. Ya. Tsenter, A. V Shashkin, V. V. Golubkov, V. B. Ben, K. K. Li, E. B. Pak, and K. H. Pak, “Study of phase transformations in titanium-containing magnesium-aluminum silicate glasses and glass-ceramics for diffuse reflectors,” J. Opt. Technol., vol. 69 (8), pp. 588-594, 2002, https://opg.optica.org/jot/abstract.cfm?URI=jot-69-8-588.

T. I. Barry, J. M. Cox, and R. Morrell, “Cordierite glass-ceramics - effect of TiO2 and ZrO2 content on phase sequence during heat treatment,” J. Mater. Sci., vol. 13, pp. 594–610, 1978, doi:10.1007/BF00541810.

A. Buch, M. Ish-Shalom, R. Reisfeld, A. Kisilev, and E. Greenberg, “Transparent glass ceramics: Preparation, characterization and properties,” Mater. Sci. Eng., vol. 71, pp. 383-389, 1985, doi: 10.1016/0025-5416(85)90257-5.

U. Lembke, R. Brückner, R. Kranold, and T. Höche, “Phase formation kinetics in a glass ceramic studied by small-angle scattering of X-rays and neutrons and by visible-light scattering,” J. Appl. Crystallogr., vol. 30, pp. 1056 – 1064, 1997, doi: 10.1107/S0021889897001313.

G. Carl, T. Höche, and B. Voigt, “Crystallisation behavior of a MgO–Al2O3–SiO2–TiO2–ZrO2 glass,” Phys. Chem. Glasses, vol. 43C, pp. 256–258, 2002.

K. Maeda and A. Yasumori, “Effect of molybdenum and tungsten oxides on nucleation and crystallization behaviors of MgO–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids, vol. 427, 152-159, 2015, doi: 10.1016/j.jnoncrysol.2015.07.040.

L. Basyrova, V. Bukina, S. Balabanov, A. Belyaev, V. Drobotenko, O. Dymshits, I. Alekseeva, M. Tsenter, S. Zapalova, A. Khubetsov, A. Zhilin, A. Volokitina, V. Vitkin, X. Mateos, J.M. Serres, P. Camy, and P. Loiko, “Synthesis, structure and spectroscopy of Fe2+:MgAl2O4 transparent ceramics and glass-ceramics,” J. Lumin., vol. 236, pp. 118090, 2021, doi: 10.1016/j.jlumin.2021.118090.

V. S. Bukina, O. S. Dymshits, I. P. Alekseeva, A. A. Volokitina, S. S. Zapalova, and A. A. Zhilin, “Optical glass-ceramics based on Fe2+: MgAl2O4 nanocrystals and nucleated by TiO2 and ZrO2,” Nanosyst.: Phys. Chem. Math., vol. 14 (6), pp. 690–698, 2023, doi: 10.17586/2220-8054-2023-14-6-690-698.

H. Lipson, H. Steeple, in: McMillan (Ed.), Interpretation of X-Ray Powder Patterns, Martins Press, London, N.Y., 1970, p. 344.

V. V. Golubkov, O. S. Dymshits, A. A. Zhilin, T. I. Chuvaeva, and A. V. Shashkin, “On the phase separation and crystallization of glasses in the MgO–Al2O3–SiO2–TiO2 system,” Glass. Phys. Chem., vol. 29 (3), pp. 254–266, 2003.

V. V. Golubkov, O. S. Dymshits, V. I. Petrov, A. V. Shashkin, M. Ya. Tsenter, A. A. Zhilin, and Kang Uk, “Small-angle X-ray scattering and low-frequency Raman scattering study of liquid phase separation and crystallization in titania-containing glasses of the ZnO–Al2O3–SiO2 system,” J. Non-Cryst. Solids, vol. 351, pp. 711-721, 2005, doi: 10.1016/j.jnoncrysol.2005.01.071.

A. Dugué, O. Dymshits, L. Cormier, P. Loiko, I. Alekseeva, M. Tsenter, K. Bogdanov, G. Lelong, and A. Zhilin, “Structural transformations and spectroscopic properties of Ni-doped magnesium aluminosilicate glass-ceramics nucleated by a mixture of TiO2 and ZrO2 for broadband near-IR light emission,” J. Alloys Compd., vol. 780, pp. 137-146, 2019, doi: 10.1016/j.jallcom.2018.11.247.

M. A. Krebs and R. A. Condrate, “A Raman spectral characterization of various crystalline mixtures in the ZrO2-TiO2 and HfO2-TiO2 systems,” J. Mater. Sci. Lett., vol. 7, pp. 1327–1330, 1988, doi: 10.1007/BF00719973.

F. Azough, R. Freer, and J. Petzelt, “A Raman spectral characterization of ceramics in the system ZrO2–TiO2,” J. Mater. Sci., vol. 28, pp. 2273–2276, 1993, doi: 10.1007/BF01151652.

https://rruff.info/petalite/R060365.

A. A. Kaminskii, E. Haussühl, H. J. Eichler, J. Hanuza, M. Mączka, H. Yoneda, and A. Shirakawa, “Lithium silicate, LiAlSi4O10 (petalite)—a novel monoclinic SRS-active crystal,” Laser Phys. Lett., vol. 12, pp. 085002(1-8), 2015, doi: 10.1088/1612-2011/12/8/085002.

D. P. C. Thackeray, “The Raman spectrum of zirconium dioxide,” Spectrochim. Acta A. Mol. Biomol. Spectrosc., vol. 30, (2) pp. 549-550, 1974, doi: 10.1016/0584-8539(74)80096-6.

I. Alekseeva, A. Baranov, O. Dymshits, V. Ermakov, V. Golubkov, M. Tsenter, and A. Zhilin, “Influence of CoO addition on phase separation and crystallization of glasses of the ZnO-Al2O3-SiO2-TiO2 system,” J. Non-Cryst. Solids, vol. 357, pp. 3928-3939, 2011, doi: 10.1016/j.jnoncrysol.2011.08.011.

A. George, S. Solomon, J. K. Thomas, and A. John, “Characterizations and electrical properties of ZrTiO4 ceramic,” Mater. Res. Bull., vol. 47, (11) pp. 3141-3147, 2012, doi: 10.1016/j.materresbull.2012.08.018.

I. Ganesh, “A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications,” Int. Mater. Rev., vol. 58, pp. 63–112, 2013, doi: 10.1179/1743280412Y.0000000001.

P. A. Loiko, O. S. Dymshits, N. A. Skoptsov, A. M. Malyarevich, A. A. Zhilin, I. P. Alekseeva, M. Y. Tsenter, K. V. Bogdanov, X. Mateos, and K. V. Yumashev, “Crystallization and nonlinear optical properties of transparent glass-ceramics with Co:Mg(Al,Ga)2O4 nanocrystals for saturable absorbers of lasers at 1.6–1.7 μm,” J. Phys. Chem. Solid, vol. 103, pp. 132–141, 2017, doi: 10.1016/j.jpcs.2016.12.017.

B. M. Loeffler, R. G. Burns, J. A. Tossell, D. J. Vaughan, and K. H. Johnson, “Charge transfer in lunar materials: interpretation of ultraviolet-visible spectral properties of the moon,” in: Lunar and Planetary Science Conference Proceedings, vol. 5, pp. 3007–3016, 1974.

H. K. Mao and P. M. Bell, “Crystal-field effects of trivalent titanium in fassaite from the Pueblo de Allende meteorite,” Ann. Rep. Geophys. Lab., Carnegie Inst. Washington Year Book, vol. 73, pp. 488–492, 1974.

D. A. Nolet, R. G. Burns, S. L. Flamm, and J. R. Besancon, “Spectra of Fe-Ti silicate glasses: implications to remote-sensing of planetary surfaces,” in: Lunar and Planetary Science Conference Proceedings, vol. 10, pp. 1775–1786, 1979.

V. Vercamer, G. Lelong, H. Hijiya, Y. Kondo, L. Galoisy, and G. Calas, “Diluted Fe3+ in silicate glasses: structural effects of Fe-redox state and matrix composition. An optical absorption and X-band/Q-band EPR study,” J. Non-Cryst. Solids, vol. 428, pp. 138–145, 2015, doi: 10.1016/j.jnoncrysol.2015.08.010.

G. H. Faye and D.C. Harris, “On the origin and pleochroism in andalusite from Brazil,” Can. Mineral., vol. 10, pp. 47–56, 1969.

A. S. Marfunin, “Physics of Minerals and Inorganic Materials: an Introduction”, Springer-Verlag, Berlin, Heidelberg, New York, 1979, p. 340.

J. Cardoso-Fernandes, J. Silva, M. M. Perrotta, A. Lima, A. C. Teodoro, M. A. Ribeiro, F. Dias, O. Barrès, J. Cauzid, and E. Roda-Robles, “Interpretation of the reflectance spectra of lithium (Li) minerals and pegmatites: A case study for mineralogical and lithological identification in the Fregeneda-Almendra area,” Remote Sens., vol. 13, pp. 3688, 2021, doi: 10.3390/rs13183688.

R. Reisfeld, A. Kisilev, A. Buch, and M. Ish-Shalom, “Transparent glass-ceramics doped by chromium(III): Spectroscopic properties and characterization of crystalline phases,” J. Non-Cryst. Solids, vol. 91 (3), pp. 333-350, 1987, doi: 10.1016/S0022-3093(87)80344-7.

M. N. Taran, M. Koch-Müller, and K. Langer, “Electronic absorption spectroscopy of natural (Fe2+, Fe3+)-bearing spinels of spinel ss-hercynite and gahnite-hercynite solid solutions at different temperatures and high-pressures,” Phys. Chem. Miner., vol. 32, pp. 175–188, 2005, doi: 10.1007/s00269-005-0461-z.

V. D’Ippolito, “Linking Crystal Chemistry and Physical Properties of Natural and Synthetic Spinels: an UV–VIS–NIR and Raman Study,” Doctoral dissertation, Sapienza Universit`a di Roma, 2013, p. 237.

C. Fernandez-Martin, G. Bruno, A. Crochet, D. O. Ovono, M. Comte, and L. Hennet, “Nucleation and growth of nanocrystals in glass-ceramics: an in situ SANS perspective,” J. Am. Ceram. Soc., vol. 95 (4), pp. 1304–1312, 2012, doi: 10.1111/j.1551-2916.2012.05093.x.

Downloads

Published

2025-05-08

How to Cite

Bukina, V., Dymshits, O., Alekseeva, I., Volokitina, A., Tenevich, M., Bachina, A., & Zhilin, A. (2025). Iron-Doped Magnesium Aluminosilicate Transparent Glass-Ceramics. Mg-Petalite or Spinel Nanocrystals? Competing Mechanisms. Glass Europe, 3, 45–75. https://doi.org/10.52825/glass-europe.v3i.2519
Received 2024-10-19
Accepted 2025-04-14
Published 2025-05-08