Enhancing the Optical Performance of Mid-Infrared Chalcogenide Glass Through Liquid Coating

Authors

DOI:

https://doi.org/10.52825/glass-europe.v3i.2554

Keywords:

Chalcogenide Glass, Surface Coating, Liquid Coating, Laser Damage

Abstract

Laser induced damage to optical component surfaces poses a critical challenge in the development of high-power laser systems. Such damage is typically influenced by its material host, defect distribution, laser parameters, and environmental conditions. The impact of surface defects becomes particularly pronounced under high-power, short-pulse laser irradiation, especially when surface roughness is suboptimal. In this study, we applied a liquid coating method to improve the surface quality of As2S3 glass under various surface conditions by eliminating defects with liquid. A detailed evaluation of the transmittance and surface laser damage threshold was conducted. The results reveal that effective liquid coating significantly reduces surface scattering and Fresnel reflection, resulting in up to a 24.8% increase in overall transmittance and a 2.17-fold improvement in the surface laser damage threshold. These findings underscore the critical role of liquid coating in enhancing optical material performance and offer a practical solution for optimizing high-power laser systems.

Downloads

Download data is not yet available.

References

[1] B. Bureau et al., “Recent advances in chalcogenide glasses”, Journal of Non-Crystalline Solids, vol. 59, no. 21, pp. 276–283, Oct. 2004, doi: 10.1016/j.jnoncrysol.2004.08.096. DOI: https://doi.org/10.1016/j.jnoncrysol.2004.08.096

[2] A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review”, Journal of Non-Crystalline Solids, vol. 330, no. 1–3, pp. 1–12, Nov. 2003, doi: 10.1016/j.jnoncrysol.2003.08.064. DOI: https://doi.org/10.1016/j.jnoncrysol.2003.08.064

[3] D. Cai, Y. Xie, X. Guo, P. Wang, and L. Tong, “Chalcogenide Glass Microfibers for Mid-Infrared Optics”, Photonics, vol. 8, no. 11, pp. 497-514, Nov. 2021, doi: 10.3390/photonics8110497. DOI: https://doi.org/10.3390/photonics8110497

[4] B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications Introduc-tion”, Opt. Express, vol. 18, no. 25, pp. 26632-26634, Dec. 2010, doi: 10.1364/OE.18.026632. DOI: https://doi.org/10.1364/OE.18.026632

[5] M.-L. Anne et al., “Chalcogenide Glass Optical Waveguides for Infrared Biosensing”, Sensors, vol. 9, no. 9, pp. 7398–7411, Sep. 2009, doi: 10.3390/s90907398. DOI: https://doi.org/10.3390/s90907398

[6] T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Mold-ing of Chalcogenide Glass (ChG) for Infrared Optics”, Micromachines, vol. 9, no. 7, pp. 337-357, Jul. 2018, doi: 10.3390/mi9070337. DOI: https://doi.org/10.3390/mi9070337

[7] H. Truckenbrodt, A. Duparre, and U. Schuhmann, “Roughness and defect characteriza-tion of optical surfaces by light-scattering measurements”, SPIE, Specification and Measurement of Optical Systems, vol.1971, pp.139-151, Jan. 1993, doi: 10.1117/12.141001. DOI: https://doi.org/10.1117/12.141001

[8] M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings”, Appl. Phys. B, vol. 80, no. 8, pp. 1007–1010, Jun. 2005, doi: 10.1007/s00340-005-1808-3. DOI: https://doi.org/10.1007/s00340-005-1808-3

[9] L. Wang, K. Zhang, Z. Song, and S. Feng, “Ceria concentration effect on chemical me-chanical polishing of optical glass”, Applied Surface Science, vol. 253, no. 11, pp. 4951–4954, Mar. 2007, doi: 10.1016/j.apsusc.2006.10.074. DOI: https://doi.org/10.1016/j.apsusc.2006.10.074

[10] C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass”, Sensors and Ac-tuators A, vol. 143, no.1, pp. 154-161, Nov. 2007, doi: 10.1016/j.sna.2007.11.022. DOI: https://doi.org/10.1016/j.sna.2007.11.022

[11] A. Krishnan and F. Fang, “Review on mechanism and process of surface polishing using lasers”, Front. Mech. Eng., vol. 14, no. 3, pp. 299–319, Sep. 2019, doi: 10.1007/s11465-019-0535-0. DOI: https://doi.org/10.1007/s11465-019-0535-0

[12] T. Zhou, Q. Zhou, J. Xie, X. Liu, X. Wang, and H. Ruan, “Surface defect analysis on formed chalcogenide glass Ge22Se58As20 lenses after the molding process”, Appl. Opt., vol. 56, no. 30, pp. 8394-8402, Oct. 2017, doi: 10.1364/AO.56.008394. DOI: https://doi.org/10.1364/AO.56.008394

[13] H. A. Macleod, “Recent developments in deposition techniques for optical thin films and coatings”, in Optical Thin Films and Coatings, Elsevier, pp. 3–23. 2018, doi: 10.1016/B978-0-08-102073-9.00001-1. DOI: https://doi.org/10.1016/B978-0-08-102073-9.00001-1

[14] G. Womack, K. Isbilir, F. Lisco, G. Durand, A. Taylor, and J. M. Walls, “The perfor-mance and durability of single-layer sol-gel anti-reflection coatings applied to solar mod-ule cover glass”, Surface and Coatings Technology, vol. 358, pp. 76–83, Jan. 2019, doi: 10.1016/j.surfcoat.2018.11.030. DOI: https://doi.org/10.1016/j.surfcoat.2018.11.030

[15] A. Marouani, N. Bouaouadja, Y. Castro, and A. Durán, “Repair and Restoration of the Optical Properties of Sandblasted Glasses By Silica‐Based Sol‐Gel Coatings”, Int J of Appl Glass Sci, vol. 6, no. 1, pp. 94–102, Mar. 2015, doi: 10.1111/ijag.12088. DOI: https://doi.org/10.1111/ijag.12088

[16] P. E. Oettinger, “Liquid coatings to decrease laser-induced surface damage in proustite”, Optics Communications, vol. 13, no. 4, pp. 431–434, Apr. 1975, doi: 10.1016/0030-4018(75)90139-X. DOI: https://doi.org/10.1016/0030-4018(75)90139-X

[17] A. R. Chraplyvy, “Liquid surface coating for optical components used in high power laser applications”, Appl. Opt., vol. 16, no. 9, pp. 2491–2494, Sep. 1977, doi: 10.1364/AO.16.002491. DOI: https://doi.org/10.1364/AO.16.002491

[18] H. Zhao, L. O. Prieto‐López, X. Zhou, X. Deng, and J. Cui, “Multistimuli Responsive Liquid‐Release in Dynamic Polymer Coatings for Controlling Surface Slipperiness and Optical Performance”, Adv Materials Inter, vol. 6, no. 20, p. 1901028, Oct. 2019, doi: 10.1002/admi.201901028. DOI: https://doi.org/10.1002/admi.201901028

[19] Liu Zhuo, Yang Xiaojing, Xie Qiming, Yang Weisheng, and Wang Xueying, “Research Progress of Infrared Optical Thin Filmson Chalcogenide Glass Substrates”, Laser Op-toelectron. vol. 59, no. 21, p. 2100003, Nov. 2022, doi: 10.3788/LOP202259.2100003. DOI: https://doi.org/10.3788/LOP202259.2100003

[20] K. M. Khajurivala, “Erosion resistant anti-reflection coating for ZnSe, CZnS, chalco-genide, and glass substrates”, SPIE Defense, Security, and Sensing, vol. 8012, p.801242, May 2011, p. 801242. doi: 10.1117/12.896905. DOI: https://doi.org/10.1117/12.896905

[21] J. H. Lee, H. Kim, W. H. Lee, M. C. Kwon, and Y. G. Choi, “Surface modification of chalcogenide glass for diamond-like-carbon coating”, Applied Surface Science, vol. 478, pp. 802–805, Jun. 2019, doi: 10.1016/j.apsusc.2019.02.043. DOI: https://doi.org/10.1016/j.apsusc.2019.02.043

[22] C.-S. Park et al. “Effect of boron and silicon doping on the surface and electrical proper-ties of diamond like carbon films by magnetron sputtering technique”, Surface & Coat-ings Technology, vol.213, pp. 131–134, Sep. 2013, doi: 10.1016/j.surfcoat.2012.01.014. DOI: https://doi.org/10.1016/j.surfcoat.2012.01.014

[23] L.R. Robichaud et al., “High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source”, Optics Express, vol.28, no. 1, pp. 107–115, Jan. 2020, doi: https://doi.org/10.1364/OE.380737. DOI: https://doi.org/10.1364/OE.380737

[24] S. S. Flaschen, A. D. Pearson, and W. R. Northover, “Low Melting Sulfide-Halogen In-organic Glasses”, Journal of Applied Physics, vol. 31, no. 1, pp. 219–220, Jan. 1960, doi: 10.1063/1.1735409. DOI: https://doi.org/10.1063/1.1735409

[25] J. C. Stover, M. L. Bernt, and E. L. Church, "Measurement and analysis of scatter from rough surfaces", Stray Radiation in Optical Systems III, vol. 2260, pp. 40–49, Oct. 1994, doi: https://doi.org/10.1117/12.189225. DOI: https://doi.org/10.1117/12.189225

[26] Hongze Wang et al., “A model to calculate the laser absorption property of actual sur-face”, International Journal of Heat and Mass Transfer, vol. 118, pp. 562–569, Mar, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.11.023. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.023

[27] A. I. Lvovsky, “Fresnel Equations”, Encyclopedia of Optical and Photonic Engineering (Print) - Five Volume Set, 2nd ed., Boca Raton: CRC Press, 2015, pp. 838–843. doi: 10.1081/E-EOE2-120047133. DOI: https://doi.org/10.1081/E-EOE2-120047133

[28] M. Jarmila et al., “Optical Absorption in Si:H Thin Films: Revisiting the Role of the Re-fractive Index and the Absorption Coefficient”, Coatings, vol. 11, no. 1081, pp.1–10, Sep, 2021, doi: 10.3390/coatings11091081. DOI: https://doi.org/10.3390/coatings11091081

[29] Y. Wang et al., “Impacts of hydroxyl and bond energy on laser-induced damage in mid-infrared chalcogenide glass.”, J Am Ceram Soc., vol. 274, no. 1-2, pp.100–105, Nov, 2024, doi: 10.1111/jace.20256. DOI: https://doi.org/10.1111/jace.20256

[30] M. N. Ozisik, “A Heat/Mass Analogy for Fission-Product Deposition from Gas Streams”, Nuclear Science and Engineering, vol. e20256, pp. 1 - 8, Jun. 1964, doi: 10.13182/NSE64-A28905. DOI: https://doi.org/10.13182/NSE64-A28905

[31] S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation”, Laser-induced Damage in optical Materials. vol. 7132, pp. 7132J-1-28. 2008, doi: 10.1117/12.804499. DOI: https://doi.org/10.1117/12.804499

Downloads

Published

2025-02-03

How to Cite

Chen, K., Wang, X., Wang, Y., Jiao, K., Tang, W., Shen, X., … Wang, X. (2025). Enhancing the Optical Performance of Mid-Infrared Chalcogenide Glass Through Liquid Coating. Glass Europe, 3, 15–27. https://doi.org/10.52825/glass-europe.v3i.2554
Received 2024-12-12
Accepted 2025-01-09
Published 2025-02-03