Enhancing the Optical Performance of Mid-Infrared Chalcogenide Glass Through Liquid Coating
DOI:
https://doi.org/10.52825/glass-europe.v3i.2554Keywords:
Chalcogenide Glass, Surface Coating, Liquid Coating, Laser DamageAbstract
Laser induced damage to optical component surfaces poses a critical challenge in the development of high-power laser systems. Such damage is typically influenced by its material host, defect distribution, laser parameters, and environmental conditions. The impact of surface defects becomes particularly pronounced under high-power, short-pulse laser irradiation, especially when surface roughness is suboptimal. In this study, we applied a liquid coating method to improve the surface quality of As2S3 glass under various surface conditions by eliminating defects with liquid. A detailed evaluation of the transmittance and surface laser damage threshold was conducted. The results reveal that effective liquid coating significantly reduces surface scattering and Fresnel reflection, resulting in up to a 24.8% increase in overall transmittance and a 2.17-fold improvement in the surface laser damage threshold. These findings underscore the critical role of liquid coating in enhancing optical material performance and offer a practical solution for optimizing high-power laser systems.
Downloads
References
[1] B. Bureau et al., “Recent advances in chalcogenide glasses”, Journal of Non-Crystalline Solids, vol. 59, no. 21, pp. 276–283, Oct. 2004, doi: 10.1016/j.jnoncrysol.2004.08.096. DOI: https://doi.org/10.1016/j.jnoncrysol.2004.08.096
[2] A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review”, Journal of Non-Crystalline Solids, vol. 330, no. 1–3, pp. 1–12, Nov. 2003, doi: 10.1016/j.jnoncrysol.2003.08.064. DOI: https://doi.org/10.1016/j.jnoncrysol.2003.08.064
[3] D. Cai, Y. Xie, X. Guo, P. Wang, and L. Tong, “Chalcogenide Glass Microfibers for Mid-Infrared Optics”, Photonics, vol. 8, no. 11, pp. 497-514, Nov. 2021, doi: 10.3390/photonics8110497. DOI: https://doi.org/10.3390/photonics8110497
[4] B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications Introduc-tion”, Opt. Express, vol. 18, no. 25, pp. 26632-26634, Dec. 2010, doi: 10.1364/OE.18.026632. DOI: https://doi.org/10.1364/OE.18.026632
[5] M.-L. Anne et al., “Chalcogenide Glass Optical Waveguides for Infrared Biosensing”, Sensors, vol. 9, no. 9, pp. 7398–7411, Sep. 2009, doi: 10.3390/s90907398. DOI: https://doi.org/10.3390/s90907398
[6] T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Mold-ing of Chalcogenide Glass (ChG) for Infrared Optics”, Micromachines, vol. 9, no. 7, pp. 337-357, Jul. 2018, doi: 10.3390/mi9070337. DOI: https://doi.org/10.3390/mi9070337
[7] H. Truckenbrodt, A. Duparre, and U. Schuhmann, “Roughness and defect characteriza-tion of optical surfaces by light-scattering measurements”, SPIE, Specification and Measurement of Optical Systems, vol.1971, pp.139-151, Jan. 1993, doi: 10.1117/12.141001. DOI: https://doi.org/10.1117/12.141001
[8] M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings”, Appl. Phys. B, vol. 80, no. 8, pp. 1007–1010, Jun. 2005, doi: 10.1007/s00340-005-1808-3. DOI: https://doi.org/10.1007/s00340-005-1808-3
[9] L. Wang, K. Zhang, Z. Song, and S. Feng, “Ceria concentration effect on chemical me-chanical polishing of optical glass”, Applied Surface Science, vol. 253, no. 11, pp. 4951–4954, Mar. 2007, doi: 10.1016/j.apsusc.2006.10.074. DOI: https://doi.org/10.1016/j.apsusc.2006.10.074
[10] C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass”, Sensors and Ac-tuators A, vol. 143, no.1, pp. 154-161, Nov. 2007, doi: 10.1016/j.sna.2007.11.022. DOI: https://doi.org/10.1016/j.sna.2007.11.022
[11] A. Krishnan and F. Fang, “Review on mechanism and process of surface polishing using lasers”, Front. Mech. Eng., vol. 14, no. 3, pp. 299–319, Sep. 2019, doi: 10.1007/s11465-019-0535-0. DOI: https://doi.org/10.1007/s11465-019-0535-0
[12] T. Zhou, Q. Zhou, J. Xie, X. Liu, X. Wang, and H. Ruan, “Surface defect analysis on formed chalcogenide glass Ge22Se58As20 lenses after the molding process”, Appl. Opt., vol. 56, no. 30, pp. 8394-8402, Oct. 2017, doi: 10.1364/AO.56.008394. DOI: https://doi.org/10.1364/AO.56.008394
[13] H. A. Macleod, “Recent developments in deposition techniques for optical thin films and coatings”, in Optical Thin Films and Coatings, Elsevier, pp. 3–23. 2018, doi: 10.1016/B978-0-08-102073-9.00001-1. DOI: https://doi.org/10.1016/B978-0-08-102073-9.00001-1
[14] G. Womack, K. Isbilir, F. Lisco, G. Durand, A. Taylor, and J. M. Walls, “The perfor-mance and durability of single-layer sol-gel anti-reflection coatings applied to solar mod-ule cover glass”, Surface and Coatings Technology, vol. 358, pp. 76–83, Jan. 2019, doi: 10.1016/j.surfcoat.2018.11.030. DOI: https://doi.org/10.1016/j.surfcoat.2018.11.030
[15] A. Marouani, N. Bouaouadja, Y. Castro, and A. Durán, “Repair and Restoration of the Optical Properties of Sandblasted Glasses By Silica‐Based Sol‐Gel Coatings”, Int J of Appl Glass Sci, vol. 6, no. 1, pp. 94–102, Mar. 2015, doi: 10.1111/ijag.12088. DOI: https://doi.org/10.1111/ijag.12088
[16] P. E. Oettinger, “Liquid coatings to decrease laser-induced surface damage in proustite”, Optics Communications, vol. 13, no. 4, pp. 431–434, Apr. 1975, doi: 10.1016/0030-4018(75)90139-X. DOI: https://doi.org/10.1016/0030-4018(75)90139-X
[17] A. R. Chraplyvy, “Liquid surface coating for optical components used in high power laser applications”, Appl. Opt., vol. 16, no. 9, pp. 2491–2494, Sep. 1977, doi: 10.1364/AO.16.002491. DOI: https://doi.org/10.1364/AO.16.002491
[18] H. Zhao, L. O. Prieto‐López, X. Zhou, X. Deng, and J. Cui, “Multistimuli Responsive Liquid‐Release in Dynamic Polymer Coatings for Controlling Surface Slipperiness and Optical Performance”, Adv Materials Inter, vol. 6, no. 20, p. 1901028, Oct. 2019, doi: 10.1002/admi.201901028. DOI: https://doi.org/10.1002/admi.201901028
[19] Liu Zhuo, Yang Xiaojing, Xie Qiming, Yang Weisheng, and Wang Xueying, “Research Progress of Infrared Optical Thin Filmson Chalcogenide Glass Substrates”, Laser Op-toelectron. vol. 59, no. 21, p. 2100003, Nov. 2022, doi: 10.3788/LOP202259.2100003. DOI: https://doi.org/10.3788/LOP202259.2100003
[20] K. M. Khajurivala, “Erosion resistant anti-reflection coating for ZnSe, CZnS, chalco-genide, and glass substrates”, SPIE Defense, Security, and Sensing, vol. 8012, p.801242, May 2011, p. 801242. doi: 10.1117/12.896905. DOI: https://doi.org/10.1117/12.896905
[21] J. H. Lee, H. Kim, W. H. Lee, M. C. Kwon, and Y. G. Choi, “Surface modification of chalcogenide glass for diamond-like-carbon coating”, Applied Surface Science, vol. 478, pp. 802–805, Jun. 2019, doi: 10.1016/j.apsusc.2019.02.043. DOI: https://doi.org/10.1016/j.apsusc.2019.02.043
[22] C.-S. Park et al. “Effect of boron and silicon doping on the surface and electrical proper-ties of diamond like carbon films by magnetron sputtering technique”, Surface & Coat-ings Technology, vol.213, pp. 131–134, Sep. 2013, doi: 10.1016/j.surfcoat.2012.01.014. DOI: https://doi.org/10.1016/j.surfcoat.2012.01.014
[23] L.R. Robichaud et al., “High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source”, Optics Express, vol.28, no. 1, pp. 107–115, Jan. 2020, doi: https://doi.org/10.1364/OE.380737. DOI: https://doi.org/10.1364/OE.380737
[24] S. S. Flaschen, A. D. Pearson, and W. R. Northover, “Low Melting Sulfide-Halogen In-organic Glasses”, Journal of Applied Physics, vol. 31, no. 1, pp. 219–220, Jan. 1960, doi: 10.1063/1.1735409. DOI: https://doi.org/10.1063/1.1735409
[25] J. C. Stover, M. L. Bernt, and E. L. Church, "Measurement and analysis of scatter from rough surfaces", Stray Radiation in Optical Systems III, vol. 2260, pp. 40–49, Oct. 1994, doi: https://doi.org/10.1117/12.189225. DOI: https://doi.org/10.1117/12.189225
[26] Hongze Wang et al., “A model to calculate the laser absorption property of actual sur-face”, International Journal of Heat and Mass Transfer, vol. 118, pp. 562–569, Mar, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.11.023. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.023
[27] A. I. Lvovsky, “Fresnel Equations”, Encyclopedia of Optical and Photonic Engineering (Print) - Five Volume Set, 2nd ed., Boca Raton: CRC Press, 2015, pp. 838–843. doi: 10.1081/E-EOE2-120047133. DOI: https://doi.org/10.1081/E-EOE2-120047133
[28] M. Jarmila et al., “Optical Absorption in Si:H Thin Films: Revisiting the Role of the Re-fractive Index and the Absorption Coefficient”, Coatings, vol. 11, no. 1081, pp.1–10, Sep, 2021, doi: 10.3390/coatings11091081. DOI: https://doi.org/10.3390/coatings11091081
[29] Y. Wang et al., “Impacts of hydroxyl and bond energy on laser-induced damage in mid-infrared chalcogenide glass.”, J Am Ceram Soc., vol. 274, no. 1-2, pp.100–105, Nov, 2024, doi: 10.1111/jace.20256. DOI: https://doi.org/10.1111/jace.20256
[30] M. N. Ozisik, “A Heat/Mass Analogy for Fission-Product Deposition from Gas Streams”, Nuclear Science and Engineering, vol. e20256, pp. 1 - 8, Jun. 1964, doi: 10.13182/NSE64-A28905. DOI: https://doi.org/10.13182/NSE64-A28905
[31] S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation”, Laser-induced Damage in optical Materials. vol. 7132, pp. 7132J-1-28. 2008, doi: 10.1117/12.804499. DOI: https://doi.org/10.1117/12.804499
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Keke Chen, Xiange Wang, Yuyang Wang, Kai Jiao, Wei Tang, Xiang Shen, Shixun Dai, Qiuhua Nie, Rongping Wang, Pingxue Li, Vladimir Shiryaeve, Xunsi Wang

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-01-09
Published 2025-02-03
Funding data
-
National Natural Science Foundation of China
Grant numbers U22A2085;61705091;62205163 -
Natural Science Foundation of Zhejiang Province
Grant numbers LY24F050002 -
Zhejiang Provincial Ten Thousand Plan for Young Top Talents
-
K. C. Wong Magna Fund in Ningbo University