Overheating-Dependent Heterogeneous Crystal Nucleation in a Lithium Disilicate Melt
DOI:
https://doi.org/10.52825/glass-europe.v3i.2563Keywords:
Overheating, Heterogeneous Crystal Nucleation, Lithium Disilicate GlassAbstract
The influence of thermal history on the kinetics of liquid-solid transformations is investigated for heterogeneous crystal nucleation near the liquidus temperature in a melt with lithium disilicate composition in contact with a PtRh10 carrier. It is shown that the achieved undercooling depends on the preceding superheating protocol. This is explained by a distribution of nano-sized cavities on the surface of the precious metal, in which crystalline clusters can persist above the liquidus temperature for a characteristic time. In series of different surface quality of the PtRh10 carrier and for air purging, these times are in the range of 5-20 s, which seems relatively long compared to metallic melts, where this phenomenon was first observed in the millisecond range. The high viscosity of the silicate melt at the liquidus temperature is discussed as the reason for the difference in the persistence time.
Downloads
References
D. Turnbull, “Kinetics of heterogeneous nucleation”, J. Chem. Phys., vol. 18, pp. 198–203, 1950, doi: https://doi.org/10.1063/1.1747588.
H. Y. Tong and F. G. Shi, “Abrupt discontinuous relationships between supercooling and melt overheating”, Appl. Phys. Lett., vol. 70, pp. 841–843, 1997, doi: https://doi.org/10.1063/1.118220.
B. Yang, J. H. Perepezko, J. W. P. Schmelzer, Y. Gao, and C. Schick, “Dependence of crystal nucleation on prior liquid overheating by differential fast scanning calorimeter”, J. Chem. Phys., vol. 140, Art. no.104513, 2014, doi: https://doi.org/10.1063/1.4868002.
S. Li, L. Zhang, B. Zhao, K. Ding, and Y. Gao, “Cooling rate and roughness dependence of the undercooling for one single Sn droplet with Si thin film substrate by nanocalorime-try”, in: Characterization of minerals, metals, and materials 2022, Springer, 2022, pp. 305–314, doi: https://doi.org/10.1007/978-3-030-92373-0_29.
Q. Mei and J. Li, “Dependence of liquid supercooling on liquid overheating levels of Al small particles”, Mater., vol. 9, Art. no. 7, 2015, doi: https://doi.org/10.3390/ma9010007.
W. L. Webster, “Phenomena occuring in the melting of metals”, Procs. Royal Soc. Lon-don. Ser. A., vol. 140, pp. 653–660, 1933, https://doi.org/10.1098/rspa.1933.0094.
J. Wang, Y. He, J. Li, R. Hu, H. Kou, and E. Beaugnon, “Overheating dependent under-cooling in a hypoeutectic Co–B alloy”, Mater. Chem. Phys., vol. 149, pp. 17–20, 2015, doi: https://doi.org/10.1016/j.matchemphys.2014.11.010.
X. H. Lin, W. L. Johnson, and W. K. Rhim, “Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr–Ti–Cu–Ni–Al alloy”, Mater. Transact., vol. 38, pp. 473–477, 1997, doi: https://doi.org/10.2320/matertrans1989.38.473.
S. Mukherjee, Z. Zhou, J. Schroers, W. L. Johnson, and W. K. Rhim, “Overheating threshold and its effect on time–temperature-transformation diagrams of zirconium based bulk metallic glasses”, Appl. Phys. Lett., vol. 84 pp. 5010–5012, 2004, doi: https://doi.org/10.1063/1.1763219.
U. Dahlborg, M. Calvo-Dahlborg, P. S. Popel, V. E. Sidorov, “Structure and properties of some glass-forming liquid alloys”, Eur. Phys. Jour. B, vol. 14, pp. 639–648, 2000, doi: https://doi.org/10.1007/s100510051073.
D. G. Burnett and R. W. Douglas, “Nucleation and crystallisation in the sodia-baria-silica system”, Phys. Chem. Glasses, vol. 12, pp. 117–124, 1971.
S. Krüger and J. Deubener, “Stochastic nature of the liquid-to-crystal heterogeneous nucleation of supercooled lithium disilicate liquid”, J. Non-Cryst. Solids, vol. 388, pp. 6–9, 2014, doi: https://doi.org/10.1016/j.jnoncrysol.2014.01.036.
S. Krüger and J. Deubener, “The TTT curves of the heterogeneous and homogeneous crystallization of lithium disilicate – a stochastic approach to crystal nucleation”, Front. Mater., vol. 3, Art. no. 42, 2016, doi: https://doi.org/10.3389/fmats.2016.00042.
R. Al-Mukadam and J. Deubener, “Effects of cooling rate and oxygen partial pressure on heterogeneous crystal nucleation of supercooled lithium disilicate melt in PtRh20 containers”, J. Non. Cryst. Solids, vol. 524, Art. no. 119642, 2019, doi: https://doi.org/10.1016/j.jnoncrysol.2019.119642.
R. Al-Mukadam and J. Deubener, “Heterogeneous crystal nucleation of supercooled lithium disilicate melt in glassy carbon containers”, J. Non-Cryst. Solids, vol. 571, Art. no. 121068, 2021, doi: https://doi.org/10.1016/j.jnoncrysol.2021.121068.
F. C. Kracek, “The binary system lithium oxide-silica”, J. Phys. Chem., vol. 34, pp. 2641–2650, 1930, doi: https://doi.org/10.1021/j150318a001.
B. Konar, M. A. Van Ende, and I. H. Jung, “Critical evaluation and thermodynamic op-timization of the Li-O, and Li2O-SiO2 systems”, J. Eur. Ceram. Soc., vol. 37, pp. 2189–2207, 2017, doi: http://dx.doi.org/10.1016/j.jeurceramsoc.2016.12.041.
L. Ueberricke, T. Murata, H. Ikeda, S. Nakane, and J. Deubener, “Crystal growth in ox-ide melts – From CALPHAD thermodynamic modeling to statistical prediction”, Acta Mater., vol. 273, Art. no. 119960, 2024, doi: https://doi.org/10.1016/j.actamat.2024.119960.
T. Murata, S. Nakane, H. Yamazaki, R. Al-Mukadam, and J. Deubener, “Heterogene-ous crystal nucleation, viscosity and liquidus temperature in the system lithium metasili-cate–lithium disilicate”, J. Non-Cryst. Solids. vol. 605, Art. no. 122170, 2023, doi: https://doi.org/10.1016/j.jnoncrysol.2023.122170.
S. A. Brawer and W. B. White, “Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates”, J. Chem. Phys., vol. 63, pp. 2421–2432, 1975, doi: https://doi.org/10.1063/1.431671.
V. Devarajan and H.F. Shurvell, “Vibrational spectra and normal coordinate analysis of crystalline lithium metasilicate”, Can. J. Chem., vol. 55, pp. 2559–2563, 1977, doi: https://doi.org/10.1139/v77-353.
P. Richet, B. O. Mysen, and D. Andrault, “Melting and premelting of silicates: Raman spectroscopy and X-ray diffraction of Li2SiO3 and Na2SiO3”, Phys. Chem. Mineral., vol. 23, pp. 157–172, 1996, doi: https://doi.org/10.1007/BF00220727.
J. Deubener and J. W. P. Schmelzer, “Statistical approach to crystal nucleation in glass-forming liquids”, Entropy, vol. 23, Art. no. 246, 2021, doi: https://doi.org/10.3390/e23020246
M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin”, J. Phys. Chem. Ref. Data, vol. 39, Art. no. 033105, 2010, doi: https://doi.org/10.1063/1.3467496.
J. Deubener and R. Brückner, “Influence of nucleation and crystallization on the rheo-logical properties of lithium disilicate melts”, J. Non-Cryst. Solids, vol. 209, pp. 96–111, 1997, doi: https://doi.org/10.1016/S0022-3093(96)00554-6.
J. W. Edwards, R. Speiser, and H. L. Johnston, “High temperature structure and ther-mal expansion of some metals as determined by x-ray diffraction data. i. platinum, tan-talum, niobium, and molybdenum”, J. Appl. Phys., vol. 22, pp. 424–428, 1951, doi: https://doi.org/10.1063/1.1699977
M. O. C. Villas-Boas, F. C. Serbena, V. O. Soares, I. Mathias and E. D. Zanotto, “Re-sidual stress effect on the fracture toughness of lithium disilicate glass-ceramics”, J. Am. Ceram. Soc., 103 (2020), pp. 465-479, doi: https://doi.org/10.1111/jace.16664.
M. Tashiro, S. Sukenaga, and H. Shibata, “Control of crystallization behaviour of super-cooled liquid composed of lithium disilicate on platinum substrate”, Sci. Rep., vol. 7, art-no. 6078, 2017, doi: https://doi.org/10.1038/s41598-017-06306-9.
A. Undisz, U. Zeigmeister, M. Rettenmayr, and M. Oechsle, “On the mechanism of internal oxidation in platinum–zirconium alloys A TEM study”, J. Alloys Comp., vol. 438 pp. 178–183, 2007, doi: https://doi.org/10.1016/j.jallcom.2006.08.036.
J. V. Pearce, “Optimising platinum-rhodium thermocouple wire composition to minimise composition change due to evaporation of oxides”, Johnson Matthey Technol. Rev., vol. 60, pp. 238–242, 2016, doi: http://dx.doi.org/10.1595/205651316X692662.
B. Fischer, “New platinum materials for high temperature applications”, Adv. Eng. Ma-ter., vol. 3, pp. 811–820, 2001, doi: https://doi.org/10.1002/1527-2648(200110)3:10<811::AID-ADEM811>3.0.CO;2-%23.
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Raschid Al-Mukadam, Tetsuya Murata, Shingo Nakane, Hiroki Yamazaki, Joachim Deubener

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-04-14
Published 2025-05-08