Sintering and Crystallization of Fluoride-Containing Bioactive Glass F3
DOI:
https://doi.org/10.52825/glass-europe.v3i.2564Keywords:
Bioactive Glass, Sintering, CrystallizationAbstract
The fluoride-containing bioactive glass F3 with nominal composition (mol%) 44.8 SiO2 - 2.5 P2O3 - 36.5 CaO - 6.6 Na2O - 6.6 K2O - 3.0 CaF2 is a highly promising candidate for bone replacement applications. Its strong crystallization tendency, however, requires a thorough understanding of the interplay between glass powder particle size, surface crystallization, and sintering. Therefore, this study characterizes the sintering and crystallization of bulk specimens and various particle size fractions by differential thermal-analysis, laser scanning, electron microscopy, X-ray diffraction, and Infrared spectroscopy. Particle size fractions < 56 µm were found to fully densify, while crystals growing from the glass particle surface retard sintering of coarser fractions. Small amounts of a non-stoichiometrically calcium phosphosilicate (Ca14.92(PO4)2.35(SiO4)5.65) occurs as the primary crystal phase followed by combeite (Na4Ca4[Si6O18]) as a temporarily dominating phase. The surface crystallization of both phases was found to be mainly responsible for sinter retardation. During later stages of crystallization, additional phases such as cuspidine (Ca4F2Si2O7) and silicorhenanite (Na2Ca4(PO4)2SiO4) occur, but finally monoclinic wollastonite (CaSiO3) forms as the dominant phase.
Downloads
References
Brauer, D.S., Bioactive Glasses—Structure and Properties. Angewandte Chemie International Edition, 2015. 54(14): p. 4160-4181 DOI: https://doi.org/10.1002/anie.201405310.
Brauer, D.S., et al., Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomaterialia, 2010. 6(8): p. 3275-3282 DOI: https://doi.org/10.1016/j.actbio.2010.01.043.
Brauer, D.S., M. Mneimne, and R.G. Hill, Fluoride-containing bioactive glasses: Fluoride loss during melting and ion release in tris buffer solution. Journal of Non-Crystalline Solids, 2011. 357(18): p. 3328-3333 DOI: https://doi.org/10.1016/j.jnoncrysol.2011.05.031.
Lusvardi, G., et al., Fluoride-containing bioactive glasses: Surface reactivity in simulated body fluids solutions. Acta Biomaterialia, 2009. 5(9): p. 3548-3562 DOI: https://doi.org/10.1016/j.actbio.2009.06.009.
Nommeots-Nomm, A., et al., Phosphate/oxyfluorophosphate glass crystallization and its impact on dissolution and cytotoxicity. Materials Science and Engineering: C, 2020. 117: p. 111269 DOI: https://doi.org/10.1016/j.msec.2020.111269.
Featherstone, J.D.B., The science and practice of caries prevention. Journal of the American Dental Association, 2000. 131(7): p. 887-899 DOI: https://doi.org/10.14219/jada.archive.2000.0307.
Mneimne, M., et al., High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomaterialia, 2011. 7(4): p. 1827-1834 DOI: https://doi.org/10.1016/j.actbio.2010.11.037.
Gineste, L., et al., Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. Journal of Biomedical Materials Research, 1999. 48(3): p. 224-234 DOI: https://doi.org/10.1002/(SICI)1097-4636(1999)48:3<224::AID-JBM5>3.0.CO;2-A.
Qu, H. and M. Wei, Effect of fluorine content on mechanical properties of sintered fluoridated hydroxyapatite. Materials Science and Engineering: C, 2006. 26(1): p. 46-53 DOI: https://doi.org/10.1016/j.msec.2005.06.005.
Lammers, P.C., et al., Influence of Fluoride and Carbonate on Invitro Remineralization of Bovine Enamel. Journal of Dental Research, 1991. 70(6): p. 970-974 DOI: https://doi.org/10.1177/00220345910700061201.
Moreno, E.C., M. Kresak, and Zahradni.Rt, Fluoridated Hydroxyapatite Solubility and Caries Formation. Nature, 1974. 247(5435): p. 64-65 DOI: https://doi.org/10.1038/247064a0.
Aaseth, J., et al., Fluoride: A toxic or therapeutic agent in the treatment of osteoporosis? The Journal of Trace Elements in Experimental Medicine, 2004. 17(2): p. 83-92 DOI: https://doi.org/10.1002/jtra.10051.
Vestergaard, P., et al., Effects of treatment with fluoride on bone mineral density and fracture risk - a meta-analysis. Osteoporosis International, 2008. 19(3): p. 257-268 DOI: https://doi.org/10.1007/s00198-007-0437-6.
Groh, D., F. Doehler, and D.S. Brauer, Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. Acta Biomaterialia, 2014. 10(10): p. 4465-4473 DOI: https://doi.org/10.1016/j.actbio.2014.05.019.
Blaeß, C., et al., Sintering and concomitant crystallization of bioactive glasses. International Journal of Applied Glass Science, 2019. 10(4): p. 449-462 DOI: https://doi.org/10.1111/ijag.13477.
Hench, L.L., The story of Bioglass (R). Journal of Materials Science-Materials in Medicine, 2006. 17(11): p. 967-978 DOI: https://doi.org/10.1007/s10856-006-0432-z.
Nawaz, Q., et al., Processing and cytocompatibility of Cu-doped and undoped fluoride-containing bioactive glasses. Open Ceramics, 2024. 18: p. 100586 DOI: https://doi.org/10.1016/j.oceram.2024.100586.
Doehler, F., et al., Bioactive glasses with improved processing. Part 2. Viscosity and fibre drawing. Journal of Non-Crystalline Solids, 2016. 432: p. 130-136 DOI: https://doi.org/10.1016/j.jnoncrysol.2015.03.009.
Blaeß, C. and R. Müller, Sintering and foaming of bioactive glasses. Journal of the American Ceramic Society, 2022. 105(11): p. 6616-6626 DOI: https://doi.org/10.1111/jace.18626.
Filho, O.P., G.P. La Torre, and L.L. Hench, Effect of crystallization on apatite-layer formation of bioactive glass 45S5. Journal of Biomedical Materials Research, 1996. 30(4): p. 509-514 DOI: https://doi.org/10.1002/(sici)1097-4636(199604)30:4<509::aid-jbm9>3.0.co;2-t.
Zandi Karimi, A., E. Rezabeigi, and R.A.L. Drew, Crystallization behavior of combeite in 45S5 Bioglass® via controlled heat treatment. Journal of Non-Crystalline Solids, 2018. 502: p. 176-183 DOI: https://doi.org/10.1016/j.jnoncrysol.2018.09.003.
Bretcanu, O., et al., Sintering and crystallisation of 45S5 Bioglass® powder. Journal of the European Ceramic Society, 2009. 29(16): p. 3299-3306 DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.06.035.
Bose, S., et al., Additive manufacturing of biomaterials. Progress in Materials Science, 2018. 93: p. 45-111 DOI: https://doi.org/10.1016/j.pmatsci.2017.08.003.
Fernandes, H.R., et al., Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. Materials, 2018. 11(12): p. 2530 DOI: https://doi.org/10.3390/ma11122530.
Ohsato, H., I. Maki, and Y. Takeuchi, Structure of Na2CaSi2O6. Acta Crystallographica Section C-Crystal Structure Communications, 1985. 41(Nov): p. 1575-1577 DOI: https://doi.org/10.1107/S0108270185008617.
Agea-Blanco, B., S. Reinsch, and R. Müller, Sintering and Foaming of Barium Silicate Glass Powder Compacts. Frontiers in Materials, 2016. 3: p. 10 DOI: https://doi.org/10.3389/fmats.2016.00045.
Saalfeld, H. and K.H. Klaska, The Crystal-Structure of 6 Ca2SiO4 · 1 Ca3(PO4)2. Zeitschrift Fur Kristallographie, 1981. 155(1-2): p. 65-73 DOI: https://doi.org/10.1524/zkri.1981.155.1-2.65.
Arrhenius, S., Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Physikalische Chemie, 1889. 4U(1): p. 226-248 DOI: https://doi.org/10.1515/zpch-1889-0416.
Holand, M., et al., Microstructure formation and surface properties of a rhenanite-type glass-ceramic containing 6.0 wt% P2O5. Glass Science and Technology (Frankfurt), 2005. 78(4): p. 153-158.
Höland, W. and G.H. Beall, Glass Ceramic Technology. 2012, Westerville, OH, USA: John Wiley & Sons. 448 ISBN: 9780470487877.
Brauer, D.S., et al., Structure of fluoride-containing bioactive glasses. Journal of Materials Chemistry, 2009. 19(31): p. 5629-5636 DOI: https://doi.org/10.1039/B900956F.
Mumme, W.G., L.M.D. Cranswick, and B.C. Chakoumakos, Rietveld crystal structure refinements from high temperature neutron powder diffraction data for the polymorphs of dicalcium silicate. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 1996. 170(2): p. 171-188.
Yamnova, N.A., et al., Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallography Reports, 2011. 56(2): p. 210-220 DOI: https://doi.org/10.1134/S1063774511020209.
Baek, J.-Y., et al., Glass structure and crystallization via two distinct thermal histories: Melt crystallization and glass crystallization. Journal of the European Ceramic Society, 2021. 41(1): p. 831-837 DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.08.036.
Ohsato, H., Y. Takeuchi, and I. Maki, Structure of Na4Ca4[Si6O18]. Acta Crystallographica Section C, 1986. 42(8): p. 934-937 DOI: https://doi.org/10.1107/S0108270186093940.
Kahlenberg, V., Concerning the incorporation of potassium in the crystal structure of combeite (Na2Ca2Si3O9). Mineralogy and Petrology, 2023. 117(2): p. 293-306 DOI: https://doi.org/10.1007/s00710-022-00801-2.
Coon, E., et al., Viscosity and crystallization of bioactive glasses from 45S5 to 13-93. International Journal of Applied Glass Science, 2021. 12(1): p. 65-77 DOI: https://doi.org/10.1111/ijag.15837.
Ohashi, Y., Polysynthetically-Twinned Structures of Enstatite and Wollastonite. Physics and Chemistry of Minerals, 1984. 10(5): p. 217-229 DOI: https://doi.org/10.1007/Bf00309314.
Müller, R., et al., Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants. Advanced Engineering Materials, 2022. 24(6) DOI: https://doi.org/10.1002/adem.202100445.
Möncke, D., et al., NaPO3-AlF3 glasses: Fluorine evaporation during melting and the resulting variations in structure and properties. Journal of Chemical Technology and Metallurgy 2018. 53: p. 1047-1060.
Bueno, L.A., et al., Study of fluorine losses in oxyfluoride glasses. Journal of Non-Crystalline Solids, 2005. 351(52): p. 3804-3808 DOI: https://doi.org/10.1016/j.jnoncrysol.2005.10.007.
Szczodra, A., et al., Fluorine losses in Er3+ oxyfluoride phosphate glasses and glass-ceramics. Journal of Alloys and Compounds, 2019. 797: p. 797-803 DOI: https://doi.org/10.1016/j.jallcom.2019.05.151.
de Pablos-Martín, A., et al., Fluorine loss determination in bioactive glasses by laser-induced breakdown spectroscopy (LIBS). International Journal of Applied Glass Science, 2021. 12(2): p. 213-221 DOI: https://doi.org/10.1111/ijag.15867.
Qi, Q., et al., [Stability of CaF2 at high temperature]. Huan Jing Ke Xue, 2002. 23(3): p. 111-4.
Müller, R. and S. Reinsch, Viscous phase silicate processing, in Ceramics and composites processing methods, N. Bansal and A.R. Boccaccini, Editors. 2012, John Wiley Sons Inc.: Hoboken, NJ. p. 75-144 ISBN: 978-0-470-55344-2.
Müller, R., On the kinetics of sintering and crystallization of glass powders. Glastechnische Berichte-Glass Science and Technology, 1994. 67C: p. 93-98.
Muller, R., The Influence of Grain-Size on the Overall Kinetics of Surface-Induced Glass Crystallization. Journal of Thermal Analysis and Calorimetry, 1989. 35(3): p. 823-835 DOI: https://doi.org/10.1007/Bf02057238.
Gutzow, I., et al., The kinetics of surface induced sinter crystallization and the formation of glass-ceramic materials. Journal of Materials Science, 1998. 33(21): p. 5265-5273 DOI: https://doi.org/10.1023/A:1004400508154.
Karamanov, A. and M. Pelino, Sinter-crystallization in the diopside-albite system part II. Kinetics of crystallization and sintering. Journal of the European Ceramic Society, 2006. 26(13): p. 2519-2526 DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.12.007.
Muller, R., E.D. Zanotto, and V.M. Fokin, Surface crystallization of silicate glasses: nucleation sites and kinetics. Journal of Non-Crystalline Solids, 2000. 274(1-3): p. 208-231 DOI: https://doi.org/10.1016/S0022-3093(00)00214-3.
Liu, X., M.N. Rahaman, and Q. Fu, Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects. Acta Biomaterialia, 2013. 9(1): p. 4889-4898 DOI: https://doi.org/10.1016/j.actbio.2012.08.029.
Wang, Q.B., Q.G. Wang, and C.X. Wan, Effect of sintering time on the microstructure and properties of inorganic polyphosphate bioceramics. Science of Sintering, 2010. 42(3): p. 337-343 DOI: https://doi.org/10.2298/sos1003337w.
Schaefer, S., et al., How Degradation of Calcium Phosphate Bone Substitute Materials is influenced by Phase Composition and Porosity. Advanced Engineering Materials, 2011. 13(4): p. 342-350 DOI: https://doi.org/10.1002/adem.201000267.
Jones, J.R., Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2013. 9(1): p. 4457-4486 DOI: https://doi.org/10.1016/j.actbio.2012.08.023.
Plewinski, M., et al., The effect of crystallization of bioactive bioglass 45S5 on apatite formation and degradation. Dental Materials, 2013. 29(12): p. 1256-1264 DOI: https://doi.org/10.1016/j.dental.2013.09.016.
Boccaccini, A.R., et al., Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass-ceramics. Faraday Discussions, 2007. 136: p. 27-44 DOI: https://doi.org/10.1039/b616539g.
Kirste, G., et al., Bioactive glass–ceramics containing fluorapatite, xonotlite, cuspidine and wollastonite form apatite faster than their corresponding glasses. Scientific Reports, 2024. 14(1): p. 3997 DOI: https://doi.org/10.1038/s41598-024-54228-0.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Carsten Blaeß, Aldo Roberto Boccaccini, Ralf Müller

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-04-22
Published 2025-05-21
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers MU 963/18-1;BO 1119/29-1;BL 1936/1-1