Long-Range Transformations During Crystallization in Solid and Softening Glass
DOI:
https://doi.org/10.52825/glass-europe.v3i.2569Keywords:
Glass, Self-Organization, Crystallization, Nucleation, Pre-Nucleation Phenomena, Non-Crystalline Long-Range Order, Cavitation TreatmentAbstract
The glassy state is considered as a result of self-organization in the form of the bond wave which stipulates a hierarchical structure up to the non-crystalline long-range order characterized by the bond wave length and the wave direction. The model is tested using original experiment of the cavitation-assisted crystallization with a special attention to the pre-nucleation stages observed by means of IR-spectroscopy and SEM. As a result, a three-step model for crystallization in glass is proposed based on the macroscopically extended 2D wavefronts as nuclei. The model is compared with classical nucleation theory and contemporary trends in glass science concerning intrinsic heterogeneity, both structural and dynamical.
Downloads
References
[1] J. C. Dyre., “Colloquium: The glass transition and elastic models of glass-forming liq-uids”, Rev. Mod. Phys., vol. 78, pp. 953-972, 2006, doi: 10.1103/RevModPhys.78.953.
[2] D. Turnbull and M. H. Cohen, “Concerning reconstructive transformation and formation of glass”, J. Chem. Phys., vol. 29, pp. 1049-1054, 1958, doi: 10.1063/1.1744654.
[3] M. C. Weinberg, D. R. Uhlmann and E. D. Zanotto, “Nose method of calculating critical cooling rates for glass formation”, J. Amer. Ceram. Soc., vol. 72, pp. 2054-2058, 1989, doi: 10.1111/j.1151-2916.1989.tb06030.x.
[4] S. Krüger and J. Deubener, “Lag time to crystal nucleation of supercooled lithium disili-cate melts: A test of the classical nucleation theory”, J. Non-Cryst. Sol., vol. 426, pp. 1-6, 2015, doi: 10.1016/j.jnoncrysol.2015.06.023.
[5] S. A. Dembovsky and E. A. Chechetkina, “Kinetico-themodynamic aspect of glass formation and critical cooling rates in chalcogenide systems”, Mater. Res. Bull., vol. 16, pp. 505-511, 1981, doi: 10.1016/0025-5408(81)90115-X.
[6] W. H. Zachariasen, “The atomic arrangement in glass”, J. Amer. Chem. Soc., vol. 54, pp. 3841-3851, 1932, doi: 10.1021/ja01349a006.
[7] J. C. Mauro. “Topological constraint theory of glass”, Amer. Ceram. Soc. Bull., vol. 90, pp. 31-35, 2011.
[8] P. Boolchand, G. Lucovsky, J. C. Phillips and M. F. Thorpe. “Self-organization and the physics of glassy networks”, Philos. Mag., vol. 85, pp. 3823-3838, 2005, doi: 10.1080/14786430500256425.
[9] H. Haken. “Synergetics. An Introduction” (3rd ed.), Springer, Berlin-Heidelberg, 1983.
[10] R. Feistel and W. Ebeling. “Physics of Self-Organization and Evolution”, Wiley-VCH, Berlin, 556 pp., 2011.
[11] E. A. Chechetkina, “Self-organization in glass: The synergetic chemical bonding ap-proach”, J. Optoel. Adv. Mater., vol. 18, pp. 44-49, 2016.
[12] E. A. Chechetkina, “Glass clarified as the self-organizing system”, arXiv, 2024, doi: 10.48550/arXiv.2405.00346.
[13] E. A. Chechetkina, “Viscous flow in glass-forming liquids: The twice activation analysis and the bond wave mode”, arXiv, 2025, doi:10.48550/arXiv.2509.11211.
[14] E. A. Chechetkina, E. V. Kisterev, E. B. Kryukova and A. I. Vargunin, “Crystallization of Se-As glasses in ultrasonic field according to optical transmission data”, Inorg. Mater.: Appl. Res., vol. 2, pp. 360-369, 2011, doi: 10.1134/S2075113311040046.
[15] E. A. Chechetkina, E. V. Kisterev, E. B. Kryukova, A. I. Vargunin and S. A. Dembov-sky, “Preparation of chalcogenide glass-ceramic materials by ultrasonic treatment of glasses”, Inorg. Mater.: Appl. Res., vol. 3, pp. 11-17, 2012, doi: 10.1134/S2075113312010030.
[16] A. A. Vaipolin and E. A. Porai-Koshits, “X-ray study of glassy arsenic chalcogenides”, Fiz. Tverd. Tela (Russ. Solid State Phyz.), vol. 5, pp. 246-255, 1963.
[17] S. R. Elliott, “Medium-range structural order in covalent amorphous solids”, Nature, vol. 354, pp. 445-452, 1991, doi: 10.1038/354445a0.
[18] C. Massobrio and A. Pasquarello, “Origin of the first sharp diffraction peak in the struc-ture factor of disordered network-forming systems: Layers or voids?”, J. Chem. Phys., vol. 114, pp. 7976-7979, 2001, doi: 10.1063/1.1365108.
[19] E. A. Chechetkina, “Rawson’s criterion and intermolecular interactions in glass-forming melts”, J. Non-Cryst. Sol. vol. 128, pp. 30-47, 1991, doi: 10.1016/0022-3093(91)90774-z.
[20] E. A. Chechetkina, “Medium-range order in amorphous substances: A modified layer model”, Solid State Commun., vol. 91, pp. 101-104, 1994, doi: 10.1016/0038-1098(94)90262-3.
[21] S. A. Dembovsky, “Connection of quasidefects with glass formation in the substances with high lone-pair concentration”, Mater. Res. Bull., vol. 16, pp. 1331-1338, 1981, doi: 10.1016/0025-5408(81)90105-7.
[22] S. A. Dembovsky and E. A. Chechetkina, “Glassy materials clarified through the eyes of hypervalent bonding configurations”, J. Optoel. Adv. Mater., vol. 3, pp. 3-18, 2001.
[23] E. A. Chechetkina, “Fracture and fractals in glasses”, MRS Proc., vol. 367, pp. 397-402, 1994, doi: 10.1557/proc-367-397.
[24] E. A. Chechetkina, “Crystallization in glass forming substances: The chemical bond approach”, In: Crystallization - Science and Technology (ed. M. R. D. Andreeta), InTech. pp.3-28, 2012, doi: 10.5772/50539.
[25] K. J. Siemsen and H. D. Riccius, “Multiphonon processes in amorphous selenium”, J. Phys. Chem. Sol., vol. 30, pp. 1897-1900, 1969, doi: 10.1016/0022-3697(69)90257-1.
[26] M. C. Assuncao, “Effect of halogen impurities on selenium glasses”, J. Non-Cryst. Sol., vol. 136, pp. 81-90, 1991, doi: 10.1016/0022-3093(91)90122-M.
[27] M. F. Churbanov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR”, J. Non-Cryst. Sol., vol. 140, pp. 324-330, 1992, doi: 10.1016/S0022-3093(05)80790-2.
[28] J. R. G. Sander, B. W. Zeiger and K. S. Suslick, “Sonocrystallization and sonofragmen-tation”, Ultrason. Sonochem., vol. 21, pp. 1908-1915, 2014, doi: 10.1016/ultrasonch.2014.02.005.
[29] N. S. Deora, N. N. Misra, A. Deswal, H. N. Mishra, P. J. Cullen and B. K. Tiwari, “Ultra-sound for improved crystallization in food processing”, Food. Eng. Rev., vol. 5, pp. 36-44, 2013, doi: 10.1007/s12393-012-9061-0.
[30] B. S. Lunin and A. L. Nikolaev, “Effect of ultrasonic treatment on the surface topogra-phy of quartz glass”, Inorg. Mater., vol. 59, pp. 306-310, 2023, doi: 10.1134/S0020168523030093.
[31] H. Haken and J. Portugali, “Information and self-organization: A unifying approach and applications”, Entropy, vol. 18, 197, pp. 1-57, 2016, doi: 10.3390/e18060197.
[32] A. Wurm, R. Soliman, J. G. P. Goossens, W. Bras, and C. Schick, “Evidence of pre-crystalline order in supercooled polymer melt revealed from simultaneous dielectric spectroscopy and SAXS”, J. Non-Cryst. Sol., vol. 351, pp. 2773-2779, 2005, doi: 10.1016/j.jnoncrysol.2005.04.072.
[33] L. Cormier, “Nucleation in glasses - new experimental findings and recent theories”, Pro. Mater. Sci., vol. 7, pp. 60-71, 2014, doi: 10.1016/ j.mspro.2014.10.009.
[34] H. Tanaka, “Structural origin on dynamic heterogeneity in supercooled liquid”, J. Phys. Chem. B, vol. 129, pp. 789-813, 2025, doi: 10.1021/acs.jpcb.4c06392.
[35] A. S. Abysov, V. M. Fokin, N. S. Yuritsyn, A. M. Rodrigues and J. W. P. Schmeltzer, “The effect of heterogeneous structure of glass-forming liquids on crystal nucleation”, J. Non-Cryst. Sol., vol.462, pp. 32-40, 2017, doi: 10.1016/j.jnoncrysol.2017.02.004.
[36] G. Adam and J. H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids”, J. Chem. Phys., vol. 43, pp. 139-146, 1965, doi: 10.1063/1.1696442.
[37] C. Russel and W. Wisniewski, “Glass-ceramic engineering: tailoring the microstructure and properties”, Prog. Mater. Sci., vol. 152, 101437, pp. 1-71, 2025, doi: 10.1016/j.pmatsci.2025.101437.
[38] E. A. Chechetkina, “Photostructural changes and electrical switching in amorphous chalcogenides: Bond waves in thin films”, Nat. Sci., vol. 10, pp. 70-80, 2018, doi: 10.4236/ns.2018.102007.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Elena Chechetkina

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-10-09
Published 2025-12-05
Funding data
-
Russian Foundation for Basic Research
Grant numbers 05-03-33047;09-03-01158