Optical, Structural, and Electrical Properties of TeO2 – Na2O – NaX Glasses (X = Cl, Br, I): Roles of Crucible Materials and Halides

Authors

DOI:

https://doi.org/10.52825/glass-europe.v3i.2575

Keywords:

Tellurite Glasses, Oxyhalides, Structure, Electrical Conductivity, Optical Properties

Abstract

Alkali tellurite glasses, which offer a broad glass-forming region along with large halide solubility, are excellent candidates as transparent conductive materials. TeO2 – Na2O – NaX (X = Cl, Br, I) glasses with halogen contents X ranging from 0 to 6 at. % (in total at. % of constituting elements Te, Na, O, and X) are investigated. Au crucibles alter their optical properties through the formation of inhomogeneously distributed gold nanoparticles. In contrast, alumina crucibles, despite undergoing a more severe dissolution, result in minor changes of the glasses’ structural and electrical properties. The electrical conductivity of such mixed anion glasses hinges on the mobility of the charge carriers (Na+ ions), and thus (i) on the bond strength of the Na-X bonds involved, as well as (ii) on the free volume within the glass network and consequently on the size of the anions. Accordingly, the electrical conductivity is found independent on the substitution rate for small halogens (X = Cl, Br), but increases up to threefold for large halogens (X = I).

Downloads

Download data is not yet available.

References

[1] Y. Mizuno, M. Ikeda, and A. Yoshida, "Application of tellurite bonding glasses to magnetic heads," J. Mater. Sci. Lett., vol. 11, no. 24, pp. 1653-1656, 1992, doi: 10.1007/BF00736198.

[2] R. El-Mallawany and M. Sayyed, "Comparative shielding properties of some tellurite glasses: Part 1," Phys. Rev. B Condens., vol. 539, pp. 133-140, 2018, doi: 10.1016/j.physb.2017.05.021.

[3] H. Cankaya and A. Sennaroglu, "Bulk Nd3+-doped tellurite glass laser at 1.37 μm," Appl. Phys. B, vol. 99, no. 1, pp. 121-125, 2010, doi: 10.1007/s00340-009-3752-0.

[4] I. V. Kityk et al., "Er–Pr doped tellurite glass nanocomposites for white light emitting diodes," Opt. Commun., vol. 285, no. 5, pp. 655-658, 2012, doi: 10.1016/j.optcom.2011.10.088.

[5] T. Arai, "The study of the optical properties of conducting tin oxide films and their interpretation in terms of a tentative band scheme," J. Phys. Soc. Jpn., vol. 15, no. 5, pp. 916-927, 1960, doi: 10.1143/JPSJ.15.916.

[6] Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, "Near‐infrared harvesting transparent luminescent solar concentrators," Adv. Opt. Mater., vol. 2, no. 7, pp. 606-611, 2014, doi: 10.1002/adom.201400103.

[7] D. J. Lipomi et al., "Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes," Nat. Nanotechnol., vol. 6, no. 12, pp. 788-792, 2011, doi: 10.1038/nnano.2011.184.

[8] Y. LeChasseur et al., "A microprobe for parallel optical and electrical recordings from single neurons in vivo," Nat. Methods, vol. 8, no. 4, pp. 319-325, 2011, doi: 10.1038/nmeth.1572.

[9] T. Gerfin and M. Grätzel, "Optical properties of tin‐doped indium oxide determined by spectroscopic ellipsometry," JAP, vol. 79, no. 3, pp. 1722-1729, 1996, doi: 10.1063/1.360960.

[10] C. Calahoo and L. Wondraczek, "Ionic glasses: Structure, properties and classification," J. Non-Cryst. Solids: X, p. 100054, 2020, doi: 10.1016/j.nocx.2020.100054.

[11] A. Levasseur, J.-C. Brethous, J.-M. Réau, and P. Hagenmuller, "Etude comparee de la conductivite ionique du lithium dans les halogenoborates vitreux," Mater. Res. Bull., vol. 14, no. 7, pp. 921-927, 1979, doi: 10.1016/0025-5408(79)90158-2.

[12] H. Jain, H. Downing, and N. Peterson, "The mixed alkali effect in lithium-sodium borate glasses," J. Non·Cryst. Solids, vol. 64, no. 3, pp. 335-349, 1984, doi: 10.1016/0022-3093(84)90187-X.

[13] S. W. Martin, "Ionic conduction in phosphate glasses," J. Am. Ceram. Soc., vol. 74, no. 8, pp. 1767-1784, 1991, doi: 10.1111/j.1151-2916.1991.tb07788.x.

[14] B. Poletto Rodrigues, R. Limbach, G. Buzatto de Souza, H. Ebendorff-Heidepriem, and L. Wondraczek, "Correlation between ionic mobility and plastic flow events in NaPO3-NaCl-Na2SO4 glasses," Front. Mater., vol. 6, p. 128, 2019, doi: 10.3389/fmats.2019.00128.

[15] P. C. Schultz and M. S. Mizzoni, "Anionic Conductivity in Halogen‐Containing Lead Silicate Glasses," J. Am. Ceram. Soc., vol. 56, no. 2, pp. 65-68, 1973, doi: 10.1111/j.1151-2916.1973.tb12359.x.

[16] A. Abd El‐Mongy, "Effect of halogen on the structure and ionic conductivity of silicate glasses," Phys. Status Solidi A, vol. 144, no. 1, pp. 17-22, 1994, doi: 10.1002/pssa.2211440103.

[17] K. Tanaka, T. Yoko, K. Kamiya, H. Yamada, and S. Sakka, "Properties of oxybromide tellurite glasses in the system LiBr-Li2O-TeO2," J. Non·Cryst. Solids, vol. 135, no. 2-3, pp. 211-218, 1991, doi: 10.1016/0022-3093(91)90422-3.

[18] H. Ebendorff-Heidepriem, Y. Ruan, H. Ji, A. D. Greentree, B. C. Gibson, and T. M. Monro, "Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass," Opt. Mater. Express, vol. 4, no. 12, pp. 2608-2620, 2014, doi: 10.1364/OME.4.002608.

[19] N. Tagiara, D. Palles, E. Simandiras, V. Psycharis, A. Kyritsis, and E. Kamitsos, "Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses," J. Non·Cryst. Solids, vol. 457, pp. 116-125, 2017, doi: 10.1016/j.jnoncrysol.2016.11.033.

[20] A. Pan and A. Ghosh, "Activation energy and conductivity relaxation of sodium tellurite glasses," PhRvB, vol. 59, no. 2, p. 899, 1999, doi: 10.1103/PhysRevB.59.899.

[21] K. B. Kavaklıoğlu, S. Aydin, M. Çelikbilek, and A. E. Ersundu, "The TeO2‐Na2O System: Thermal Behavior, Structural Properties, and Phase Equilibria," Int. J. Appl. Glass Sci., vol. 6, no. 4, pp. 406-418, 2015, doi: 10.1111/ijag.12103.

[22] S. K. Bondarenko, L. V. Udovichenko, A. I. Mitichkin, N. N. Kosinov, and I. V. Khromaya, "Optical and Scintillation Properties of NaI(Tl) Crystals," JApSp, vol. 69, no. 6, 2002, doi: 10.1023/A:1022422823022.

[23] Y. Wei, J. Zhao, S. Fuhrmann, R. Sajzew, L. Wondraczek, and H. Ebendorff-Heidepriem, "Controlled formation of gold nanoparticles with tunable plasmonic properties in tellurite glass," Light Sci Appl, vol. 12, no. 1, p. 293, 2023, doi: 10.1038/s41377-023-01324-x.

[24] H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, "Extruded tellurite glass and fibers with low OH content for mid-infrared applications," Opt. Mater. Express, vol. 2, no. 4, pp. 432-442, 2012, doi: 10.1364/OME.2.000432.

[25] T. Rouxel, "Elastic properties and short‐to medium‐range order in glasses," J. Am. Ceram. Soc., vol. 90, no. 10, pp. 3019-3039, 2007, doi: 10.1111/j.1551-2916.2007.01945.x.

[26] R. D. Shannon, "Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, vol. 32, no. 5, pp. 751-767, 1976, doi: 10.1107/S0567739476001551.

[27] A. Kalampounias, S. Yannopoulos, and G. Papatheodorou, "Vibrational modes of sodium–tellurite glasses: Local structure and Boson peak changes," J. Phys. Chem. Solids, vol. 68, no. 5-6, pp. 1035-1039, 2007, doi: 10.1016/j.jpcs.2007.01.048.

[28] M. F. Ando et al., "Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses," Sci. Rep., vol. 8, no. 1, pp. 1-14, 2018, doi: 10.1038/s41598-018-23574-1.

[29] A. Šantić, A. Moguš-Milanković, K. Furić, M. Rajić-Linarić, C. S. Ray, and D. E. Day, "Structural properties and crystallization of sodium tellurite glasses," Croat. Chem. Acta, vol. 81, no. 4, pp. 559-567, 2008.

[30] T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, "Raman spectra of MO1/2TeO2 (M= Li, Na, K, Rb, Cs and Tl) glasses," J. Non·Cryst. Solids, vol. 144, pp. 128-144, 1992, doi: 10.1016/S0022-3093(05)80393-X.

[31] N. Tagiara, E. Moayedi, A. Kyritsis, L. Wondraczek, and E. Kamitsos, "Short-range structure, thermal and elastic properties of binary and ternary tellurite glasses," J. Phys. Chem. B, vol. 123, no. 37, pp. 7905-7918, 2019, doi: 10.1021/acs.jpcb.9b04617.

[32] T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, "Normal vibrations of two polymorphic forms of TeO2 crystals and assignments of Raman peaks of pure TeO2 glass," J. Ceram. Soc. Jpn., vol. 97, no. 1132, pp. 1435-1440, 1989, doi: 10.2109/jcersj.97.1435.

[33] S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, "Ternary tellurite glasses for the fabrication of nonlinear optical fibres," Opt. Mater. Express, vol. 2, no. 2, pp. 140-152, 2012, doi: 10.1364/OME.2.000140.

[34] M. Jesuit et al., "Analysis of Physical and Structural Properties of Alkali Oxide–Modified Tellurite Glasses," J. Undergrad. Rep. Phys., vol. 30, no. 1, p. 100003, 2020, doi: 10.1063/10.0002043.

[35] N. A. Wójcik et al., "The influence of Be addition on the structure and thermal properties of alkali-silicate glasses," J. Non·Cryst. Solids, vol. 521, p. 119532, 2019, doi: 10.1016/j.jnoncrysol.2019.119532.

[36] A. G. Kalampounias, "Low-frequency Raman scattering in alkali tellurite glasses," Bull. Mater. Sci., vol. 31, no. 5, pp. 781-785, 2008, doi: 10.1007/s12034-008-0124-z.

[37] M. Baggioli and A. Zaccone, "Universal origin of boson peak vibrational anomalies in ordered crystals and in amorphous materials," Phys. Rev. Lett., vol. 122, no. 14, p. 145501, 2019, doi: 10.1103/PhysRevLett.122.145501.

[38] V. K. Malinovsky and A. P. Sokolov, "The nature of boson peak in Raman scattering in glasses," Solid State Commun., vol. 57, no. 9, pp. 757-761, 1986, doi: 10.1016/0038-1098(86)90854-9.

[39] H. Shintani and H. Tanaka, "Universal link between the boson peak and transverse phonons in glass," Nat. Mater., vol. 7, no. 11, pp. 870-877, 2008, doi: 10.1038/nmat2293.

[40] O. V. Shishkin, A. Pelmenschikov, D. M. Hovorun, and J. Leszczynski, "Theoretical analysis of low-lying vibrational modes of free canonical 2-deoxyribonucleosides," ChPh, vol. 260, no. 3, pp. 317-325, 2000, doi: 10.1016/S0301-0104(00)00251-2.

[41] S. Balaji, K. Biswas, A. D. Sontakke, G. Gupta, D. Ghosh, and K. Annapurna, "Al2O3 influence on structural, elastic, thermal properties of Yb3+ doped Ba–La-tellurite glass: Evidence of reduction in self-radiation trapping at 1 μm emission," Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 133, pp. 318-325, 2014, doi: 10.1016/j.saa.2014.04.113.

[42] C. D. Bordon, E. S. Magalhaes, D. M. da Silva, L. R. Kassab, and C. B. de Araújo, "Influence of Al2O3 on the photoluminescence and optical gain performance of Nd3+ doped germanate and tellurite glasses," Opt. Mater., vol. 109, p. 110342, 2020, doi: 10.1016/j.optmat.2020.110342.

[43] P. Wang, C. Wang, W. Li, M. Lu, and B. Peng, "Effects of Al2O3 on the thermal stability, glass configuration of Yb3+-doped TeO2–K2O–ZnO–Al2O3 based tellurite laser glasses," J. Non·Cryst. Solids, vol. 359, pp. 5-8, 2013, doi: 10.1016/j.jnoncrysol.2012.09.031.

[44] S. Sakida, S. Hayakawa, and T. Yoko, "125Te, 27Al, and 71Ga NMR study of M2O3–TeO2 (M= Al and Ga) glasses," J. Am. Ceram. Soc., vol. 84, no. 4, pp. 836-842, 2001, doi: 10.1111/j.1151-2916.2001.tb00749.x.

[45] T. Allison, "JANAF thermochemical tables, NIST standard reference database," vol. 13, p. 1453, 1996, doi: 10.18434/T42S31.

[46] J. J. Reed, "The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units"," J. Res. Natl. Inst. Stand. Technol., vol. 125, 2020, doi: 10.18434/M32124.

Downloads

Published

2025-12-08

How to Cite

Pan, X., Rodrigues, B. P., Duval, A., Wondraczek, L., & Ebendorff-Heidepriem, H. (2025). Optical, Structural, and Electrical Properties of TeO2 – Na2O – NaX Glasses (X = Cl, Br, I): Roles of Crucible Materials and Halides. Glass Europe, 3, 253–264. https://doi.org/10.52825/glass-europe.v3i.2575
Received 2025-01-07
Accepted 2025-08-04
Published 2025-12-08

Funding data